r4k_cp0.c
61.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
/*
* Copyright (C) 1996-1998 by the Board of Trustees
* of Leland Stanford Junior University.
*
* This file is part of the SimOS distribution.
* See LICENSE file for terms of the license.
*
*/
/****************************************************************
* r4k_cp0.c
*
* This file contains the R4000 implementation of the TLB. For
* further elucidation see r4k_cp0.c in Mipsy.
* Author: $Author: blythe $
* Date: $Date: 2002/05/29 01:09:10 $
*****************************************************************/
#include <bstring.h>
#include "list.h"
#include "simmisc.h"
#include "embra.h"
#include "cp0.h"
#include "main_run.h"
#include "mem_control.h"
#include "qc.h"
#include "clock.h"
#include "decoder.h"
#include "driver.h"
#include "eventcallback.h"
#include "simmagic.h"
#include "stats.h"
#include "annotations.h"
#include "firewall.h"
#include "hw_events.h"
#include "registry.h"
#include "c_port.h"
#include "machine_defs.h"
#include "tc.h"
int embraprintsr = 0;
int exceptionDuringBackdoor = FALSE;
#define REFILL_FLAG 0x8000000
#define XREFILL_FLAG 0x4000000
/*
* MIPS r4k manual is WRONG on this one.
* Always latch badvaddr
*/
#define LATCH_BADVADDR(_sr) (1)
#if defined(SIM_MIPS32)
#define ANY_HIGH32_BITS(_vAddr) (0)
#define HAS_BAD_VADDR_BITS(_vAddr) (0)
#define REGION_COMPARE(_a,_b) (1)
#define IN_32BIT_MODE(_p) (1)
#define ONLY_4K_PAGE_SIZE /* 32bit only needs 4K pages */
#define IS_R10000(P) 0
#else
#define ANY_HIGH32_BITS(_vAddr) ((_vAddr) >> 32)
#define _BAD_VADDR_MASK (~(((0x1LL << VA_VALID_BITS)-1)|(0x3LL<<62)))
#define HAS_BAD_VADDR_BITS(_vAddr) ((_vAddr) & _BAD_VADDR_MASK)
#define REGION_COMPARE(_a,_b) ((_a) == (_b))
#define IN_32BIT_MODE(_p) ((_p)->is32bitMode)
/*
* Is the R10000 TLB?
*/
#define IS_R10000(P) ((P)->numTlbEntries == 64)
#endif
#ifdef ONLY_4K_PAGE_SIZE
#define ComputeTlbEntrySize(_pgmask) (0)
#else
static unsigned char ComputeTlbEntrySize(uint pgMsk);
#endif
struct PgMaskStruct
PgSz[TLBPGMASK_NUMSIZES] = {
{ ~(TLBPGMASK_4K>>13), (1 << 12), 4*1024-1},
{ ~(TLBPGMASK_16K>>13), (1 << 14), 16*1024-1},
{ ~(TLBPGMASK_64K>>13), (1 << 16), 64*1024-1},
{ ~(TLBPGMASK_256K>>13), (1 << 18), 256*1024-1},
{ ~(TLBPGMASK_1M>>13), (1 << 20), 1024*1024-1},
{ ~(TLBPGMASK_4M>>13), (1 << 22), 4*1024*1024-1},
{ ~(TLBPGMASK_16M>>13), (1 << 24), 16*1024*1024-1},
};
#ifndef ONLY_4K_PAGE_SIZE
#define SZ2MASK(_s) PgSz[(_s)].mask
#define SIZES_TO_CHECK TLBPGMASK_NUMSIZES
#else
#define SZ2MASK(_s) -1
#define SIZES_TO_CHECK 1
#endif
#ifndef ONLY_4K_PAGE_SIZE
static unsigned char ComputeTlbEntrySize(uint pgMsk)
{
unsigned char s;
uint match = ~(pgMsk >> 13);
ASSERT(SIZES_TO_CHECK < (1 << (sizeof(unsigned char)*8)));
for (s = 0; s < SIZES_TO_CHECK; s++) {
if ((uint)SZ2MASK(s) == match) {
return s;
}
}
CPUError("Bad PgMsk 0x%x in ComputeTlbEntrySize\n", pgMsk);
return (unsigned char) 0;
}
#endif
/*extern int curr_cpu; */
extern EmbraState* curEmp;
/* Local Data */
/* Local CP0 functions */
static void REFILL_EXCEPTION(int cpuNum, int, int,VA,VA,int);
static uint Do_TLB_Write(int cpuNum, int);
/* This is called to allow insertion into the hash table */
static void Insert_TLB_HT( int cpuNum, int i );
/* for debugging */
void Em_Dump_Tlb(int cpuNum);
static void UpdateCPUMode(CPUState *P);
static EventCallbackHdr timerCallbackHdr[SIM_MAXCPUS];
static void EmbraSetTimerCallback(int cpuNum);
void Em_Dump_Tlb(int cpuNum)
{
int i;
CPUPrint("TLB DUMP %d\n", cpuNum);
for( i = 0; i < EMP[cpuNum].numTlbEntries; i++) {
CPUPrint("%d PgMsk:0x%x Hi:0x%llx Lo_0:0x%llx Lo_1:0x%llx\n",
i,
EMP[cpuNum].tlbEntry[i].PgMsk,
(Reg64)EMP[cpuNum].tlbEntry[i].Hi,
(Reg64)EMP[cpuNum].tlbEntry[i].Lo0,
(Reg64)EMP[cpuNum].tlbEntry[i].Lo1);
}
}
/* This is called to set up the List_Links hashing chains */
/* This sets up the hash bucket list headers, and the Index list that */
/* they point to */
void Em_Tlb_Init_Lists( int cpuNum )
{
int i;
/* If we have been called before, this would have been set up */
/* Yeah, its a little hacky */
if( EMP[cpuNum].indexList[10].index == 10 )
return;
for( i = 0; i < TLB_HASH_SIZE; i++ )
List_Init( &EMP[cpuNum].tlbIndexHeaders[i] );
for( i = 0; i < EMP[cpuNum].numTlbEntries; i++ ) {
List_InitElement( &EMP[cpuNum].indexList[i].links );
EMP[cpuNum].indexList[i].index = i;
EMP[cpuNum].indexList[i].onList = 0;
}
}
void Em_Tlb_Do_Init( int cpuNum, int swtch )
{
int i;
Em_Tlb_Init_Lists(cpuNum);
quick_ASID[cpuNum] = GET_ASID( EMP[cpuNum].CP0[C0_TLBHI] );
/* This clears qc and sets up K0 */
qc_renew(cpuNum);
for (i=0; i < EMP[cpuNum].numTlbEntries; i++) {
/* Add the new entry(it rejects K0 entries)*/
/* Don't add to index list if we're switching CPUs */
if (!swtch)
Insert_TLB_HT( cpuNum, i );
/* XXX Initialize entry size!!! Should this be done here?? -BL */
EMP[cpuNum].tlbEntrySize[i] = ComputeTlbEntrySize( EMP[cpuNum].tlbEntry[i].PgMsk);
/* Update the QC only with current ASID*/
if( (IS_GLOBAL_HI( EMP[cpuNum].tlbEntry[i].Hi ) ||
quick_ASID[cpuNum] == GET_ASID( EMP[cpuNum].tlbEntry[i].Hi ) ) )
{
qc_map_page( cpuNum,i);
}
}
UpdateCPUMode(&EMP[cpuNum]);
}
/*********************************************************************
* This can only be called AFTER Tlb_Init is called
* This is really just a qc_mmu_context_switch, but our assumptions
* are different. Namely, 1. the current quick_ASID can be 0and
* 2. We need to map global entries in the QC
*********************************************************************/
void Em_Tlb_Init( int cpuNum, int swtch )
{
int i;
static int mmu_initialized = 0;
/* Note: we arrive here when either:
* - SimOS starts in Embra mode
* - we switch from Mipsy to Embra for the first time
* - we switch from Mipsy to Embra after already having done so before.
* In the first two cases, the mmu has not been allocated/initialized
* yet, so we don't want to do the Tlb_Clear.
*/
if (mmu_initialized++)
Em_Tlb_Clear( cpuNum );
if( embra.MPinUP ) {
int cpu;
for( cpu = 0; cpu < TOTAL_CPUS; cpu++) {
Em_Tlb_Do_Init( cpu, swtch );
}
} else {
Em_Tlb_Do_Init( cpuNum, swtch );
}
}
static void Em_Tlb_Remove(int cpuNum,int idx)
{
if( embra.emode == EMBRA_CACHE ) {
qc_cache_inval_page( cpuNum, idx);
}
qc_tlb_replace_page( cpuNum, idx);
}
/* We call this on exit from mshade */
void Em_Tlb_Clear( int cpuNum )
{
int i;
/* If we have been called before, this would have been set up */
/* Yeah, its a little hacky */
if( EMP[cpuNum].indexList[10].index != 10 )
return;
if(embra.MPinUP ) {
int cpu;
ASSERT( cpuNum==0);
for( cpu = 0; cpu < TOTAL_CPUS; cpu++ ) {
for( i = 0; i < EMP[cpuNum].numTlbEntries; i++ ) {
if( EMP[cpu].indexList[i].onList ) {
List_Remove( &EMP[cpu].indexList[i].links );
EMP[cpu].indexList[i].onList = 0;
Em_Tlb_Remove(cpu,i);
}
}
}
} else {
for( i = 0; i < EMP[cpuNum].numTlbEntries; i++ ) {
if( EMP[cpuNum].indexList[i].onList ) {
List_Remove( &EMP[cpuNum].indexList[i].links );
EMP[cpuNum].indexList[i].onList = 0;
Em_Tlb_Remove(cpuNum,i);
}
}
}
}
#if defined(SIM_MIPS32)
#define TLBHash(_vpn2,_region, _asid) TLBHash32BitOnly(_vpn2,_asid)
/*****************************************************************
* Hash function for converting a virtual page number and ASID
* into an entry in the hash table. Hash function of R3000 ==
* hash function of R4000. Hash table stores chained TLB entry
* numbers at each bucket, thus decreasing translation time.
* R4000 COMMENTS >> In all calls to this function, the vpn is
* actually vpn2. (you want both vpn's to map to the same index!)
*****************************************************************/
static int
TLBHash32BitOnly(register VPN vpn2, register ASID asid)
{
return ((vpn2 ^ (vpn2 >> (NUM_VPN_BITS - LOG_TLB_HASH_SIZE))
^ (asid << (LOG_TLB_HASH_SIZE - NUM_ASID_BITS)))
% TLB_HASH_SIZE);
}
#else
#define TLBHash(_vpn2,_region, _asid) TLBHash64bit(_vpn2,_region, _asid)
/*****************************************************************
* Hash function for converting a virtual page number and ASID
* into an entry in the hash table.
* Hash table stores chained TLB entry
* numbers at each bucket, thus decreasing translation time.
*****************************************************************/
static int
TLBHash64bit(register VPN vpn2, register uint region, register ASID asid)
{
return ((vpn2 ^ (vpn2 >> (NUM_VPN2_BITS - LOG_TLB_HASH_SIZE))
^ (vpn2 >> (32 - (NUM_OFFSET_BITS+1) - LOG_TLB_HASH_SIZE))
^ region
^ (asid << (LOG_TLB_HASH_SIZE - NUM_ASID_BITS)))
% TLB_HASH_SIZE);
}
#endif
/*************************************************************************
* This function returns the index+1 of the TLB entry with the given
* vpn2 (!! takes in vpn2, not vpn), and given asid. It returns 0 if
* the index is not found.
* The algorithm is: probe the hash table under the given asid, then probe
* under asid 0 (to catch global entries )
*************************************************************************/
IDX Tlb_Lookup( int cpuNum, uint region, VPN vpn2, ASID asid )
{
int hashNum;
List_Links* indexPtr;
register unsigned idx;
register int s;
register EmbraState *P = EMP + cpuNum;
for (s = 0; s < SIZES_TO_CHECK; s++) {
VPN vpn;
VPN vpnLookup = vpn2 & SZ2MASK(s);
/* Check for pages under this process's true asid */
hashNum = TLBHash(vpnLookup, region, asid);
LIST_FORALL( &(P->tlbIndexHeaders[hashNum]), indexPtr) {
idx = ((IndexListLink*)indexPtr)->index;
vpn = vpn2 & SZ2MASK(P->tlbEntrySize[idx]);
/* Don't check global bit because if the global bit is set, the
* entry is stored under ASID 0 */
if ((vpn == GET_VPN2(P->tlbEntry[idx].Hi))
&& (asid == GET_ASID(P->tlbEntry[idx].Hi))
&& REGION_COMPARE(region, GET_REGION(P->tlbEntry[idx].Hi))) {
return idx+1;
}
}
/* Now check for global pages, all of which are stored under asid 0 */
hashNum = TLBHash(vpnLookup, region, 0);
LIST_FORALL( &(P->tlbIndexHeaders[hashNum]), indexPtr) {
idx = ((IndexListLink*)indexPtr)->index;
vpn = vpn2 & SZ2MASK(P->tlbEntrySize[idx]);
if ((vpn == GET_VPN2(P->tlbEntry[idx].Hi))
&& (IS_GLOBAL_HI(P->tlbEntry[idx].Hi))
&& REGION_COMPARE(region,GET_REGION(P->tlbEntry[idx].Hi))) {
return idx+1;
}
}
}
return 0;
}
/*****************************************************************
* Address translation on R4000.
*
* input: virtual address
* pointer to phys addr
* Fully associative search (using hash table)
* 1.) User Mode or Supervisor Mode
* if MSB == 1 in user or MSB = 0 | 110
* 2.) VPN2 match?
* a.) if VPN2 does not match and 32 bit-mode, -> TLB Refill.
* b.) VPN2 match, Not Global, No ASID match, -> TLB Refill.
* c.) VPN2 match, not Global and ASID match, OR Global, then if not valid
* -> TLB Invalid.
* d.) valid, not dirty, but writing -> TLB Mod.
* e.) valid, dirty, or not dirty and not writing, Non_Cacheable == T
* then -> Access Main Mem, else Access Cache. Phys addr output.
*
* Returns FAILURE if an exception occurred telling the CPU to try
* this instruction again.
*
*
* This doesn't really return EXCEPTION_CODE, because the EXCEPTION
* routine does not return, it jumps to continue_run with the
* handler PC. I keep them in to be descriptive.
*
*****************************************************************/
uint
Em_TranslateVirtual(int cpuNum, VA vAddr, PA *pAddr, Em_accesstype act )
{
IDX tlbIndex;
ContextReg contextReg;
XContextReg xcontextReg;
int myASID = GET_ASID(curEmp->CP0[C0_TLBHI]);
Reg VPN2;
Reg lo_reg;
int region = GET_REGION(vAddr);
unsigned char writing = (act == ACT_DWRITE);
Reg32 sr_reg = (Reg32)(curEmp->CP0[C0_SR]);
ASSERT( curEmp->myNum == cpuNum);
/* Not the best way to do this... */
if( !curEmp->outOfSlaveLoop ) {
return BACKDOOR_CODE;
}
if (region == 0) {
/* Make sure the address is with acceptable range. For the
* 32 bit mode this means 32 bits, for 64bit mode this means
* impelementation defined bits.
*/
if (IN_32BIT_MODE(curEmp)) {
if (ANY_HIGH32_BITS(vAddr)) goto addrErr;
} else {
if (HAS_BAD_VADDR_BITS(vAddr)) goto addrErr;
if (IS_R10000(curEmp) && !(sr_reg & SR_UX) && ANY_HIGH32_BITS(vAddr)) goto addrErr;
}
/* KUSEG becomes an uncached space when the ERL bit is set. This is
* needed for cache error handling. */
if (sr_reg & SR_ERL) {
/* need to add k1base because registry works on kseg1 addresses */
vAddr += K1BASE;
goto bdoor;
}
/* Fall thru to TLB lookup */
} else if (region == 3) {
/* Kernel region, no user and limited supervisor */
if (vAddr >= CKSEG0_START_ADDR) {
if (!IS_KERNEL_MODE(curEmp)) {
/* No user and supervisor limited to single range */
if (IS_BACKDOOR(vAddr) ) goto bdoor;
if (sr_reg & SR_KSU_USR) goto addrErr;
if ((sr_reg & SR_KSU_SUP) && !IS_SUPERV_SEG(vAddr)) goto addrErr;
}
if (IS_KSEG0(vAddr)) {
if (!IS_KERNEL_MODE(curEmp)) goto addrErr; /* Kernel only */
if (remapVec->RemapEnable[cpuNum] &&
(vAddr >= __MAGIC_OSPC_BASE && vAddr < __MAGIC_OSPC_END))
goto bdoor;
*pAddr = K0_TO_PHYS_REMAP(vAddr, cpuNum);
if (!IS_VALID_PA(M_FROM_CPU(cpuNum), *pAddr)) goto addrErr;
if (CPUVec.CheckFirewall)
goto firewall;
return NORMAL_CODE;
}
if (IS_KSEG1(vAddr)) goto bdoor;
/* Fall thru to TLB lookup */
} else {
/* If we got here we better not be in 32bit mode and
* there is nothing that the user or supvisor can access.
*/
if (IN_32BIT_MODE(curEmp) || !IS_KERNEL_MODE(curEmp)) goto addrErr;
if (vAddr > XKSEG_END_ADDR) goto addrErr;
}
/* Fall thru to TLB lookup */
#if defined(SIM_MIPS64)
} else if (region == 2) {
uint cache_algorithm = XKPHYS_CACHE_ALGORITHM(vAddr);
/* xkphys - only available in kernel 64bit mode */
if (IN_32BIT_MODE(curEmp) || !IS_KERNEL_MODE(curEmp)) goto addrErr;
switch (cache_algorithm) {
case CBIT_UPDATE:
if (IS_R10000(curEmp)) {
break; /* fall thru to error, doesn't work on R10000 */
}
case CBIT_NONCOHERENT:
case CBIT_EXCLUSIVE:
case CBIT_EXCLUSIVE_WRITE:
{
Reg64 offset = XKPHYS_ONE_PAGE_OFFSET(vAddr);
if (XKPHYS_INVALID_OFFSET(offset)) goto addrErr;
*pAddr = K0_TO_PHYS_REMAP(XKPHYS_BASE + offset, cpuNum);
/* XXX - NEED TO ACCESS FLAVOR */
return NORMAL_CODE;
}
case CBIT_UNCACHED:
case CBIT_UNCACHED_ACCEL:
{
uint flavor = XKPHYS_UNCACHED_FLAVOR(vAddr);
Reg64 offset = XKPHYS_FOUR_PAGE_OFFSET(vAddr);
if (XKPHYS_INVALID_OFFSET(offset)) goto addrErr;
if (!IS_R10000(curEmp) && (flavor != 0)) goto addrErr;
goto bdoor;
}
default:
/* invalid cache alogrithm fall thru to error */
break;
}
goto addrErr;
} else if (region == 1) {
/* Supervisor region - only available in 64bit mode */
if (IN_32BIT_MODE(curEmp) || ((sr_reg & SR_KSU_USR) && !IS_KERNEL_MODE(curEmp)) ||
HAS_BAD_VADDR_BITS(vAddr)) goto addrErr;
if (IS_R10000(curEmp) && !(sr_reg & SR_SX)) goto addrErr;
/* Fall thru to TLB lookup */
#endif /* notdef MIPS32 */
}
/* Check TLB */
VPN2 = GET_VPN2(vAddr);
tlbIndex = Tlb_Lookup(cpuNum, region, VPN2, myASID);
if (tlbIndex) {
int szEntry;
/* We have a matching VPN and ASID - see if it is valid */
tlbIndex--;
szEntry = curEmp->tlbEntrySize[tlbIndex];
/* Which lo register? */
if (vAddr & PgSz[szEntry].loBit)
lo_reg = curEmp->tlbEntry[tlbIndex].Lo1;
else
lo_reg = curEmp->tlbEntry[tlbIndex].Lo0;
if (IS_VALID(lo_reg)) {
/* Check if the page is dirty or we are reading */
if ( IS_DIRTY(lo_reg) || !(writing)) {
/* Everything is cool - form the address */
#if defined(SIM_MIPS64) && defined(IRIX6_4)
int cache_algorithm = GET_CACHE_ALGOR(lo_reg);
if (!((cache_algorithm == CBIT_EXCLUSIVE) ||
(cache_algorithm == CBIT_EXCLUSIVE_WRITE))) {
CPUWarning("%lld Unsupported TLB cache algorithm (%d) at address 0x%llx by cpu %d at PC 0x%llx\n",
(uint64)EmbraCpuCycleCount(cpuNum), cache_algorithm,
(uint64)vAddr, cpuNum, (uint64)EMP[cpuNum].PC);
}
#endif
*pAddr = (((GET_PFN(lo_reg)&SZ2MASK(szEntry))*4*1024) |
(vAddr & PgSz[szEntry].offset_mask));
if (!EMBRA_IS_PADDR(M_FROM_CPU(cpuNum),*pAddr)) {
/* Bad physical address */
if (LATCH_BADVADDR(sr_reg)) EMP[cpuNum].CP0[C0_BADVADDR] = vAddr;
Em_EXCEPTION(cpuNum, EXC_DBE,0);
return EXCEPTION_CODE;
}
if (CPUVec.CheckFirewall)
goto firewall;
return NORMAL_CODE;
} else {
/* TLB MODIFICATION */
/* Page is not dirty and we want to write */
/* Set up the CTxt register !!! */
/* EPC set up in EXCEPTION, badVaddr and context */
/* stored in macro */
contextReg.tc_data = curEmp->CP0[C0_CTXT];
contextReg.s32.tc_badvpn = VPN2;
xcontextReg.tc_data = curEmp->CP0[C0_XCTXT];
xcontextReg.s64.tc_region = region;
#ifndef BIG_BIT_FIELD_BROKEN
xcontextReg.s64.tc_badvpn = VPN2;
#else
xcontextReg.s64.tc_badvpn_hi3 = VPN2>>28;
xcontextReg.s64.tc_badvpn_lo28 = VPN2;
#endif
EMP[cpuNum].CP0[C0_TLBHI] = (((Reg)region << TLBHI_REGIONSHIFT) |
(VPN2 << TLBHI_VPN2SHIFT) |
((Reg)myASID << TLBHI_PIDSHIFT)) ;
if (LATCH_BADVADDR(sr_reg)) EMP[cpuNum].CP0[C0_BADVADDR] = vAddr;
EMP[cpuNum].CP0[C0_CTXT] = contextReg.tc_data;
EMP[cpuNum].CP0[C0_XCTXT] = xcontextReg.tc_data;
Em_EXCEPTION(cpuNum,EXC_MOD,0);
return EXCEPTION_CODE;
}
} else {
/* TLB INVALID */
contextReg.tc_data = curEmp->CP0[C0_CTXT];
contextReg.s32.tc_badvpn = VPN2;
xcontextReg.tc_data = curEmp->CP0[C0_XCTXT];
xcontextReg.s64.tc_region = region;
#ifndef BIG_BIT_FIELD_BROKEN
xcontextReg.s64.tc_badvpn = VPN2;
#else
xcontextReg.s64.tc_badvpn_hi3 = VPN2>>28;
xcontextReg.s64.tc_badvpn_lo28 = VPN2;
#endif
EMP[cpuNum].CP0[C0_TLBHI] = (((Reg)region << TLBHI_REGIONSHIFT) |
(VPN2 << TLBHI_VPN2SHIFT) |
((Reg)myASID << TLBHI_PIDSHIFT)) ;
EMP[cpuNum].CP0[C0_CTXT] = contextReg.tc_data;
EMP[cpuNum].CP0[C0_XCTXT] = xcontextReg.tc_data;
if (LATCH_BADVADDR(sr_reg)) EMP[cpuNum].CP0[C0_BADVADDR] = vAddr;
Em_EXCEPTION(cpuNum,writing ? EXC_WMISS : EXC_RMISS,0);
return EXCEPTION_CODE;
}
}
/* TLB REFILL
* Since there were no matching VPN2s, there is a TLB refill exception.
* First put the VPN2 and ASID of the non-matching address in Hi.
* The BadVAddr and Context registers also need to be set.
* 1.) set TLBL or TLBS(store only) code in cause register
* use EPC and BD bit in cause reg, inst or load, or store.
* 2.) BadVAddr, Context, XContect and EntryHi hold the vAddr
* that failed. Entry HI also has ASID. EPC pts to last instruction
* take care of branches.
*/
contextReg.tc_data = curEmp->CP0[C0_CTXT];
contextReg.s32.tc_badvpn = VPN2;
xcontextReg.tc_data = curEmp->CP0[C0_XCTXT];
xcontextReg.s64.tc_region = region;
#ifndef BIG_BIT_FIELD_BROKEN
xcontextReg.s64.tc_badvpn = VPN2;
#else
xcontextReg.s64.tc_badvpn_hi3 = VPN2>>28;
xcontextReg.s64.tc_badvpn_lo28 = VPN2;
#endif
/* BadVAddr register should be loaded */
if (LATCH_BADVADDR(sr_reg)) EMP[cpuNum].CP0[C0_BADVADDR] = vAddr;
EMP[cpuNum].CP0[C0_TLBHI] = (((Reg)region << TLBHI_REGIONSHIFT) |
(VPN2 << TLBHI_VPN2SHIFT) |
((Reg)myASID << TLBHI_PIDSHIFT)) ;
EMP[cpuNum].CP0[C0_CTXT] = contextReg.tc_data;
EMP[cpuNum].CP0[C0_XCTXT] = xcontextReg.tc_data;
if (sr_reg & SR_EXL) {
Em_EXCEPTION(cpuNum,writing ? EXC_WMISS : EXC_RMISS, 0);
} else {
int isXRefill = 0;
if (((region == 0) && (sr_reg & SR_UX)) ||
((region == 3) && (sr_reg & SR_KX)) ||
((region == 1) && (sr_reg & SR_SX))) {
isXRefill = 1;
}
REFILL_EXCEPTION(cpuNum,writing ? EXC_WMISS : EXC_RMISS,
act== ACT_IREAD,
EMP[cpuNum].PC,
vAddr, isXRefill);
}
return EXCEPTION_CODE;
addrErr:
/* Illegal address - generate an address error */
if (LATCH_BADVADDR(sr_reg)) curEmp->CP0[C0_BADVADDR] = vAddr;
Em_EXCEPTION(cpuNum, (act==ACT_IREAD) ? EXC_IBE : EXC_DBE, 0);
return EXCEPTION_CODE;
bdoor:
{
void *dat;
uint flag;
int rval;
if (vAddr == EMP[cpuNum].PC) {
*pAddr = (PA)RegistryGetSimFunction(vAddr);
if (*pAddr) return BACKDOOR_CODE;
/* no such function */
{
/* better only warn once because cpu can go into
* an infinite loop: the IBE handler is a bad
* backdoor address if BEV is set
*/
static int warned = 0;
if (!warned) {
CPUWarning("%lld Bad backdoor ifetch to address 0x%x by cpu %d\n",
(uint64)EmbraCpuCycleCount(cpuNum), vAddr, cpuNum);
warned = 1;
CPUWarning("Bad backdoor warning will not be repeated\n");
}
}
if (LATCH_BADVADDR(sr_reg)) EMP[cpuNum].CP0[C0_BADVADDR] = vAddr;
Em_EXCEPTION(cpuNum, EXC_IBE, 0);
return EXCEPTION_CODE;
}
if (!RegistryIsInRange(vAddr,&dat, &flag)) {
CPUWarning("%lld Bad backdoor reference to address 0x%x by cpu %d\n",
(uint64)EmbraCpuCycleCount(cpuNum), vAddr, cpuNum);
if (LATCH_BADVADDR(sr_reg)) EMP[cpuNum].CP0[C0_BADVADDR] = vAddr;
Em_EXCEPTION(cpuNum,
(act==ACT_IREAD) ? EXC_IBE : EXC_DBE,
0);
return EXCEPTION_CODE;
}
if (flag & REG_DATA) {
*pAddr = (PA) dat;
} else {
Instruction instr;
Result returnFlag;
/* NOTE: the following MUST be static, since for backdoor loads,
* the value "loaded" from the backdoor is returned here (actually,
* pAddr is set to point to this, and the caller fetches the
* value, foolishly believing it's accessing mem.
* This is a hack and should be fixed (yeah, when?).
*/
static uint64 buffer;
/* data addressed backdoor function: decode the simulated instruction to
find out the register number, and pass that value to backdoor function.
Only works for KSEG0 PCs, otherwise would have to translate the PC. */
ASSERT(flag & REG_FUNC);
if (!IS_KERNEL_MODE(&EMP[cpuNum])) {
CPUError("BACKDOOR ACCESS WHILE NOT IN KERNEL: pc=%#llx ra=%#llx addr=%#llx \n",
(uint64)curEmp->PC,(uint64)curEmp->R[31],(uint64)vAddr);
}
/*
* XXX NOTE: is this the right place to update the current CPU??
* I'm not sure, but this should work (with little perf impact),
* at least for the backdoor.
*/
/* caveat: we might be in a branch delay slot... */
#ifdef EMBRA_USE_QC64
instr = *(Instruction *)Em_QC64Reload(CLEAR_BD(EMP[cpuNum].PC),
QC64_READ);
#else
instr = *(Instruction *)K0_TO_MEMADDR(M_FROM_CPU(cpuNum),
CLEAR_BD(EMP[cpuNum].PC));
#endif
switch ( MAJOR_OPCODE(instr) ) {
case lb_op:
case lbu_op:
rval = ((MagicFunction)dat)(cpuNum,
vAddr, BDOOR_LOAD_BYTE, &buffer);
returnFlag = rval ? BUSERROR : SUCCESS;
break;
case lh_op:
case lhu_op:
rval = ((MagicFunction)dat)(cpuNum,
vAddr, BDOOR_LOAD_HALF, &buffer);
returnFlag = rval ? BUSERROR : SUCCESS;
break;
case lw_op:
rval = ((MagicFunction)dat)(cpuNum,
vAddr, BDOOR_LOAD_WORD, &buffer);
returnFlag = rval ? BUSERROR : SUCCESS;
break;
case ld_op: /* XXX backward compatibility XXX */
case ldc2_op:
rval = ((MagicFunction)dat)(cpuNum,
vAddr, BDOOR_LOAD_DOUBLE, &buffer);
returnFlag = rval ? BUSERROR : SUCCESS;
break;
case sb_op:
((unsigned char *)&buffer)[0] = 0xff & EMP[cpuNum].R[rt(instr)];
rval = ((MagicFunction)dat)(cpuNum,
vAddr, BDOOR_STORE_BYTE, &buffer);
returnFlag = rval ? BUSERROR : SUCCESS;
break;
case sh_op:
((unsigned short *)&buffer)[0] = 0xffff & EMP[cpuNum].R[rt(instr)];
rval = ((MagicFunction)dat)(cpuNum,
vAddr, BDOOR_STORE_HALF, &buffer);
returnFlag = rval ? BUSERROR : SUCCESS;
break;
case sw_op:
((uint *)&buffer)[0] = EMP[cpuNum].R[rt(instr)];
rval = ((MagicFunction)dat)(cpuNum,
vAddr, BDOOR_STORE_WORD, &buffer);
returnFlag = rval ? BUSERROR : SUCCESS;
break;
#if defined(SIM_MIPS64)
case sd_op:
((Reg64 *)&buffer)[0] = EMP[cpuNum].R[rt(instr)];
rval = ((MagicFunction)dat)(cpuNum,
vAddr, BDOOR_STORE_DOUBLE, &buffer);
returnFlag = rval ? BUSERROR : SUCCESS;
break;
#else
case sd_op: /* XXX backward compatibility XXX */
#endif
case sdc2_op:
((uint *)&buffer)[0] = EMP[cpuNum].R[rt(instr)];
((uint *)&buffer)[1] = EMP[cpuNum].R[rt(instr)+1];
rval = ((MagicFunction)dat)(cpuNum,
vAddr, BDOOR_STORE_DOUBLE, &buffer);
returnFlag = rval ? BUSERROR : SUCCESS;
break;
default:
CPUError("Data addressed functions are only triggered from [ls][bhwd]\n");
}
if (returnFlag == SUCCESS) {
*pAddr = (PA) &buffer;
} else if (returnFlag == BUSERROR) {
*pAddr = NULL;
if (LATCH_BADVADDR(sr_reg)) EMP[cpuNum].CP0[C0_BADVADDR] = vAddr;
Em_EXCEPTION(cpuNum, EXC_DBE, 0);
return EXCEPTION_CODE;
} else {
CPUError("Unknown result type: 0x%x\n", returnFlag);
}
}
}
#ifdef NOTDEF
/* Log all backdoor writes since you're totally paranoid now */
LogEntry("BACKDOOR", cpuNum, "0x%x 0x%x\n", vAddr, *pAddr);
#endif
return BACKDOOR_CODE;
firewall:
{
/* first check if line became incoherent during low-level recovery */
if (SimMagic_IsIncoherent(*pAddr)) {
if (LATCH_BADVADDR(sr_reg)) EMP[cpuNum].CP0[C0_BADVADDR] = vAddr;
Em_EXCEPTION(cpuNum, (act==ACT_IREAD) ? EXC_IBE : EXC_DBE, 0);
return EXCEPTION_CODE;
}
/* come here if access is fine but firewall needs to be checked */
if (writing && !CPUVec.CheckFirewall(cpuNum, *pAddr)) {
if (LATCH_BADVADDR(sr_reg)) EMP[cpuNum].CP0[C0_BADVADDR] = vAddr;
Em_EXCEPTION(cpuNum, EXC_DBE, 0);
CPUWarning("Fwall violation: "
"cpu %d vaddr 0x%x paddr 0x%x\n",
cpuNum, vAddr, *pAddr);
return EXCEPTION_CODE;
}
/*if qc changes because of R4000 this might need changes!!*/
/* if address is k0seg, then add phys->mem mapping to mmu so we
don't have to translate again. */
/* DISABLED: we now preemptively put all the k0seg translations
* in in qc_renew, then zero out the ones with annotations
* in EmbraInstallMemAnnotation. So we don't need to worry
* about putting more here (and could disable annotations if
* we accidentally did so).
*/
#ifdef notdef
if ((vAddr > K0BASE && vAddr < K0BASE + K0SIZE) &&
(EMP[cpuNum].mmu[PAGE_NUMBER(vAddr)] == 0)) {
PA pa = (PA)PHYS_TO_MEMADDR(M_FROM_CPU(cpuNum),
FORM_ADDR(PAGE_NUMBER(*pAddr), 0));
EMP[cpuNum].mmu[PAGE_NUMBER(vAddr)] =
(embra.emode == EMBRA_PAGE && CheckFirewall(cpuNum, *pAddr)) ?
MMU_PROT_WRITE(pa) : MMU_PROT_READ(pa);
}
#endif
return NORMAL_CODE;
}
}
/*****************************************************************
* Is_Tlb_Writable -
* See if the given VPN, asid pair holds a writable (dirty bit is set)
* mapping in the TLB.
*****************************************************************/
int Em_Is_Tlb_Writable( int cpuNum, VA vAddr, ASID asid )
{
int tlb_index;
if( IS_KSEG0(vAddr) ) /* KSEG1 also unmapped */
return 1;
/* Check the TLB Hash Table */
tlb_index = Tlb_Lookup( cpuNum, GET_REGION(vAddr), CONVERT_TO_VPN2(PAGE_NUMBER(vAddr)),
asid );
if( tlb_index ) {
tlb_index--;
if (IS_LO_0(PAGE_NUMBER(vAddr)))
return( IS_DIRTY(EMP[cpuNum].tlbEntry[tlb_index].Lo0));
else
return( IS_DIRTY(EMP[cpuNum].tlbEntry[tlb_index].Lo1));
}
return 0;
}
/*****************************************************************
* Is_Tlb_Readable -
* See if the given VPN, asid pair holds a valid
* mapping in the TLB.
*****************************************************************/
int Em_Is_Tlb_Readable( int cpuNum, VA vAddr, ASID asid )
{
int tlb_index;
if( IS_KSEG0(vAddr) )
return 1;
/* Check the TLB Hash Table */
tlb_index = Tlb_Lookup( cpuNum, GET_REGION(vAddr),
CONVERT_TO_VPN2(PAGE_NUMBER(vAddr)), asid );
if( tlb_index ) {
tlb_index--;
if (IS_LO_0(PAGE_NUMBER(vAddr)))
return( IS_VALID(EMP[cpuNum].tlbEntry[tlb_index].Lo0));
else
return( IS_VALID(EMP[cpuNum].tlbEntry[tlb_index].Lo1));
}
return 0;
}
/*****************************************************************
* ProbeTLB -
* Probe TLB for a matching entry. The Index register is loaded
* with the address of the TLB entry whose contents match the
* contents of the EntryHi register. If no TLB entry matches, the
* high order bit of the Index register is set.
*
* Multiple matches are not possible (they would have caused a TLB
* shutdown error
*****************************************************************/
uint Em_ProbeTLB(int cpuNum)
{
int tlb_idx;
ASSERT (curEmp->myNum == cpuNum);
if (!IS_KERNEL_MODE(curEmp)) {
EMP[cpuNum].CP0[C0_CAUSE] = CAUSE_SET_CE( EMP[cpuNum].CP0[C0_CAUSE], 0 );
Em_EXCEPTION(cpuNum,EXC_CPU,0); /* Coprocessor Unusable */
ReenterTC(curEmp);
}
tlb_idx = Tlb_Lookup( cpuNum, GET_REGION( EMP[cpuNum].CP0[C0_TLBHI]),
GET_VPN2( EMP[cpuNum].CP0[C0_TLBHI] ),
GET_ASID( EMP[cpuNum].CP0[C0_TLBHI] ) );
if( tlb_idx ) {
/* We matched */
EMP[cpuNum].CP0[C0_INX] = (tlb_idx - 1)<<TLBINX_INXSHIFT;
return NORMAL_CODE;
}
/* maintain inclusion property of mmu */
/* Since there was no entry with that vpn2 and asid */
/* we need to take out both pages if present in the mmu */
/* even page */
qc_erase_etlb(cpuNum, (EMP[cpuNum].tlbEntry[tlb_idx-1].Hi));
/* Probe Miss */
EMP[cpuNum].CP0[C0_INX] = (Reg32_s)0x80000000;
return NORMAL_CODE;
}
/*****************************************************************
* ReadTLBEntry -
* The EntryHi and EntryLo registers are loaded with the contents
* of the TLB entry pointed at by the contents of the TLB Index
* register. The results are unspecified if the contents or Index
* are greater than the number of TLB entries.
*****************************************************************/
uint Em_ReadTLBEntry(int cpuNum)
{
IndexReg index;
ASSERT (curEmp->myNum == cpuNum);
if (!IS_KERNEL_MODE(&EMP[cpuNum])) {
EMP[cpuNum].CP0[C0_CAUSE] = CAUSE_SET_CE( EMP[cpuNum].CP0[C0_CAUSE], 0 );
Em_EXCEPTION(cpuNum,EXC_CPU,0); /* Coprocessor Unusable */
ReenterTC(curEmp);
return EXCEPTION_CODE;
}
/* I'm going to assume that the index register is in the
correct range. */
index = EMP[cpuNum].CP0[C0_INX];
/* Even though its not the intent of the instruction, it */
/* resets the MMU context */
qc_mmu_switch( cpuNum, CURRENT_ASID(cpuNum),
GET_ASID(EMP[cpuNum].tlbEntry[GET_IDX(index)].Hi), 0 );
EMP[cpuNum].CP0[C0_PGMASK] = EMP[cpuNum].tlbEntry[GET_IDX(index)].PgMsk;
#if defined(SIM_MIPS32)
ASSERT(EMP[cpuNum].tlbEntry[GET_IDX(index)].PgMsk == 0);
#endif
EMP[cpuNum].CP0[C0_TLBHI] = EMP[cpuNum].tlbEntry[GET_IDX(index)].Hi &
~(Reg)EMP[cpuNum].tlbEntry[GET_IDX(index)].PgMsk & ~TLBHI_G;
EMP[cpuNum].CP0[C0_TLBLO_0] = EMP[cpuNum].tlbEntry[GET_IDX(index)].Lo0;
EMP[cpuNum].CP0[C0_TLBLO_1] = EMP[cpuNum].tlbEntry[GET_IDX(index)].Lo1;
if (IS_GLOBAL_HI(EMP[cpuNum].tlbEntry[GET_IDX(index)].Hi)){
EMP[cpuNum].CP0[C0_TLBLO_0] |= TLBLO_G;
EMP[cpuNum].CP0[C0_TLBLO_1] |= TLBLO_G;
} else {
EMP[cpuNum].CP0[C0_TLBLO_0] &= ~TLBLO_G;
EMP[cpuNum].CP0[C0_TLBLO_1] &= ~TLBLO_G;
}
return NORMAL_CODE;
}
/*****************************************************************
* Insert_TLB_HT
* Insert a TLB entry into the TLB hash table. This is supposed to be
* called after the entry has been inserted to the TLB_Hi & Lo structures
*****************************************************************/
static void Insert_TLB_HT( int cpuNum, int idx )
{
int hashNum;
/* The hardware matching is independent of the valid bit. The valid */
/* bit's sole purpose is to indicate which exception vector to take */
/* Thus we decide whether to add an entry based on its */
/* virtual address*/
if (IS_UNMAPPED_TLBHI(EMP[cpuNum].tlbEntry[idx].Hi))
return;
/* Insert all global entries under ASID 0 */
if( IS_GLOBAL_HI( EMP[cpuNum].tlbEntry[idx].Hi ) )
{
hashNum = TLBHash( GET_VPN2( EMP[cpuNum].tlbEntry[idx].Hi ),
GET_REGION(EMP[cpuNum].tlbEntry[idx].Hi),0 );
}
else
{
hashNum = TLBHash( GET_VPN2( EMP[cpuNum].tlbEntry[idx].Hi ),
GET_REGION( EMP[cpuNum].tlbEntry[idx].Hi),
GET_ASID( EMP[cpuNum].tlbEntry[idx].Hi ) );
#if defined(SIM_MIPS32)
if( GET_ASID( EMP[cpuNum].tlbEntry[idx].Hi ) == 0 )
CPUWarning("Non-global ASID 0 entry written to TLB. %d 0x%x\n",
EmbraCpuCycleCount(cpuNum), EMP[cpuNum].PC);
#endif
}
List_Insert( &EMP[cpuNum].indexList[idx].links,
LIST_ATFRONT(&EMP[cpuNum].tlbIndexHeaders[hashNum]) );
EMP[cpuNum].indexList[idx].onList = 1;
}
/*****************************************************************
* Do_TLB_Write
* Write the indexed TLB entry. The TLB entry pointed at by the
* contents of the TLB index register is loaded with the contents
* of the EntryHi and EntryLo registers.
* Update QC array
*****************************************************************/
static uint Do_TLB_Write(int cpuNum, int idx )
{
Reg frameMask;
if (!IS_KERNEL_MODE(&EMP[cpuNum])) {
EMP[cpuNum].CP0[C0_CAUSE] = CAUSE_SET_CE( EMP[cpuNum].CP0[C0_CAUSE], 0 );
Em_EXCEPTION(cpuNum,EXC_CPU,0); /* Coprocessor Unusable */
ReenterTC(curEmp);
}
#ifdef DEBUG_CP0
CPUPrint("%d TLB Idx:%d Hi:0x%08x Lo0:0x%08x Lo1:0x%08x\n",
cpuNum,
idx,
EMP[cpuNum].CP0[C0_TLBHI],
EMP[cpuNum].CP0[C0_TLBLO_0],
EMP[cpuNum].CP0[C0_TLBLO_1] );
#endif
ASSERT( CURRENT_ASID(cpuNum) == GET_ASID(EMP[cpuNum].CP0[C0_TLBHI]) ||
GET_ASID(EMP[cpuNum].CP0[C0_TLBHI]) == 0 );
/* Remove entry from quick check */
/* It is possible that e.g. (VPN, ASID) (0x1000, 4) is being used, */
/* and we get a request to remove (0x1000, 2). Since that enty is */
/* alreay out of our qc, we don't want to modify it */
if( GET_ASID( EMP[cpuNum].tlbEntry[idx].Hi ) == CURRENT_ASID(cpuNum) ||
IS_GLOBAL_HI( EMP[cpuNum].tlbEntry[idx].Hi ) ) {
/* even page */
/* Only remove QC state if we are removing an entry that is our */
/* ASID or is global. This could simply remove the cache info */
Em_Tlb_Remove(cpuNum,idx);
/*
* being anal sometimes pays off.
*/
#ifndef EMBRA_USE_QC64
if (embra.emode == EMBRA_CACHE) {
uint base = TLBHI2ADDR(EMP[cpuNum].tlbEntry[idx].Hi);
if (!IS_KSEG0(base)) {
int i;
ASSERT (!(PAGE_NUMBER(base)&1));
ASSERT (!EMP[cpuNum].mmu[PAGE_NUMBER(base)]);
ASSERT (!EMP[cpuNum].mmu[PAGE_NUMBER(base)+1]);
for (i=0; i<2*LINES_PER_PAGE;i++) {
ASSERT (!EMP[cpuNum].qc_v[ADDR2SLINE(base)+i]);
}
}
}
#endif
}
/* Remove old entry from the hash list */
if( EMP[cpuNum].indexList[idx].onList ) {
List_Remove( &EMP[cpuNum].indexList[idx].links );
EMP[cpuNum].indexList[idx].onList = 0;
}
if (IS_R10000(&EMP[cpuNum])) {
frameMask = (EMP[cpuNum].CP0[C0_FRAMEMASK] << TLBFRAMESHIFT);
} else {
frameMask = 0;
}
/* Actually write the TLB data structure */
EMP[cpuNum].tlbEntry[idx].PgMsk = EMP[cpuNum].CP0[C0_PGMASK];
EMP[cpuNum].tlbEntry[idx].Hi = EMP[cpuNum].CP0[C0_TLBHI] &
~(Reg)EMP[cpuNum].CP0[C0_PGMASK];
EMP[cpuNum].tlbEntry[idx].Lo0 =
(EMP[cpuNum].CP0[C0_TLBLO_0] & ~TLBLO_G) & ~frameMask;
EMP[cpuNum].tlbEntry[idx].Lo1 =
(EMP[cpuNum].CP0[C0_TLBLO_1] & ~TLBLO_G) & ~frameMask;
EMP[cpuNum].tlbEntrySize[idx] = ComputeTlbEntrySize( EMP[cpuNum].tlbEntry[idx].PgMsk);
if (IS_GLOBAL_LO(EMP[cpuNum].CP0[C0_TLBLO_0]) &&
IS_GLOBAL_LO(EMP[cpuNum].CP0[C0_TLBLO_1]))
EMP[cpuNum].tlbEntry[idx].Hi |= TLBHI_G;
/* Add the new entry, if necessary */
Insert_TLB_HT( cpuNum,idx );
/* Update the QC only if entry is valid, and either our asid or global*/
if( GET_ASID( EMP[cpuNum].tlbEntry[idx].Hi ) == CURRENT_ASID(cpuNum) ||
IS_GLOBAL_HI( EMP[cpuNum].tlbEntry[idx].Hi))
{
qc_map_page( cpuNum, idx);
}
#ifndef EMBRA_USE_QC64
qc_CheckForDuplicate(curEmp, idx);
#endif
return NORMAL_CODE;
}
/*****************************************************************
* WriteTLBEntry -
* Write the indexed TLB entry. The TLB entry pointed at by the
* contents of the TLB index register is loaded with the contents
* of the EntryHi and EntryLo registers.
*****************************************************************/
uint Em_WriteTLBEntry(int cpuNum)
{
IndexReg index;
uint res;
ASSERT (curEmp->myNum == cpuNum);
if (!IS_KERNEL_MODE(curEmp)) {
Em_EXCEPTION(cpuNum,EXC_CPU,0);
ReenterTC(curEmp);
}
/* I'm going to assume that the index register is in the
correct range. */
index = EMP[cpuNum].CP0[C0_INX];
res = Do_TLB_Write( cpuNum, GET_IDX(index) );
if( res != NORMAL_CODE ) {
ReenterTC(&EMP[cpuNum]);
/* NOT REACHED */
}
return res;
}
/*****************************************************************
* WriteRandomTLBEntry -
* Write random TLB entry. The TLB entry pointed at by the contents
* of the TLB Random register is loaded with the contents of EntryHi
* and EntryLo.
*
* Technically, the value of the Random register is decremented on
* each machine clock cycle and ranges between NWIREDENTRIES
* and NTLBENTRIES.
*
*****************************************************************/
uint Em_WriteRandomTLBEntry(int cpuNum)
{
uint res;
unsigned numRandEntries = EMP[cpuNum].numTlbEntries - EMP[cpuNum].CP0[C0_TLBWIRED];
ASSERT (curEmp == &EMP[cpuNum]);
if (!IS_KERNEL_MODE(curEmp)) {
Em_EXCEPTION(cpuNum,EXC_CPU,0);
ReenterTC(curEmp);
}
res = Do_TLB_Write( cpuNum,
(EmbraCpuCycleCount(cpuNum) % numRandEntries) +
EMP[cpuNum].CP0[C0_TLBWIRED] );
if( res != NORMAL_CODE ) {
ReenterTC(&EMP[cpuNum]);
/* NOT REACHED */
}
return res;
}
/*****************************************************************
* REFILL_EXCEPTION
*
****************************************************************/
static void
REFILL_EXCEPTION(int cpuNum, int code, int isInstr, VA pc, VA addr, int isXRefill)
{
if (isInstr) {
ITLB_MISS_EVENT(EmbraCpuCycleCount(cpuNum),cpuNum,addr);
} else {
DTLB_MISS_EVENT(EmbraCpuCycleCount(cpuNum),cpuNum,pc,addr);
}
Em_EXCEPTION(cpuNum, (isXRefill? XREFILL_FLAG : 0)|REFILL_FLAG|code,0);
}
/*****************************************************************
* EXCEPTION -
* This is sort of a major routine.
* The CPU should abort the instruction that caused the exception
* along with any others in the pipeline.
*
* The CPU loads the Exception Program Counter (EPC) with a
* restart location - either the instruction, or it's predecessor
* if it's in the branch delay slot. I check if it's in a branch
* delay slot by seeing if the difference between PC and nPC is
* greater than one instruction.
*
* R4000 STATUS REGISTER UPDATE
* 1.) don't put in kernel mode is in kernel mode when KSU = 0 or EXL = 1
* or ERL = 1, strictly speaking this is saved/restored by the software b/c
* it could either by user or supervisor modes.
* 2.) disable interrupts
* 3.) goto vector.
* 4.) on start cpu loads EPC with restart location...
*
*
* checks BEV in sr.
* but need new vector for bootstrap this is currently unused.
*
* This currently is set as the General Exception Handler(hardware)
* Also Watch and FP Control Status Registers not set (would be set
* only when their exc occurs)
****************************************************************/
void Em_EXCEPTION(int cpuNum, int code, int ce)
{
StatusReg statusReg;
Reg causeReg;
VA exceptionBase;
uint prettyCode;
int refill_flag = code & REFILL_FLAG;
int xrefill_flag = code & XREFILL_FLAG;
if (!EMP[cpuNum].outOfSlaveLoop)
return;
/*
* To make sure that we never return to the TC from here,
* we increment the tcGenCounter.
*/
if (cpuNum == curEmp->myNum) {
tcGenNumber++;
exceptionDuringBackdoor = TRUE;
}
code &= ~(REFILL_FLAG);
code &= ~(XREFILL_FLAG);
prettyCode = code >> CAUSE_EXCSHIFT;
if (DEBUG_INTR()) {
LogEntry("EXCEPTION", cpuNum, "code: 0x%x\tintrbits: 0x%x\n",
code, EMP[cpuNum].intrBitsPtr[0]);
}
STAT_TIMER_STOP( trans_timer );
/* One more spot where we must set current cpu, because
the timers (and perhaps other things) will cause exceptions
on processors other than the "current" one. */
/* Get rid of curr_cpu soon.. */
/* curr_cpu = cpuNum; */
/*
curEmp = &EMP[cpuNum];
*/
#ifdef DEBUG_CP0
{
/* Yes more than one bit can be set at once */
char* typeOfInt = "";
int hwIntrBits =(EMP[cpuNum].CP0[C0_CAUSE] & CAUSE_IPMASK)>>CAUSE_IPSHIFT;
/* XXX - Hand Copied from kern/ml/SIMMP.c */
if( hwIntrBits & 0x10 ) {
typeOfInt = "CLOCK";
}
if( hwIntrBits & 0x04 ) {
typeOfInt = "DISK or ETHER";
}
if( hwIntrBits & 0x20 ) {
typeOfInt = "IPI";
}
if( code == EXC_CPU ) {
CPUPrint("HW_EX %lld %d EXC %d %s CE %d PC 0x%x\n",
EmbraCpuCycleCount(cpuNum),
cpuNum,
code>>2,
typeOfInt,
ce,
EMP[cpuNum].PC);
} else {
/* Exclude UTLB misses */
if( code == EXC_RMISS || code == EXC_WMISS ) {} else
CPUPrint("HW_EX %lld %d EXC %d HWBits 0x%x %-5s %-5s PC 0x%x\n",
EmbraCpuCycleCount(cpuNum),
cpuNum,
code>>2,
hwIntrBits,
(refill_flag?"U":" "),
typeOfInt,
EMP[cpuNum].PC);
}
}
#endif
STAT_INC( exceptions );
STAT_EXC( exception_type, code>>2, refill_flag?1:0 );
statusReg.ts_data = EMP[cpuNum].CP0[C0_SR];
/*
* Set the BD bit, CE, IP, and ExcCode fields of the Cause
* register. Along with the BD bit, set the Exception Program
* Counter (either to current PC or PC - 4 if BD slot).
*/
causeReg = EMP[cpuNum].CP0[C0_CAUSE];
causeReg = CAUSE_SET_EXC_NOSHIFT( causeReg, code );
/* Read the branch delay indicator bit from the PC, */
causeReg = CAUSE_SET_BD( causeReg, IN_BD(EMP[cpuNum].PC) );
EMP[cpuNum].CP0[C0_CAUSE] = causeReg;
/*Is this exception the first? (we're not in another exception) */
if (statusReg.s32.ts_exl == 0){
if( IN_BD( EMP[cpuNum].PC ) ) {
/* Clear the indicator bit to make the PC usable */
EMP[cpuNum].CP0[C0_EPC] = CLEAR_BD(EMP[cpuNum].PC) - INST_SIZE;
} else {
EMP[cpuNum].CP0[C0_EPC] = EMP[cpuNum].PC;
}
statusReg.s32.ts_exl = 1;
}
EMP[cpuNum].CP0[C0_SR] = statusReg.ts_data;
/*The cause register is read-only. The hardware is responsible for */
/*clearing it */
if( code == EXC_CPU ) {
EMP[cpuNum].CP0[C0_CAUSE] = CAUSE_SET_CE( EMP[cpuNum].CP0[C0_CAUSE], ce );
} else {
EMP[cpuNum].CP0[C0_CAUSE] = CAUSE_SET_CE( EMP[cpuNum].CP0[C0_CAUSE], 0 );
}
VASSERT( *(unsigned*)K0_TO_MEMADDR(M_FROM_CPU(cpuNum), E_VEC),
("\n%d Took exception before system exception vector written\n"
"PC = 0x%08x\n",
cpuNum, EMP[cpuNum].PC) );
ASSERT( statusReg.s32.ts_bev == 0);
/* are we bootstrapping? */
if (statusReg.s32.ts_bev == 0) {
exceptionBase = EXC_VEC_BASE_0;
} else {
CPUError("Hello Beth and Scott. Is Emmett insane ? \n");
exceptionBase = EXC_VEC_BASE_1;
}
/* I'm not even checking if it was a RESET EXCEPTION */
/* Exception can be called from places where fp regs are saved (cp0 */
/* and clock callouts) and from places they are not saved (cache */
/* callouts) */
if( refill_flag ) {
ASSERT( embra.emode == EMBRA_PAGE || embra.sequential|| EMP[cpuNum].outTC );
EMP[cpuNum].PC = exceptionBase;
if (xrefill_flag) {
EMP[cpuNum].PC = exceptionBase + XUT_VEC_OFFSET;
}
} else {
ASSERT( embra.emode == EMBRA_PAGE || embra.sequential || EMP[cpuNum].outTC );
EMP[cpuNum].PC = exceptionBase + E_VEC_OFFSET;
}
UpdateCPUMode(&EMP[cpuNum]);
ASSERT (EMP[cpuNum].cpuMode == KERNEL_MODE);
{
/*
* really important:
* In the case of an interrupt, ipi, ... an exception
* can be raised on cpuNum while it is not curEmp!!!
*/
EmbraState *backup = curEmp;
curEmp = &EMP[cpuNum];
if (refill_flag) {
UTLB_EVENT();
} else {
EXC_EVENT(prettyCode);
}
curEmp = backup;
}
/*
* Bill 1 cycle for the exception itself. This is really
* important as it matches MIPSY's handling of exceptions
*/
EMP[cpuNum].cycleCountdown--;
}
/* Called from emitted code to raise breakpoint and syscall (others?) */
/* exceptions */
void Em_RaiseEXCEPTION(int cpuNum, int code, int ce)
{
Em_EXCEPTION(cpuNum, code, ce);
ReenterTC(&EMP[cpuNum]);
/* NOT REACHED */
}
/*R4000***********************************************************
* ExceptionReturn
* instruction for returning from an interrupt, exception, or
* error trap. if error trap load pc from the ErrorEPC and clear
* ERL bit of the status register. else load pc from EPC and clear
* EXL bit of the status register.
* PC gets set in R4, not in R3.
* Handler must save pc, op mode, status or interrupts enable, and restore.
*****************************************************************/
void
Em_ExceptionReturn(int cpuNum)
{
StatusReg statusReg;
VA restoreAddr;
ASSERT( curEmp == &EMP[cpuNum]);
if (!IS_KERNEL_MODE(curEmp)) {
Em_EXCEPTION(cpuNum,EXC_CPU,0);
ReenterTC(curEmp);
}
if (DEBUG_INTR()) {
LogEntry("CPUMode", cpuNum, " ERET at %x \n",curEmp->PC);
}
/* Annotations:*/
ASSERT (curEmp->myNum == cpuNum);
RFE_EVENT();
statusReg.ts_data = EMP[cpuNum].CP0[C0_SR];
if (statusReg.s32.ts_erl){
restoreAddr = EMP[cpuNum].CP0[C0_ERROR_EPC];
EMP[cpuNum].PC = restoreAddr;
statusReg.s32.ts_erl = 0;
} else {
restoreAddr = EMP[cpuNum].CP0[C0_EPC];
EMP[cpuNum].PC = restoreAddr;
statusReg.s32.ts_exl = 0;
}
EMP[cpuNum].CP0[C0_SR] = statusReg.ts_data;
UpdateCPUMode(&EMP[cpuNum]);
EMP[cpuNum].LLAddr = 0;
EMP[cpuNum].LLBit = 0;
/*
* Increment the cycle count, since the ERET
* instruction actually takes one cycle
*/
EMP[cpuNum].cycleCountdown--;
/* check for interrupts before we leave...*/
if (Update_And_Check_Interrupts(cpuNum,0)){
}
ReenterTC(&EMP[cpuNum]);
}
/*****************************************************************
* RestoreFromException
* Restore contol to a process that an exception preempted. This
* restores the previous interrumpt mask and kernel/user mode bits
* in the status register, moves the old to the previous, and keeps
* the old unchanged.
****************************************************************/
void
Em_RestoreFromException( int cpuNum , VA restoreAddr )
{
CPUError("Embra:cp0 rfe on cpu %i, curEmp->myNum=%i, ~ERT on R4000!\n",
cpuNum,curEmp->myNum);
}
/*****************************************************************
* Em_MoveFromC0
****************************************************************/
uint
Em_MoveFromC0(int cpuNum, Inst instr)
{
unsigned gp_reg = rt(instr); /* dest */
unsigned co_reg = rd(instr); /* source */
/* ASSERT( gp_reg < 32 && co_reg < 32 );*/
if (!IS_KERNEL_MODE(curEmp)) {
Em_EXCEPTION(cpuNum,EXC_CPU,0);
ReenterTC(&EMP[cpuNum]);
}
if (co_reg == C0_COUNT) {
/* There is one thing which could change this */
/* somebody wrote to C0_COUNT */
EMP[cpuNum].CP0[C0_COUNT] += (EmbraCpuCycleCount(cpuNum)
- EMP[cpuNum].timerCycleCount)/
COUNTER_FREQUENCY_DIVIDER;
EMP[cpuNum].CP0[C0_COUNT] &= 0xffffffff;
EMP[cpuNum].timerCycleCount = EmbraCpuCycleCount(cpuNum);
} else if (co_reg == C0_RAND) {
unsigned numRandEntries = EMP[cpuNum].numTlbEntries - EMP[cpuNum].CP0[C0_TLBWIRED];
EMP[cpuNum].CP0[C0_RAND] = EMP[cpuNum].CP0[C0_TLBWIRED] +
((uint32)EmbraCpuCycleCount(cpuNum)) % numRandEntries;
}
if (rs(instr) == mfc_op) {
EMP[cpuNum].R[gp_reg] = (Reg32_s) EMP[cpuNum].CP0[co_reg];
} else if (rs(instr) == dmfc_op) {
EMP[cpuNum].R[gp_reg] = EMP[cpuNum].CP0[co_reg];
} else {
ASSERT(0);
}
return NORMAL_CODE;
}
static Cp0RegControl cp0RegCtl[NUM_CP0_REGS] = CP0_REG_CONTROL_ARRAY;
/*****************************************************************
* MoveToC0
****************************************************************/
uint
Em_MoveToC0(int cpuNum, Inst instr, VA nextPC )
{
unsigned gp_reg = rt(instr);
unsigned co_reg = rd(instr);
Reg val;
int bd = IN_BD( EMP[cpuNum].PC );
int mode = CURRENT_MODE(&EMP[cpuNum]);
if (!IS_KERNEL_MODE(curEmp)) {
Em_EXCEPTION(cpuNum,EXC_CPU,0);
ReenterTC(&EMP[cpuNum]);
}
/* ASSERT( gp_reg < 32 && co_reg < 32 );*/
if (cp0RegCtl[co_reg].read_only) {
return NORMAL_CODE;
}
if (cp0RegCtl[co_reg].size == -1) {
CPUWarning("WriteC0Reg write to invalid reg %d\n",co_reg);
}
val = EMP[cpuNum].R[gp_reg];
if (rs(instr) == mtc_op) {
val = (Reg32_s) val;
} else if (rs(instr) == dmtc_op) {
/* val = val; */
} else {
ASSERT(0);
}
if ((cp0RegCtl[co_reg].zero_mask & val) != 0) {
/* Trying to write must be zero bits, force them to zero. */
val &= ~cp0RegCtl[co_reg].zero_mask;
/* Print a warning message for the programmer. Special
* case 32bit signed-extention bits that set high zero bits
* of 64 bit registers (IRIX 6.2 does this).
*/
}
switch( co_reg ) {
case C0_TLBHI: {
uint old_asid = GET_ASID(EMP[cpuNum].CP0[C0_TLBHI]);
uint new_asid = GET_ASID(val);
/* This is an MMU context switch */
qc_mmu_switch( cpuNum, old_asid, new_asid, 0 );
EMP[cpuNum].CP0[C0_TLBHI] = val & TLBHI_FILLMASK;
}
break;
case C0_SR: {
int modeChange = 0;
/* Check for interrupts both before and after status register */
/* changes this lets us catch the intr whether we are raising or */
/* lowering intrs */
/* This should never succeed. Either we delivered the interupt
via a callback or it was masked */
if( Update_And_Check_Interrupts( cpuNum,0 ) ) {
/* Take interrupt before mtc0 */
#ifdef DEBUG_EMBRA_INTR
char* typeOfInt = "";
int hwIntrBits =(EMP[cpuNum].CP0[C0_CAUSE] & CAUSE_IPMASK)>>CAUSE_IPSHIFT;
/* XXX - Hand Copied from kern/ml/SIMMP.c */
if( hwIntrBits & 0x10 ) {
typeOfInt = "CLOCK";
}
if( hwIntrBits & 0x04 ) {
typeOfInt = "DISK or ETHER";
}
if( hwIntrBits & 0x20 ) {
typeOfInt = "IPI";
}
CPUError("EMBRA mtc0 problem %lld %d EXC %d HWBits 0x%x %-5s PC 0x%x\n",
EmbraCpuCycleCount(cpuNum),
cpuNum,
EXC_INT>>2,
hwIntrBits,
typeOfInt,
EMP[cpuNum].CP0[C0_EPC]);
#endif
ReenterTC(&EMP[cpuNum]);
/* NOT REACHED */
}
if (embraprintsr) {
if ((((EMP[cpuNum].CP0[co_reg] & 0xff00) >> 8) != ((EMP[cpuNum].R[gp_reg] & 0xff00) >> 8)) ||
((EMP[cpuNum].CP0[co_reg] & 0x1) != (EMP[cpuNum].R[gp_reg] & 0x1))) {
LogEntry("IMASK mtSR", cpuNum, "\tIM %x IEC %x -> NIM %x NIEC %x SR %x PC %x RA %x\n",
(EMP[cpuNum].CP0[co_reg] & 0xff00) >> 8,
(EMP[cpuNum].CP0[co_reg] & 0x1),
(EMP[cpuNum].R[gp_reg] & 0xff00) >> 8,
(EMP[cpuNum].R[gp_reg] & 0x1),
EMP[cpuNum].R[gp_reg],
EMP[cpuNum].PC,
EMP[cpuNum].R[31]);
}
}
EMP[cpuNum].CP0[co_reg] = val;
UpdateCPUMode(&EMP[cpuNum]);
/* When the status register changes see if there are any pending */
/* interrupts at this (possibly new) level */
if( Update_And_Check_Interrupts( cpuNum,
(bd?nextPC:EMP[cpuNum].PC+INST_SIZE))){
/*
* We took interrupt after mtc0. Skip it when we return.
*/
ReenterTC(&EMP[cpuNum]);
/* NOT REACHED */
}
}
break;
case C0_COUNT:
EMP[cpuNum].CP0[co_reg] = val;
EMP[cpuNum].CP0[co_reg] &= 0xffffffff;
EMP[cpuNum].timerCycleCount = EmbraCpuCycleCount(cpuNum);
if (EventCallbackActive(&(timerCallbackHdr[cpuNum]))) {
EventCallbackRemove(&(timerCallbackHdr[cpuNum]));
}
EmbraSetTimerCallback(cpuNum);
break;
case C0_COMPARE:
EMP[cpuNum].CP0[co_reg] = val;
EMP[cpuNum].CP0[co_reg] &= 0xffffffff;
EMP[cpuNum].CP0[C0_CAUSE] &= ~CAUSE_IP8;
if (EventCallbackActive(&(timerCallbackHdr[cpuNum]))) {
EventCallbackRemove(&(timerCallbackHdr[cpuNum]));
}
EmbraSetTimerCallback(cpuNum);
break;
case C0_CAUSE:
/* Only CAUSE_SW1 and CAUSE_SW2 are writable bits */
EMP[cpuNum].CP0[C0_CAUSE] &= ~(CAUSE_SW2|CAUSE_SW1);
EMP[cpuNum].CP0[C0_CAUSE] |= (val & (CAUSE_SW2|CAUSE_SW1));
/* When the status register changes see if there are any pending */
/* interrupts at this (possibly new) level */
if( Update_And_Check_Interrupts( cpuNum,
(bd?nextPC:EMP[cpuNum].PC+INST_SIZE))){
/*
* We took interrupt after mtc0. Skip it when we return.
*/
ReenterTC(&EMP[cpuNum]);
/* NOT REACHED */
}
break;
default:
EMP[cpuNum].CP0[co_reg] = val;
}
return NORMAL_CODE;
}
/****************************************************************
* EmbraTimerCallback
*
* This is the routine called back on the event that
* the C0_COMPARE == C0_COUNT, it is set when the
* COMPARE register is written. Raise IP(7) in the
* C0_CAUSE register to signal a timer interrupt is
* pending. Note: IP(7) is cleared when when the
* C0_COMPARE register is written. use DEV_IEC_MAGICERR
* as it corresponds to hw interrupt bit #5 which raises
* ip7 in the cause register.
****************************************************************/
static void
EmbraTimerCallback(int cpuNum, EventCallbackHdr *ECBhdr, void *empty)
{
EMP[cpuNum].CP0[C0_CAUSE] |= CAUSE_IP8;
if (Update_And_Check_Interrupts(cpuNum,0)){
}
}
/*****************************************************************
* EmbraSetTimerCallback
*
* Each processor has its own r4kTimerInfo and r4k_timerHdr
* associated with it. When the Compare register is written to
* we check current cycle count, and, projecting into the future the
* diff btwn the new Compare reg value and the current cycle count, a
* callback is set to fire in that calculate amt of time. It is tricky
* only when they decide to write to the count reg, which is permited on
* system initialization or to synchronize processors. Since we do not
* update the Count register continually, our cycle count and the Count
* register value could then be out-of-synch. The r4kTimerInfo variable
* is used to track this discrepency.
****************************************************************/
static void
EmbraSetTimerCallback(int cpuNum)
{
SimTime timeInFuture;
EMP[cpuNum].CP0[C0_COUNT] +=
(EmbraCpuCycleCount(cpuNum) - EMP[cpuNum].timerCycleCount)/
COUNTER_FREQUENCY_DIVIDER;
EMP[cpuNum].CP0[C0_COUNT] &= 0xffffffff;
EMP[cpuNum].timerCycleCount = EmbraCpuCycleCount(cpuNum);
if (EMP[cpuNum].CP0[C0_COMPARE] >= EMP[cpuNum].CP0[C0_COUNT]) {
timeInFuture = (EMP[cpuNum].CP0[C0_COMPARE] - EMP[cpuNum].CP0[C0_COUNT]);
timeInFuture *= COUNTER_FREQUENCY_DIVIDER;
} else {
timeInFuture = 0x100000000LL -
(EMP[cpuNum].CP0[C0_COUNT] - EMP[cpuNum].CP0[C0_COMPARE]);
timeInFuture *= COUNTER_FREQUENCY_DIVIDER;
}
EventDoCallback(cpuNum, EmbraTimerCallback,
&(timerCallbackHdr[cpuNum]), NULL, timeInFuture);
}
/* The kernel sets the cop1 usable flag to 0 when it first starts a */
/* new context */
/* to limit the saving of FPU registers to those procs who use them. The */
/* first time a process uses a FPU instruction it needs to trap into the */
/* kernel for it to set this bit. */
/* Called from callout in callout.s */
void
Em_RaiseC1Unusable( int cpuNum )
{
ASSERT (curEmp->myNum == cpuNum);
/* Insure that we got here properly */
ASSERT( !(EMP[cpuNum].CP0[C0_SR] & SR_CU1 ) );
/* I think its lousy to set the cause register before calling */
/* EXCEPTION, but it does simplify parameter passing */
Em_EXCEPTION(cpuNum, EXC_CPU, 1);
ReenterTC(&EMP[cpuNum]);
/* NOT REACHED */
}
/*****************************************************************
* CacheOP
****************************************************************/
uint
Em_CacheOP(int cpuNum, Inst instr)
{
int mode = CURRENT_MODE(&EMP[cpuNum]);
if (!IS_KERNEL_MODE(curEmp)) {
static int haveWarned = FALSE;
if (!haveWarned) {
CPUWarning("Embra: CPU %d hit cache op @ 0x%llx not in kernel mode\n",
cpuNum, (Reg64) curEmp->PC);
haveWarned = TRUE;
}
Em_EXCEPTION(cpuNum,EXC_CPU,0);
ReenterTC(&EMP[cpuNum]);
}
/* NOP for now */
return 0;
}
/*****************************************************************
* UpdateCPUMode
*
* This function is shared between mipsy and embra
* Update with care. Do not remove the embra specific
* stuff.
*****************************************************************/
static void
UpdateCPUMode(CPUState *P)
{
StatusReg statusReg;
statusReg.ts_data = P->CP0[C0_SR];
P->cpuMode = KERNEL_MODE;
if (!statusReg.s32.ts_erl && !statusReg.s32.ts_exl) {
ASSERT(statusReg.s32.ts_ksu != 3);
if (statusReg.s32.ts_ksu == 2) {
P->cpuMode = USER_MODE;
} else if (statusReg.s32.ts_ksu == 1) {
P->cpuMode = SUPERVISOR_MODE;
}
}
#if defined(SIM_MIPS32)
if ((statusReg.s32.ts_ux) || (statusReg.s32.ts_sx) ||
(statusReg.s32.ts_kx)) {
static int warned_64 = 0;
if (!warned_64) {
CPUWarning("Embra: 64-bit mode not implemented, ignoring SR write\n");
warned_64 = 1;
}
statusReg.s32.ts_ux = 0;
statusReg.s32.ts_sx = 0;
statusReg.s32.ts_kx = 0;
P->CP0[C0_SR] = statusReg.ts_data;
}
#endif
/* Don't allow reverse endian either. */
if (statusReg.s32.ts_re) {
static int warned_re = 0;
if (!warned_re) {
CPUWarning("Embra: reverse-endian mode not implemented, ignore SR write\n");
warned_re = 1;
}
statusReg.s32.ts_re = 0;
}
if (DEBUG_INTR()) {
LogEntry("CPUMode" , P->myNum, " going to %d PC=0x%llx SR=%x erl=%d exl=%d ksu=%d\n",
P->cpuMode, (uint64) P->PC, P->CP0[C0_SR],
statusReg.s32.ts_erl,statusReg.s32.ts_exl,
statusReg.s32.ts_ksu);
}
P->notFRbit = (statusReg.s32.ts_fr == 0);
switch (P->cpuMode) {
case KERNEL_MODE:
P->mmu = P->kernelMMU;
P->is32bitMode = (statusReg.s32.ts_kx == 0);
break;
case SUPERVISOR_MODE:
P->mmu = P->userMMU;
P->is32bitMode = (statusReg.s32.ts_sx == 0);
#if defined(SIM_MIPS32) /* this assert is incorrect for 64bit mode */
ASSERT(IS_SUPERV_SEG(P->PC));
#endif
break;
case USER_MODE:
P->mmu = P->userMMU;
P->is32bitMode = (statusReg.s32.ts_ux == 0);
ASSERT( IS_KUSEG(P->PC));
break;
default:
ASSERT(0);
}
}