m32r-tdep.c 26.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
/* Target-dependent code for Renesas M32R, for GDB.

   Copyright 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
   Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "frame.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "gdb_string.h"
#include "value.h"
#include "inferior.h"
#include "symfile.h"
#include "objfiles.h"
#include "language.h"
#include "arch-utils.h"
#include "regcache.h"
#include "trad-frame.h"

#include "gdb_assert.h"

struct gdbarch_tdep
{
  /* gdbarch target dependent data here. Currently unused for M32R. */
};

/* m32r register names. */

enum
{
  R0_REGNUM = 0,
  R3_REGNUM = 3,
  M32R_FP_REGNUM = 13,
  LR_REGNUM = 14,
  M32R_SP_REGNUM = 15,
  PSW_REGNUM = 16,
  M32R_PC_REGNUM = 21,
  /* m32r calling convention. */
  ARG1_REGNUM = R0_REGNUM,
  ARGN_REGNUM = R3_REGNUM,
  RET1_REGNUM = R0_REGNUM,
};

/* Local functions */

extern void _initialize_m32r_tdep (void);

static CORE_ADDR
m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
{
  /* Align to the size of an instruction (so that they can safely be
     pushed onto the stack.  */
  return sp & ~3;
}

/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
   EXTRACT_RETURN_VALUE?  GCC_P is true if compiled with gcc
   and TYPE is the type (which is known to be struct, union or array).

   The m32r returns anything less than 8 bytes in size in
   registers. */

static int
m32r_use_struct_convention (int gcc_p, struct type *type)
{
  return (TYPE_LENGTH (type) > 8);
}


/* BREAKPOINT */
#define M32R_BE_BREAKPOINT32 {0x10, 0xf1, 0x70, 0x00}
#define M32R_LE_BREAKPOINT32 {0xf1, 0x10, 0x00, 0x70}
#define M32R_BE_BREAKPOINT16 {0x10, 0xf1}
#define M32R_LE_BREAKPOINT16 {0xf1, 0x10}

static int
m32r_memory_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
{
  int val;
  unsigned char *bp;
  int bplen;

  bplen = (addr & 3) ? 2 : 4;

  /* Save the memory contents.  */
  val = target_read_memory (addr, contents_cache, bplen);
  if (val != 0)
    return val;			/* return error */

  /* Determine appropriate breakpoint contents and size for this address.  */
  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
    {
      if (((addr & 3) == 0)
	  && ((contents_cache[0] & 0x80) || (contents_cache[2] & 0x80)))
	{
	  static unsigned char insn[] = M32R_BE_BREAKPOINT32;
	  bp = insn;
	  bplen = sizeof (insn);
	}
      else
	{
	  static unsigned char insn[] = M32R_BE_BREAKPOINT16;
	  bp = insn;
	  bplen = sizeof (insn);
	}
    }
  else
    {				/* little-endian */
      if (((addr & 3) == 0)
	  && ((contents_cache[1] & 0x80) || (contents_cache[3] & 0x80)))
	{
	  static unsigned char insn[] = M32R_LE_BREAKPOINT32;
	  bp = insn;
	  bplen = sizeof (insn);
	}
      else
	{
	  static unsigned char insn[] = M32R_LE_BREAKPOINT16;
	  bp = insn;
	  bplen = sizeof (insn);
	}
    }

  /* Write the breakpoint.  */
  val = target_write_memory (addr, (char *) bp, bplen);
  return val;
}

static int
m32r_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
{
  int val;
  int bplen;

  /* Determine appropriate breakpoint contents and size for this address.  */
  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
    {
      if (((addr & 3) == 0)
	  && ((contents_cache[0] & 0x80) || (contents_cache[2] & 0x80)))
	{
	  static unsigned char insn[] = M32R_BE_BREAKPOINT32;
	  bplen = sizeof (insn);
	}
      else
	{
	  static unsigned char insn[] = M32R_BE_BREAKPOINT16;
	  bplen = sizeof (insn);
	}
    }
  else
    {
      /* little-endian */
      if (((addr & 3) == 0)
	  && ((contents_cache[1] & 0x80) || (contents_cache[3] & 0x80)))
	{
	  static unsigned char insn[] = M32R_BE_BREAKPOINT32;
	  bplen = sizeof (insn);
	}
      else
	{
	  static unsigned char insn[] = M32R_BE_BREAKPOINT16;
	  bplen = sizeof (insn);
	}
    }

  /* Write contents.  */
  val = target_write_memory (addr, contents_cache, bplen);
  return val;
}

static const unsigned char *
m32r_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
  unsigned char *bp;

  /* Determine appropriate breakpoint.  */
  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
    {
      if ((*pcptr & 3) == 0)
	{
	  static unsigned char insn[] = M32R_BE_BREAKPOINT32;
	  bp = insn;
	  *lenptr = sizeof (insn);
	}
      else
	{
	  static unsigned char insn[] = M32R_BE_BREAKPOINT16;
	  bp = insn;
	  *lenptr = sizeof (insn);
	}
    }
  else
    {
      if ((*pcptr & 3) == 0)
	{
	  static unsigned char insn[] = M32R_LE_BREAKPOINT32;
	  bp = insn;
	  *lenptr = sizeof (insn);
	}
      else
	{
	  static unsigned char insn[] = M32R_LE_BREAKPOINT16;
	  bp = insn;
	  *lenptr = sizeof (insn);
	}
    }

  return bp;
}


char *m32r_register_names[] = {
  "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
  "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
  "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
  "evb"
};

static int
m32r_num_regs (void)
{
  return (sizeof (m32r_register_names) / sizeof (m32r_register_names[0]));
}

static const char *
m32r_register_name (int reg_nr)
{
  if (reg_nr < 0)
    return NULL;
  if (reg_nr >= m32r_num_regs ())
    return NULL;
  return m32r_register_names[reg_nr];
}


/* Return the GDB type object for the "standard" data type
   of data in register N.  */

static struct type *
m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
{
  if (reg_nr == M32R_PC_REGNUM)
    return builtin_type_void_func_ptr;
  else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
    return builtin_type_void_data_ptr;
  else
    return builtin_type_int32;
}


/* Write into appropriate registers a function return value
   of type TYPE, given in virtual format.  

   Things always get returned in RET1_REGNUM, RET2_REGNUM. */

static void
m32r_store_return_value (struct type *type, struct regcache *regcache,
			 const void *valbuf)
{
  CORE_ADDR regval;
  int len = TYPE_LENGTH (type);

  regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len);
  regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);

  if (len > 4)
    {
      regval = extract_unsigned_integer ((char *) valbuf + 4, len - 4);
      regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
    }
}

/* Extract from an array REGBUF containing the (raw) register state
   the address in which a function should return its structure value,
   as a CORE_ADDR (or an expression that can be used as one).  */

static CORE_ADDR
m32r_extract_struct_value_address (struct regcache *regcache)
{
  ULONGEST addr;
  regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &addr);
  return addr;
}


/* This is required by skip_prologue. The results of decoding a prologue
   should be cached because this thrashing is getting nuts.  */

static void
decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit,
		 CORE_ADDR *pl_endptr)
{
  unsigned long framesize;
  int insn;
  int op1;
  int maybe_one_more = 0;
  CORE_ADDR after_prologue = 0;
  CORE_ADDR after_stack_adjust = 0;
  CORE_ADDR current_pc;

  framesize = 0;
  after_prologue = 0;

  for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
    {
      insn = read_memory_unsigned_integer (current_pc, 2);

      /* If this is a 32 bit instruction, we dont want to examine its
         immediate data as though it were an instruction */
      if (current_pc & 0x02)
	{
	  /* Clear the parallel execution bit from 16 bit instruction */
	  if (maybe_one_more)
	    {
	      /* The last instruction was a branch, usually terminates
	         the series, but if this is a parallel instruction,
	         it may be a stack framing instruction */
	      if (!(insn & 0x8000))
		{
		  /* nope, we are really done */
		  break;
		}
	    }
	  /* decode this instruction further */
	  insn &= 0x7fff;
	}
      else
	{
	  if (maybe_one_more)
	    break;		/* This isnt the one more */
	  if (insn & 0x8000)
	    {
	      if (current_pc == scan_limit)
		scan_limit += 2;	/* extend the search */
	      current_pc += 2;	/* skip the immediate data */
	      if (insn == 0x8faf)	/* add3 sp, sp, xxxx */
		/* add 16 bit sign-extended offset */
		{
		  framesize +=
		    -((short) read_memory_unsigned_integer (current_pc, 2));
		}
	      else
		{
		  if (((insn >> 8) == 0xe4)	/* ld24 r4, xxxxxx; sub sp, r4 */
		      && read_memory_unsigned_integer (current_pc + 2,
						       2) == 0x0f24)
		    /* subtract 24 bit sign-extended negative-offset */
		    {
		      insn = read_memory_unsigned_integer (current_pc - 2, 4);
		      if (insn & 0x00800000)	/* sign extend */
			insn |= 0xff000000;	/* negative */
		      else
			insn &= 0x00ffffff;	/* positive */
		      framesize += insn;
		    }
		}
	      after_prologue = current_pc;
	      continue;
	    }
	}
      op1 = insn & 0xf000;	/* isolate just the first nibble */

      if ((insn & 0xf0ff) == 0x207f)
	{			/* st reg, @-sp */
	  int regno;
	  framesize += 4;
	  regno = ((insn >> 8) & 0xf);
	  after_prologue = 0;
	  continue;
	}
      if ((insn >> 8) == 0x4f)	/* addi sp, xx */
	/* add 8 bit sign-extended offset */
	{
	  int stack_adjust = (char) (insn & 0xff);

	  /* there are probably two of these stack adjustments:
	     1) A negative one in the prologue, and
	     2) A positive one in the epilogue.
	     We are only interested in the first one.  */

	  if (stack_adjust < 0)
	    {
	      framesize -= stack_adjust;
	      after_prologue = 0;
	      /* A frameless function may have no "mv fp, sp".
	         In that case, this is the end of the prologue.  */
	      after_stack_adjust = current_pc + 2;
	    }
	  continue;
	}
      if (insn == 0x1d8f)
	{			/* mv fp, sp */
	  after_prologue = current_pc + 2;
	  break;		/* end of stack adjustments */
	}
      /* Nop looks like a branch, continue explicitly */
      if (insn == 0x7000)
	{
	  after_prologue = current_pc + 2;
	  continue;		/* nop occurs between pushes */
	}
      /* End of prolog if any of these are branch instructions */
      if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
	{
	  after_prologue = current_pc;
	  maybe_one_more = 1;
	  continue;
	}
      /* Some of the branch instructions are mixed with other types */
      if (op1 == 0x1000)
	{
	  int subop = insn & 0x0ff0;
	  if ((subop == 0x0ec0) || (subop == 0x0fc0))
	    {
	      after_prologue = current_pc;
	      maybe_one_more = 1;
	      continue;		/* jmp , jl */
	    }
	}
    }

  if (current_pc >= scan_limit)
    {
      if (pl_endptr)
	{
	  if (after_stack_adjust != 0)
	    /* We did not find a "mv fp,sp", but we DID find
	       a stack_adjust.  Is it safe to use that as the
	       end of the prologue?  I just don't know. */
	    {
	      *pl_endptr = after_stack_adjust;
	    }
	  else
	    /* We reached the end of the loop without finding the end
	       of the prologue.  No way to win -- we should report failure.  
	       The way we do that is to return the original start_pc.
	       GDB will set a breakpoint at the start of the function (etc.) */
	    *pl_endptr = start_pc;
	}
      return;
    }
  if (after_prologue == 0)
    after_prologue = current_pc;

  if (pl_endptr)
    *pl_endptr = after_prologue;
}				/*  decode_prologue */

/* Function: skip_prologue
   Find end of function prologue */

#define DEFAULT_SEARCH_LIMIT 44

CORE_ADDR
m32r_skip_prologue (CORE_ADDR pc)
{
  CORE_ADDR func_addr, func_end;
  struct symtab_and_line sal;

  /* See what the symbol table says */

  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    {
      sal = find_pc_line (func_addr, 0);

      if (sal.line != 0 && sal.end <= func_end)
	{
	  func_end = sal.end;
	}
      else
	/* Either there's no line info, or the line after the prologue is after
	   the end of the function.  In this case, there probably isn't a
	   prologue.  */
	{
	  func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
	}
    }
  else
    func_end = pc + DEFAULT_SEARCH_LIMIT;
  decode_prologue (pc, func_end, &sal.end);
  return sal.end;
}


struct m32r_unwind_cache
{
  /* The previous frame's inner most stack address.  Used as this
     frame ID's stack_addr.  */
  CORE_ADDR prev_sp;
  /* The frame's base, optionally used by the high-level debug info.  */
  CORE_ADDR base;
  int size;
  /* How far the SP and r13 (FP) have been offset from the start of
     the stack frame (as defined by the previous frame's stack
     pointer).  */
  LONGEST sp_offset;
  LONGEST r13_offset;
  int uses_frame;
  /* Table indicating the location of each and every register.  */
  struct trad_frame_saved_reg *saved_regs;
};

/* Put here the code to store, into fi->saved_regs, the addresses of
   the saved registers of frame described by FRAME_INFO.  This
   includes special registers such as pc and fp saved in special ways
   in the stack frame.  sp is even more special: the address we return
   for it IS the sp for the next frame. */

static struct m32r_unwind_cache *
m32r_frame_unwind_cache (struct frame_info *next_frame,
			 void **this_prologue_cache)
{
  CORE_ADDR pc;
  ULONGEST prev_sp;
  ULONGEST this_base;
  unsigned long op;
  int i;
  struct m32r_unwind_cache *info;

  if ((*this_prologue_cache))
    return (*this_prologue_cache);

  info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
  (*this_prologue_cache) = info;
  info->saved_regs = trad_frame_alloc_saved_regs (next_frame);

  info->size = 0;
  info->sp_offset = 0;

  info->uses_frame = 0;
  for (pc = frame_func_unwind (next_frame);
       pc > 0 && pc < frame_pc_unwind (next_frame); pc += 2)
    {
      if ((pc & 2) == 0)
	{
	  op = get_frame_memory_unsigned (next_frame, pc, 4);
	  if ((op & 0x80000000) == 0x80000000)
	    {
	      /* 32-bit instruction */
	      if ((op & 0xffff0000) == 0x8faf0000)
		{
		  /* add3 sp,sp,xxxx */
		  short n = op & 0xffff;
		  info->sp_offset += n;
		}
	      else if (((op >> 8) == 0xe4)	/* ld24 r4, xxxxxx; sub sp, r4 */
		       && get_frame_memory_unsigned (next_frame, pc + 4,
						     2) == 0x0f24)
		{
		  unsigned long n = op & 0xffffff;
		  info->sp_offset += n;
		  pc += 2;
		}
	      else
		break;

	      pc += 2;
	      continue;
	    }
	}

      /* 16-bit instructions */
      op = get_frame_memory_unsigned (next_frame, pc, 2) & 0x7fff;
      if ((op & 0xf0ff) == 0x207f)
	{
	  /* st rn, @-sp */
	  int regno = ((op >> 8) & 0xf);
	  info->sp_offset -= 4;
	  info->saved_regs[regno].addr = info->sp_offset;
	}
      else if ((op & 0xff00) == 0x4f00)
	{
	  /* addi sp, xx */
	  int n = (char) (op & 0xff);
	  info->sp_offset += n;
	}
      else if (op == 0x1d8f)
	{
	  /* mv fp, sp */
	  info->uses_frame = 1;
	  info->r13_offset = info->sp_offset;
	}
      else if (op == 0x7000)
	/* nop */
	continue;
      else
	break;
    }

  info->size = -info->sp_offset;

  /* Compute the previous frame's stack pointer (which is also the
     frame's ID's stack address), and this frame's base pointer.  */
  if (info->uses_frame)
    {
      /* The SP was moved to the FP.  This indicates that a new frame
         was created.  Get THIS frame's FP value by unwinding it from
         the next frame.  */
      this_base = frame_unwind_register_unsigned (next_frame, M32R_FP_REGNUM);
      /* The FP points at the last saved register.  Adjust the FP back
         to before the first saved register giving the SP.  */
      prev_sp = this_base + info->size;
    }
  else
    {
      /* Assume that the FP is this frame's SP but with that pushed
         stack space added back.  */
      this_base = frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
      prev_sp = this_base + info->size;
    }

  /* Convert that SP/BASE into real addresses.  */
  info->prev_sp = prev_sp;
  info->base = this_base;

  /* Adjust all the saved registers so that they contain addresses and
     not offsets.  */
  for (i = 0; i < NUM_REGS - 1; i++)
    if (trad_frame_addr_p (info->saved_regs, i))
      info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);

  /* The call instruction moves the caller's PC in the callee's LR.
     Since this is an unwind, do the reverse.  Copy the location of LR
     into PC (the address / regnum) so that a request for PC will be
     converted into a request for the LR.  */
  info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];

  /* The previous frame's SP needed to be computed.  Save the computed
     value.  */
  trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);

  return info;
}

static CORE_ADDR
m32r_read_pc (ptid_t ptid)
{
  ptid_t save_ptid;
  ULONGEST pc;

  save_ptid = inferior_ptid;
  inferior_ptid = ptid;
  regcache_cooked_read_unsigned (current_regcache, M32R_PC_REGNUM, &pc);
  inferior_ptid = save_ptid;
  return pc;
}

static void
m32r_write_pc (CORE_ADDR val, ptid_t ptid)
{
  ptid_t save_ptid;

  save_ptid = inferior_ptid;
  inferior_ptid = ptid;
  write_register (M32R_PC_REGNUM, val);
  inferior_ptid = save_ptid;
}

static CORE_ADDR
m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
}


static CORE_ADDR
m32r_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
		      struct value **args, CORE_ADDR sp, int struct_return,
		      CORE_ADDR struct_addr)
{
  int stack_offset, stack_alloc;
  int argreg = ARG1_REGNUM;
  int argnum;
  struct type *type;
  enum type_code typecode;
  CORE_ADDR regval;
  char *val;
  char valbuf[MAX_REGISTER_SIZE];
  int len;
  int odd_sized_struct;

  /* first force sp to a 4-byte alignment */
  sp = sp & ~3;

  /* Set the return address.  For the m32r, the return breakpoint is
     always at BP_ADDR.  */
  regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);

  /* If STRUCT_RETURN is true, then the struct return address (in
     STRUCT_ADDR) will consume the first argument-passing register.
     Both adjust the register count and store that value.  */
  if (struct_return)
    {
      regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
      argreg++;
    }

  /* Now make sure there's space on the stack */
  for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
    stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
  sp -= stack_alloc;		/* make room on stack for args */

  for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
    {
      type = VALUE_TYPE (args[argnum]);
      typecode = TYPE_CODE (type);
      len = TYPE_LENGTH (type);

      memset (valbuf, 0, sizeof (valbuf));

      /* Passes structures that do not fit in 2 registers by reference.  */
      if (len > 8
	  && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
	{
	  store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (args[argnum]));
	  typecode = TYPE_CODE_PTR;
	  len = 4;
	  val = valbuf;
	}
      else if (len < 4)
	{
	  /* value gets right-justified in the register or stack word */
	  memcpy (valbuf + (register_size (gdbarch, argreg) - len),
		  (char *) VALUE_CONTENTS (args[argnum]), len);
	  val = valbuf;
	}
      else
	val = (char *) VALUE_CONTENTS (args[argnum]);

      while (len > 0)
	{
	  if (argreg > ARGN_REGNUM)
	    {
	      /* must go on the stack */
	      write_memory (sp + stack_offset, val, 4);
	      stack_offset += 4;
	    }
	  else if (argreg <= ARGN_REGNUM)
	    {
	      /* there's room in a register */
	      regval =
		extract_unsigned_integer (val,
					  register_size (gdbarch, argreg));
	      regcache_cooked_write_unsigned (regcache, argreg++, regval);
	    }

	  /* Store the value 4 bytes at a time.  This means that things
	     larger than 4 bytes may go partly in registers and partly
	     on the stack.  */
	  len -= register_size (gdbarch, argreg);
	  val += register_size (gdbarch, argreg);
	}
    }

  /* Finally, update the SP register.  */
  regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);

  return sp;
}


/* Given a return value in `regbuf' with a type `valtype', 
   extract and copy its value into `valbuf'.  */

static void
m32r_extract_return_value (struct type *type, struct regcache *regcache,
			   void *dst)
{
  bfd_byte *valbuf = dst;
  int len = TYPE_LENGTH (type);
  ULONGEST tmp;

  /* By using store_unsigned_integer we avoid having to do
     anything special for small big-endian values.  */
  regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
  store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), tmp);

  /* Ignore return values more than 8 bytes in size because the m32r
     returns anything more than 8 bytes in the stack. */
  if (len > 4)
    {
      regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
      store_unsigned_integer (valbuf + len - 4, 4, tmp);
    }
}


static CORE_ADDR
m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
}

/* Given a GDB frame, determine the address of the calling function's
   frame.  This will be used to create a new GDB frame struct.  */

static void
m32r_frame_this_id (struct frame_info *next_frame,
		    void **this_prologue_cache, struct frame_id *this_id)
{
  struct m32r_unwind_cache *info
    = m32r_frame_unwind_cache (next_frame, this_prologue_cache);
  CORE_ADDR base;
  CORE_ADDR func;
  struct minimal_symbol *msym_stack;
  struct frame_id id;

  /* The FUNC is easy.  */
  func = frame_func_unwind (next_frame);

  /* This is meant to halt the backtrace at "_start".  Make sure we
     don't halt it at a generic dummy frame. */
  if (inside_entry_file (func))
    return;

  /* Check if the stack is empty.  */
  msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
  if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
    return;

  /* Hopefully the prologue analysis either correctly determined the
     frame's base (which is the SP from the previous frame), or set
     that base to "NULL".  */
  base = info->prev_sp;
  if (base == 0)
    return;

  id = frame_id_build (base, func);

  /* Check that we're not going round in circles with the same frame
     ID (but avoid applying the test to sentinel frames which do go
     round in circles).  Can't use frame_id_eq() as that doesn't yet
     compare the frame's PC value.  */
  if (frame_relative_level (next_frame) >= 0
      && get_frame_type (next_frame) != DUMMY_FRAME
      && frame_id_eq (get_frame_id (next_frame), id))
    return;

  (*this_id) = id;
}

static void
m32r_frame_prev_register (struct frame_info *next_frame,
			  void **this_prologue_cache,
			  int regnum, int *optimizedp,
			  enum lval_type *lvalp, CORE_ADDR *addrp,
			  int *realnump, void *bufferp)
{
  struct m32r_unwind_cache *info
    = m32r_frame_unwind_cache (next_frame, this_prologue_cache);
  trad_frame_prev_register (next_frame, info->saved_regs, regnum,
			    optimizedp, lvalp, addrp, realnump, bufferp);
}

static const struct frame_unwind m32r_frame_unwind = {
  NORMAL_FRAME,
  m32r_frame_this_id,
  m32r_frame_prev_register
};

static const struct frame_unwind *
m32r_frame_sniffer (struct frame_info *next_frame)
{
  return &m32r_frame_unwind;
}

static CORE_ADDR
m32r_frame_base_address (struct frame_info *next_frame, void **this_cache)
{
  struct m32r_unwind_cache *info
    = m32r_frame_unwind_cache (next_frame, this_cache);
  return info->base;
}

static const struct frame_base m32r_frame_base = {
  &m32r_frame_unwind,
  m32r_frame_base_address,
  m32r_frame_base_address,
  m32r_frame_base_address
};

/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
   dummy frame.  The frame ID's base needs to match the TOS value
   saved by save_dummy_frame_tos(), and the PC match the dummy frame's
   breakpoint.  */

static struct frame_id
m32r_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  return frame_id_build (m32r_unwind_sp (gdbarch, next_frame),
			 frame_pc_unwind (next_frame));
}


static gdbarch_init_ftype m32r_gdbarch_init;

static struct gdbarch *
m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;

  /* If there is already a candidate, use it.  */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return arches->gdbarch;

  /* Allocate space for the new architecture.  */
  tdep = XMALLOC (struct gdbarch_tdep);
  gdbarch = gdbarch_alloc (&info, tdep);

  set_gdbarch_read_pc (gdbarch, m32r_read_pc);
  set_gdbarch_write_pc (gdbarch, m32r_write_pc);
  set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);

  set_gdbarch_num_regs (gdbarch, m32r_num_regs ());
  set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
  set_gdbarch_register_name (gdbarch, m32r_register_name);
  set_gdbarch_register_type (gdbarch, m32r_register_type);

  set_gdbarch_extract_return_value (gdbarch, m32r_extract_return_value);
  set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
  set_gdbarch_store_return_value (gdbarch, m32r_store_return_value);
  set_gdbarch_extract_struct_value_address (gdbarch,
					    m32r_extract_struct_value_address);
  set_gdbarch_use_struct_convention (gdbarch, m32r_use_struct_convention);

  set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_decr_pc_after_break (gdbarch, 0);
  set_gdbarch_function_start_offset (gdbarch, 0);
  set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc);
  set_gdbarch_memory_insert_breakpoint (gdbarch,
					m32r_memory_insert_breakpoint);
  set_gdbarch_memory_remove_breakpoint (gdbarch,
					m32r_memory_remove_breakpoint);

  set_gdbarch_frame_args_skip (gdbarch, 0);
  set_gdbarch_frameless_function_invocation (gdbarch,
					     frameless_look_for_prologue);

  set_gdbarch_frame_align (gdbarch, m32r_frame_align);

  frame_unwind_append_sniffer (gdbarch, m32r_frame_sniffer);
  frame_base_set_default (gdbarch, &m32r_frame_base);

  /* Methods for saving / extracting a dummy frame's ID.  The ID's
     stack address must match the SP value returned by
     PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos.  */
  set_gdbarch_unwind_dummy_id (gdbarch, m32r_unwind_dummy_id);

  /* Return the unwound PC value.  */
  set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);

  set_gdbarch_print_insn (gdbarch, print_insn_m32r);

  return gdbarch;
}

void
_initialize_m32r_tdep (void)
{
  register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
}