interp.c 19.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
/* interp.c -- Simulator for Motorola 68HC11/68HC12
   Copyright (C) 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
   Written by Stephane Carrez (stcarrez@nerim.fr)

This file is part of GDB, the GNU debugger.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

#include "sim-main.h"
#include "sim-assert.h"
#include "sim-hw.h"
#include "sim-options.h"
#include "hw-tree.h"
#include "hw-device.h"
#include "hw-ports.h"
#include "elf32-m68hc1x.h"

#ifndef MONITOR_BASE
# define MONITOR_BASE (0x0C000)
# define MONITOR_SIZE (0x04000)
#endif

static void sim_get_info (SIM_DESC sd, char *cmd);


char *interrupt_names[] = {
  "reset",
  "nmi",
  "int",
  NULL
};

#ifndef INLINE
#if defined(__GNUC__) && defined(__OPTIMIZE__)
#define INLINE __inline__
#else
#define INLINE
#endif
#endif

struct sim_info_list
{
  const char *name;
  const char *device;
};

struct sim_info_list dev_list_68hc11[] = {
  {"cpu", "/m68hc11"},
  {"timer", "/m68hc11/m68hc11tim"},
  {"sio", "/m68hc11/m68hc11sio"},
  {"spi", "/m68hc11/m68hc11spi"},
  {"eeprom", "/m68hc11/m68hc11eepr"},
  {0, 0}
};

struct sim_info_list dev_list_68hc12[] = {
  {"cpu", "/m68hc12"},
  {"timer", "/m68hc12/m68hc12tim"},
  {"sio", "/m68hc12/m68hc12sio"},
  {"spi", "/m68hc12/m68hc12spi"},
  {"eeprom", "/m68hc12/m68hc12eepr"},
  {0, 0}
};

/* Cover function of sim_state_free to free the cpu buffers as well.  */

static void
free_state (SIM_DESC sd)
{
  if (STATE_MODULES (sd) != NULL)
    sim_module_uninstall (sd);

  sim_state_free (sd);
}

/* Give some information about the simulator.  */
static void
sim_get_info (SIM_DESC sd, char *cmd)
{
  sim_cpu *cpu;

  cpu = STATE_CPU (sd, 0);
  if (cmd != 0 && (cmd[0] == ' ' || cmd[0] == '-'))
    {
      int i;
      struct hw *hw_dev;
      struct sim_info_list *dev_list;
      const struct bfd_arch_info *arch;

      arch = STATE_ARCHITECTURE (sd);
      cmd++;

      if (arch->arch == bfd_arch_m68hc11)
        dev_list = dev_list_68hc11;
      else
        dev_list = dev_list_68hc12;

      for (i = 0; dev_list[i].name; i++)
	if (strcmp (cmd, dev_list[i].name) == 0)
	  break;

      if (dev_list[i].name == 0)
	{
	  sim_io_eprintf (sd, "Device '%s' not found.\n", cmd);
	  sim_io_eprintf (sd, "Valid devices: cpu timer sio eeprom\n");
	  return;
	}
      hw_dev = sim_hw_parse (sd, dev_list[i].device);
      if (hw_dev == 0)
	{
	  sim_io_eprintf (sd, "Device '%s' not found\n", dev_list[i].device);
	  return;
	}
      hw_ioctl (hw_dev, 23, 0);
      return;
    }

  cpu_info (sd, cpu);
  interrupts_info (sd, &cpu->cpu_interrupts);
}


void
sim_board_reset (SIM_DESC sd)
{
  struct hw *hw_cpu;
  sim_cpu *cpu;
  const struct bfd_arch_info *arch;
  const char *cpu_type;

  cpu = STATE_CPU (sd, 0);
  arch = STATE_ARCHITECTURE (sd);

  /*  hw_cpu = sim_hw_parse (sd, "/"); */
  if (arch->arch == bfd_arch_m68hc11)
    {
      cpu->cpu_type = CPU_M6811;
      cpu_type = "/m68hc11";
    }
  else
    {
      cpu->cpu_type = CPU_M6812;
      cpu_type = "/m68hc12";
    }
  
  hw_cpu = sim_hw_parse (sd, cpu_type);
  if (hw_cpu == 0)
    {
      sim_io_eprintf (sd, "%s cpu not found in device tree.", cpu_type);
      return;
    }

  cpu_reset (cpu);
  hw_port_event (hw_cpu, 3, 0);
  cpu_restart (cpu);
}

static int
sim_hw_configure (SIM_DESC sd)
{
  const struct bfd_arch_info *arch;
  struct hw *device_tree;
  sim_cpu *cpu;
  
  arch = STATE_ARCHITECTURE (sd);
  if (arch == 0)
    return 0;

  cpu = STATE_CPU (sd, 0);
  cpu->cpu_configured_arch = arch;
  device_tree = sim_hw_parse (sd, "/");
  if (arch->arch == bfd_arch_m68hc11)
    {
      cpu->cpu_interpretor = cpu_interp_m6811;
      if (hw_tree_find_property (device_tree, "/m68hc11/reg") == 0)
	{
	  /* Allocate core managed memory */

	  /* the monitor  */
	  sim_do_commandf (sd, "memory region 0x%lx@%d,0x%lx",
			   /* MONITOR_BASE, MONITOR_SIZE */
			   0x8000, M6811_RAM_LEVEL, 0x8000);
	  sim_do_commandf (sd, "memory region 0x000@%d,0x8000",
			   M6811_RAM_LEVEL);
	  sim_hw_parse (sd, "/m68hc11/reg 0x1000 0x03F");
          if (cpu->bank_start < cpu->bank_end)
            {
              sim_do_commandf (sd, "memory region 0x%lx@%d,0x100000",
                               cpu->bank_virtual, M6811_RAM_LEVEL);
              sim_hw_parse (sd, "/m68hc11/use_bank 1");
            }
	}
      if (cpu->cpu_start_mode)
        {
          sim_hw_parse (sd, "/m68hc11/mode %s", cpu->cpu_start_mode);
        }
      if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11sio/reg") == 0)
	{
	  sim_hw_parse (sd, "/m68hc11/m68hc11sio/reg 0x2b 0x5");
	  sim_hw_parse (sd, "/m68hc11/m68hc11sio/backend stdio");
	  sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11sio");
	}
      if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11tim/reg") == 0)
	{
	  /* M68hc11 Timer configuration. */
	  sim_hw_parse (sd, "/m68hc11/m68hc11tim/reg 0x1b 0x5");
	  sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11tim");
          sim_hw_parse (sd, "/m68hc11 > capture capture /m68hc11/m68hc11tim");
	}

      /* Create the SPI device.  */
      if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11spi/reg") == 0)
	{
	  sim_hw_parse (sd, "/m68hc11/m68hc11spi/reg 0x28 0x3");
	  sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11spi");
	}
      if (hw_tree_find_property (device_tree, "/m68hc11/nvram/reg") == 0)
	{
	  /* M68hc11 persistent ram configuration. */
	  sim_hw_parse (sd, "/m68hc11/nvram/reg 0x0 256");
	  sim_hw_parse (sd, "/m68hc11/nvram/file m68hc11.ram");
	  sim_hw_parse (sd, "/m68hc11/nvram/mode save-modified");
	  /*sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/pram"); */
	}
      if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11eepr/reg") == 0)
	{
	  sim_hw_parse (sd, "/m68hc11/m68hc11eepr/reg 0xb000 512");
	  sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11eepr");
	}
      sim_hw_parse (sd, "/m68hc11 > port-a cpu-write-port /m68hc11");
      sim_hw_parse (sd, "/m68hc11 > port-b cpu-write-port /m68hc11");
      sim_hw_parse (sd, "/m68hc11 > port-c cpu-write-port /m68hc11");
      sim_hw_parse (sd, "/m68hc11 > port-d cpu-write-port /m68hc11");
      cpu->hw_cpu = sim_hw_parse (sd, "/m68hc11");
    }
  else
    {
      cpu->cpu_interpretor = cpu_interp_m6812;
      if (hw_tree_find_property (device_tree, "/m68hc12/reg") == 0)
	{
	  /* Allocate core external memory.  */
	  sim_do_commandf (sd, "memory region 0x%lx@%d,0x%lx",
			   0x8000, M6811_RAM_LEVEL, 0x8000);
	  sim_do_commandf (sd, "memory region 0x000@%d,0x8000",
			   M6811_RAM_LEVEL);
          if (cpu->bank_start < cpu->bank_end)
            {
              sim_do_commandf (sd, "memory region 0x%lx@%d,0x100000",
                               cpu->bank_virtual, M6811_RAM_LEVEL);
              sim_hw_parse (sd, "/m68hc12/use_bank 1");
            }
	  sim_hw_parse (sd, "/m68hc12/reg 0x0 0x3FF");
	}

      if (!hw_tree_find_property (device_tree, "/m68hc12/m68hc12sio@1/reg"))
	{
	  sim_hw_parse (sd, "/m68hc12/m68hc12sio@1/reg 0xC0 0x8");
	  sim_hw_parse (sd, "/m68hc12/m68hc12sio@1/backend stdio");
	  sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12sio@1");
	}
      if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12tim/reg") == 0)
	{
	  /* M68hc11 Timer configuration. */
	  sim_hw_parse (sd, "/m68hc12/m68hc12tim/reg 0x1b 0x5");
	  sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12tim");
          sim_hw_parse (sd, "/m68hc12 > capture capture /m68hc12/m68hc12tim");
	}

      /* Create the SPI device.  */
      if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12spi/reg") == 0)
	{
	  sim_hw_parse (sd, "/m68hc12/m68hc12spi/reg 0x28 0x3");
	  sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12spi");
	}
      if (hw_tree_find_property (device_tree, "/m68hc12/nvram/reg") == 0)
	{
	  /* M68hc11 persistent ram configuration. */
	  sim_hw_parse (sd, "/m68hc12/nvram/reg 0x2000 8192");
	  sim_hw_parse (sd, "/m68hc12/nvram/file m68hc12.ram");
	  sim_hw_parse (sd, "/m68hc12/nvram/mode save-modified");
	}
      if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12eepr/reg") == 0)
	{
	  sim_hw_parse (sd, "/m68hc12/m68hc12eepr/reg 0x0800 2048");
	  sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12eepr");
	}

      sim_hw_parse (sd, "/m68hc12 > port-a cpu-write-port /m68hc12");
      sim_hw_parse (sd, "/m68hc12 > port-b cpu-write-port /m68hc12");
      sim_hw_parse (sd, "/m68hc12 > port-c cpu-write-port /m68hc12");
      sim_hw_parse (sd, "/m68hc12 > port-d cpu-write-port /m68hc12");
      cpu->hw_cpu = sim_hw_parse (sd, "/m68hc12");
    }
  return 1;
}

/* Get the memory bank parameters by looking at the global symbols
   defined by the linker.  */
static int
sim_get_bank_parameters (SIM_DESC sd, bfd* abfd)
{
  sim_cpu *cpu;
  long symsize;
  long symbol_count, i;
  unsigned size;
  asymbol** asymbols;
  asymbol** current;

  cpu = STATE_CPU (sd, 0);

  symsize = bfd_get_symtab_upper_bound (abfd);
  if (symsize < 0)
    {
      sim_io_eprintf (sd, "Cannot read symbols of program");
      return 0;
    }
  asymbols = (asymbol **) xmalloc (symsize);
  symbol_count = bfd_canonicalize_symtab (abfd, asymbols);
  if (symbol_count < 0)
    {
      sim_io_eprintf (sd, "Cannot read symbols of program");
      return 0;
    }

  size = 0;
  for (i = 0, current = asymbols; i < symbol_count; i++, current++)
    {
      const char* name = bfd_asymbol_name (*current);

      if (strcmp (name, BFD_M68HC11_BANK_START_NAME) == 0)
        {
          cpu->bank_start = bfd_asymbol_value (*current);
        }
      else if (strcmp (name, BFD_M68HC11_BANK_SIZE_NAME) == 0)
        {
          size = bfd_asymbol_value (*current);
        }
      else if (strcmp (name, BFD_M68HC11_BANK_VIRTUAL_NAME) == 0)
        {
          cpu->bank_virtual = bfd_asymbol_value (*current);
        }
    }
  free (asymbols);

  cpu->bank_end = cpu->bank_start + size;
  cpu->bank_shift = 0;
  for (; size > 1; size >>= 1)
    cpu->bank_shift++;

  return 0;
}

static int
sim_prepare_for_program (SIM_DESC sd, bfd* abfd)
{
  sim_cpu *cpu;
  int elf_flags = 0;

  cpu = STATE_CPU (sd, 0);

  if (abfd != NULL)
    {
      asection *s;

      if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
        elf_flags = elf_elfheader (abfd)->e_flags;

      cpu->cpu_elf_start = bfd_get_start_address (abfd);
      /* See if any section sets the reset address */
      cpu->cpu_use_elf_start = 1;
      for (s = abfd->sections; s && cpu->cpu_use_elf_start; s = s->next) 
        {
          if (s->flags & SEC_LOAD)
            {
              bfd_size_type size;

              size = bfd_get_section_size_before_reloc (s);
              if (size > 0)
                {
                  bfd_vma lma;

                  if (STATE_LOAD_AT_LMA_P (sd))
                    lma = bfd_section_lma (abfd, s);
                  else
                    lma = bfd_section_vma (abfd, s);

                  if (lma <= 0xFFFE && lma+size >= 0x10000)
                    cpu->cpu_use_elf_start = 0;
                }
            }
        }

      if (elf_flags & E_M68HC12_BANKS)
        {
          if (sim_get_bank_parameters (sd, abfd) != 0)
            sim_io_eprintf (sd, "Memory bank parameters are not initialized\n");
        }
    }

  if (!sim_hw_configure (sd))
    return SIM_RC_FAIL;

  /* reset all state information */
  sim_board_reset (sd);

  return SIM_RC_OK;
}

SIM_DESC
sim_open (SIM_OPEN_KIND kind, host_callback *callback,
          bfd *abfd, char **argv)
{
  SIM_DESC sd;
  sim_cpu *cpu;

  sd = sim_state_alloc (kind, callback);
  cpu = STATE_CPU (sd, 0);

  SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);

  /* for compatibility */
  current_alignment = NONSTRICT_ALIGNMENT;
  current_target_byte_order = BIG_ENDIAN;

  cpu_initialize (sd, cpu);

  if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  /* getopt will print the error message so we just have to exit if this fails.
     FIXME: Hmmm...  in the case of gdb we need getopt to call
     print_filtered.  */
  if (sim_parse_args (sd, argv) != SIM_RC_OK)
    {
      /* Uninstall the modules to avoid memory leaks,
         file descriptor leaks, etc.  */
      free_state (sd);
      return 0;
    }

  /* Check for/establish the a reference program image.  */
  if (sim_analyze_program (sd,
			   (STATE_PROG_ARGV (sd) != NULL
			    ? *STATE_PROG_ARGV (sd)
			    : NULL), abfd) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  /* Establish any remaining configuration options.  */
  if (sim_config (sd) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  if (sim_post_argv_init (sd) != SIM_RC_OK)
    {
      /* Uninstall the modules to avoid memory leaks,
         file descriptor leaks, etc.  */
      free_state (sd);
      return 0;
    }
  if (sim_prepare_for_program (sd, abfd) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }      

  /* Fudge our descriptor.  */
  return sd;
}


void
sim_close (SIM_DESC sd, int quitting)
{
  /* shut down modules */
  sim_module_uninstall (sd);

  /* Ensure that any resources allocated through the callback
     mechanism are released: */
  sim_io_shutdown (sd);

  /* FIXME - free SD */
  sim_state_free (sd);
  return;
}

void
sim_set_profile (int n)
{
}

void
sim_set_profile_size (int n)
{
}

/* Generic implementation of sim_engine_run that works within the
   sim_engine setjmp/longjmp framework. */

void
sim_engine_run (SIM_DESC sd,
                int next_cpu_nr,	/* ignore */
		int nr_cpus,	/* ignore */
		int siggnal)	/* ignore */
{
  sim_cpu *cpu;

  SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
  cpu = STATE_CPU (sd, 0);
  while (1)
    {
      cpu_single_step (cpu);

      /* process any events */
      if (sim_events_tickn (sd, cpu->cpu_current_cycle))
	{
	  sim_events_process (sd);
	}
    }
}

int
sim_trace (SIM_DESC sd)
{
  sim_resume (sd, 0, 0);
  return 1;
}

void
sim_info (SIM_DESC sd, int verbose)
{
  const char *cpu_type;
  const struct bfd_arch_info *arch;

  /* Nothing to do if there is no verbose flag set.  */
  if (verbose == 0 && STATE_VERBOSE_P (sd) == 0)
    return;

  arch = STATE_ARCHITECTURE (sd);
  if (arch->arch == bfd_arch_m68hc11)
    cpu_type = "68HC11";
  else
    cpu_type = "68HC12";

  sim_io_eprintf (sd, "Simulator info:\n");
  sim_io_eprintf (sd, "  CPU Motorola %s\n", cpu_type);
  sim_get_info (sd, 0);
  sim_module_info (sd, verbose || STATE_VERBOSE_P (sd));
}

SIM_RC
sim_create_inferior (SIM_DESC sd, struct bfd *abfd,
                     char **argv, char **env)
{
  return sim_prepare_for_program (sd, abfd);
}


void
sim_set_callbacks (host_callback *p)
{
  /*  m6811_callback = p; */
}


int
sim_fetch_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
{
  sim_cpu *cpu;
  uint16 val;
  int size = 2;

  cpu = STATE_CPU (sd, 0);
  switch (rn)
    {
    case A_REGNUM:
      val = cpu_get_a (cpu);
      size = 1;
      break;

    case B_REGNUM:
      val = cpu_get_b (cpu);
      size = 1;
      break;

    case D_REGNUM:
      val = cpu_get_d (cpu);
      break;

    case X_REGNUM:
      val = cpu_get_x (cpu);
      break;

    case Y_REGNUM:
      val = cpu_get_y (cpu);
      break;

    case SP_REGNUM:
      val = cpu_get_sp (cpu);
      break;

    case PC_REGNUM:
      val = cpu_get_pc (cpu);
      break;

    case PSW_REGNUM:
      val = cpu_get_ccr (cpu);
      size = 1;
      break;

    case PAGE_REGNUM:
      val = cpu_get_page (cpu);
      size = 1;
      break;

    default:
      val = 0;
      break;
    }
  if (size == 1)
    {
      memory[0] = val;
    }
  else
    {
      memory[0] = val >> 8;
      memory[1] = val & 0x0FF;
    }
  return size;
}

int
sim_store_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
{
  uint16 val;
  sim_cpu *cpu;

  cpu = STATE_CPU (sd, 0);

  val = *memory++;
  if (length == 2)
    val = (val << 8) | *memory;

  switch (rn)
    {
    case D_REGNUM:
      cpu_set_d (cpu, val);
      break;

    case A_REGNUM:
      cpu_set_a (cpu, val);
      return 1;

    case B_REGNUM:
      cpu_set_b (cpu, val);
      return 1;

    case X_REGNUM:
      cpu_set_x (cpu, val);
      break;

    case Y_REGNUM:
      cpu_set_y (cpu, val);
      break;

    case SP_REGNUM:
      cpu_set_sp (cpu, val);
      break;

    case PC_REGNUM:
      cpu_set_pc (cpu, val);
      break;

    case PSW_REGNUM:
      cpu_set_ccr (cpu, val);
      return 1;

    case PAGE_REGNUM:
      cpu_set_page (cpu, val);
      return 1;

    default:
      break;
    }

  return 2;
}

void
sim_size (int s)
{
  ;
}

void
sim_do_command (SIM_DESC sd, char *cmd)
{
  char *mm_cmd = "memory-map";
  char *int_cmd = "interrupt";
  sim_cpu *cpu;

  cpu = STATE_CPU (sd, 0);
  /* Commands available from GDB:   */
  if (sim_args_command (sd, cmd) != SIM_RC_OK)
    {
      if (strncmp (cmd, "info", sizeof ("info") - 1) == 0)
	sim_get_info (sd, &cmd[4]);
      else if (strncmp (cmd, mm_cmd, strlen (mm_cmd) == 0))
	sim_io_eprintf (sd,
			"`memory-map' command replaced by `sim memory'\n");
      else if (strncmp (cmd, int_cmd, strlen (int_cmd)) == 0)
	sim_io_eprintf (sd, "`interrupt' command replaced by `sim watch'\n");
      else
	sim_io_eprintf (sd, "Unknown command `%s'\n", cmd);
    }

  /* If the architecture changed, re-configure.  */
  if (STATE_ARCHITECTURE (sd) != cpu->cpu_configured_arch)
    sim_hw_configure (sd);
}

/* Halt the simulator after just one instruction */

static void
has_stepped (SIM_DESC sd,
	     void *data)
{
  ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
  sim_engine_halt (sd, NULL, NULL, NULL_CIA, sim_stopped, SIM_SIGTRAP);
}


/* Generic resume - assumes the existance of sim_engine_run */

void
sim_resume (SIM_DESC sd,
	    int step,
	    int siggnal)
{
  sim_engine *engine = STATE_ENGINE (sd);
  jmp_buf buf;
  int jmpval;

  ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);

  /* we only want to be single stepping the simulator once */
  if (engine->stepper != NULL)
    {
      sim_events_deschedule (sd, engine->stepper);
      engine->stepper = NULL;
    }
  sim_module_resume (sd);

  /* run/resume the simulator */
  engine->jmpbuf = &buf;
  jmpval = setjmp (buf);
  if (jmpval == sim_engine_start_jmpval
      || jmpval == sim_engine_restart_jmpval)
    {
      int last_cpu_nr = sim_engine_last_cpu_nr (sd);
      int next_cpu_nr = sim_engine_next_cpu_nr (sd);
      int nr_cpus = sim_engine_nr_cpus (sd);

      sim_events_preprocess (sd, last_cpu_nr >= nr_cpus, next_cpu_nr >= nr_cpus);
      if (next_cpu_nr >= nr_cpus)
	next_cpu_nr = 0;

      /* Only deliver the siggnal ]sic] the first time through - don't
         re-deliver any siggnal during a restart. */
      if (jmpval == sim_engine_restart_jmpval)
	siggnal = 0;

      /* Install the stepping event after having processed some
         pending events.  This is necessary for HC11/HC12 simulator
         because the tick counter is incremented by the number of cycles
         the instruction took.  Some pending ticks to process can still
         be recorded internally by the simulator and sim_events_preprocess
         will handle them.  If the stepping event is inserted before,
         these pending ticks will raise the event and the simulator will
         stop without having executed any instruction.  */
      if (step)
        engine->stepper = sim_events_schedule (sd, 0, has_stepped, sd);

#ifdef SIM_CPU_EXCEPTION_RESUME
      {
	sim_cpu* cpu = STATE_CPU (sd, next_cpu_nr);
	SIM_CPU_EXCEPTION_RESUME(sd, cpu, siggnal);
      }
#endif

      sim_engine_run (sd, next_cpu_nr, nr_cpus, siggnal);
    }
  engine->jmpbuf = NULL;

  sim_module_suspend (sd);
}