matrix.c 14.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595

/*====================================================================
 * matrix.c
 *
 * Copyright 1995, Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This is UNPUBLISHED PROPRIETARY SOURCE CODE of Silicon Graphics,
 * Inc.; the contents of this file may not be disclosed to third
 * parties, copied or duplicated in any form, in whole or in part,
 * without the prior written permission of Silicon Graphics, Inc.
 *
 * RESTRICTED RIGHTS LEGEND:
 * Use, duplication or disclosure by the Government is subject to
 * restrictions as set forth in subdivision (c)(1)(ii) of the Rights
 * in Technical Data and Computer Software clause at DFARS
 * 252.227-7013, and/or in similar or successor clauses in the FAR,
 * DOD or NASA FAR Supplement. Unpublished - rights reserved under the
 * Copyright Laws of the United States.
 *====================================================================*/

#include <ultra64.h>
#include <stdio.h>
#include "matrix.h"

/*
 * Function:	printMtx
 * Description:	uses rmonprintf to print out a mtx in integer form
 */
void printMtx(char *name,Mtx *mat)
{
    int i,j;

    rmonPrintf("\n%s:\n",name);
    for (i=0; i<4; i++)
    {
	for (j=0; j<4; j++)
	{
	    rmonPrintf("0x%08x ",mat->m[i][j]);
	}
	rmonPrintf("\n");
    }
}

/*
 * Function:	printMat
 * Description:	uses rmonprintf to print out a float matrix
 */
void printMat(char *name, FMatrix mat)
{
    int i,j;

    rmonPrintf("\n%s:\n",name);
    for (i=0; i<4; i++) {
	for (j=0; j<4; j++)
	    rmonPrintf("%1.2f ",mat[i][j]);
	rmonPrintf("\n");
    }
}



/*
 * Function:	printFMtx
 * Description:	uses rmonprintf to print out an mtx in floating point
 */
void printFMtx(char *name, Mtx *mat)
{
    float fmat[4][4];
    int i;

    guMtxL2F(fmat, mat);
    rmonPrintf("\n%s:\n",name);
    for (i=0;i<4;i++)
    {
	rmonPrintf("\t%f %f %f %f\n",
		   fmat[i][0],fmat[i][1],fmat[i][2],fmat[i][3]);
    }
}

/*
 * Function:	multMtxPos
 * Description:	Multiplies a matrix and a 3D position.
 * Arguments:	vec = 3D position
 *		mat = Mtx
 * Result:	res = mat * vec
 * NOTE:	res may be the same as vec
 */
void multMtxPos(float res[3], Mtx *mat, float pos[3])
{
    float fmat[4][4];
    int   i, j;
    float tmp4[4];
    float pos4[4];

    guMtxL2F(fmat, mat);

    pos4[0] = pos[0];
    pos4[1] = pos[1];
    pos4[2] = pos[2];
    pos4[3] = 1.0;
    
    for (i=0;i<4;i++)
    {
	tmp4[i] = 0.0;
	for (j=0;j<4;j++)
	    tmp4[i] += (fmat[j][i] * pos4[j]);
    }

    res[0] = tmp4[0] / tmp4[3];
    res[1] = tmp4[1] / tmp4[3];
    res[2] = tmp4[2] / tmp4[3];
}


/*
 * Function:	multMatVec
 * Description:	Multiplies a matrix and a 3D vector.
 * Arguments:	vec = 3D vector
 *		mat = matrix
 * Result:	res = mat * vec
 * NOTE:	res may be the same as vec
 */
void multMtxVec(vec3 res, Mtx *mat, vec3 vec)
{
    float fmat[4][4];
    int   i, j;
    float tmp4[4];
    float vec4[4];

    guMtxL2F(fmat, mat);

    vec4[0] = vec[0];
    vec4[1] = vec[1];
    vec4[2] = vec[2];
    vec4[3] = 0.0;
    
    for (i=0;i<4;i++)
    {
	tmp4[i] = 0.0;
	for (j=0;j<4;j++)
	    tmp4[i] += (fmat[j][i] * vec4[j]);
    }

    res[0] = tmp4[0];
    res[1] = tmp4[1];
    res[2] = tmp4[2];
}

/*
 * Function:	multMatPos
 * Description:	Multiplies a matrix and a 3D position.
 * Arguments:	vec = 3D position
 *		mat = floating-point matrix
 * Result:	res = mat * vec
 * NOTE:	res may be the same as vec
 */
void multMatPos(float res[3], FMatrix fmat, float pos[3])
{
    int   i, j;
    float tmp4[4];
    float pos4[4];

    pos4[0] = pos[0];
    pos4[1] = pos[1];
    pos4[2] = pos[2];
    pos4[3] = 1.0;
    
    for (i=0;i<4;i++)
    {
	tmp4[i] = 0.0;
	for (j=0;j<4;j++)
	    tmp4[i] += (fmat[j][i] * pos4[j]);
    }

    res[0] = tmp4[0] / tmp4[3];
    res[1] = tmp4[1] / tmp4[3];
    res[2] = tmp4[2] / tmp4[3];
}



/*
 * Function:	multMatVec
 * Description:	Multiplies a matrix and a 3D vector.
 * Arguments:	vec = 3D vector
 *		mat = floating-point matrix
 * Result:	res = mat * vec
 * NOTE:	res may be the same as vec
 */
void multMatVec(vec3 res, FMatrix fmat, vec3 vec)
{
    int   i, j;
    float tmp4[4];
    float vec4[4];

    vec4[0] = vec[0];
    vec4[1] = vec[1];
    vec4[2] = vec[2];
    vec4[3] = 0.0;
    
    for (i=0;i<4;i++)
    {
	tmp4[i] = 0.0;
	for (j=0;j<4;j++)
	    tmp4[i] += (fmat[j][i] * vec4[j]);
    }

    res[0] = tmp4[0];
    res[1] = tmp4[1];
    res[2] = tmp4[2];
}


/*
 * Function:	multMtx
 * Description:	Multiplies two Mtx's and puts their product in a third.
 * Arguments:	dst - the destination matrix
 *		s1, s2 - the source matrices.
 * Result:	dst = s1 * s2
 * NOTE:	dst may be the same as either of the source matrices
 */
void multMtx(Mtx *dst, Mtx *s1, Mtx *s2)
{
    int i, j;
    float result[4][4], fs1[4][4], fs2[4][4];

    guMtxL2F(fs1, s1);
    guMtxL2F(fs2, s2);

    for (i=0;i<4;i++)
    {
        for (j=0;j<4;j++)
        {
            result[i][j] = (fs1[i][0] * fs2[0][j] +
                            fs1[i][1] * fs2[1][j] +
                            fs1[i][2] * fs2[2][j] +
                            fs1[i][3] * fs2[3][j]);
        }
    }

    guMtxF2L(result, dst);
}

/*
 * Function:	multMat
 * Description:	Multiplies two matrices and puts their product in a third.
 * Arguments:	dst - the destination matrix
 *		s1, s2 - the source matrices.
 * Result:	dst = s1 * s2
 * NOTE:	dst may be the same as either of the source matrices
 */
void multMat(FMatrix dst, FMatrix s1, FMatrix s2)
{
    int i, j;
    float result[4][4], fs1[4][4], fs2[4][4];

    for (i=0;i<4;i++)
    {
        for (j=0;j<4;j++)
        {
            result[i][j] = (s1[i][0] * s2[0][j] +
                            s1[i][1] * s2[1][j] +
                            s1[i][2] * s2[2][j] +
                            s1[i][3] * s2[3][j]);
        }
    }
    copyMat(dst, result);
}


#define SMALL 1e-8              /* Small enough to be considered zero */
#define SWAP(A,B,T)             T=B,B=A,A=T
#define ABS(X)			(((X)>=0)?(X):-(X))

/*****************************************************************************

Shuffles rows in inverse of 3x3.  See comment in matrix_inv3_second_col().

*****************************************************************************/
static void
matrix_inv3_swap(float inv[3][3], int row0, int row1, int row2)
{
   int   i, tempi;
   float temp;

#define SWAP_ROWS(a, b) \
   for (i = 0; i < 3; i++) SWAP(inv[a][i], inv[b][i], temp); \
   SWAP(a, b, tempi)

   if (row0 != 0){
      if (row1 == 0) {
         SWAP_ROWS(row0, row1);
      }
      else {
         SWAP_ROWS(row0, row2);
      }
   }

   if (row1 != 1) {
      SWAP_ROWS(row1, row2);
   }
}


/*****************************************************************************

Does Gaussian elimination on second column.

*****************************************************************************/
static int
matrix_inv3_second_col(float source[3][3], float inv[3][3], int row0)
{
   int   row1, row2, i1, i2, i;
   float temp;
   float a, b;

   /* Find which row to use */
   if      (row0 == 0)  i1 = 1, i2 = 2;
   else if (row0 == 1)  i1 = 0, i2 = 2;
   else                 i1 = 0, i2 = 1;

   /* Find which is larger in abs. val.:the entry in [i1][1] or [i2][1] */
   /* and use that value for pivoting.                                  */

   a = source[i1][1]; if (a < 0) a = -a;
   b = source[i2][1]; if (b < 0) b = -b;
   if (a > b)   row1 = i1;
   else         row1 = i2;
   row2 = (row1 == i1 ? i2 : i1);

   /* Scale row1 in source */
   if ((source[row1][1] < SMALL) && (source[row1][1] > -SMALL)) return(0);
   temp = 1.0 / source[row1][1];
   source[row1][1]  = 1.0;
   source[row1][2] *= temp;     /* source[row1][0] is zero already */

   /* Scale row1 in inv */
   inv[row1][row1]  = temp;     /* it used to be a 1.0 */
   inv[row1][row0] *= temp;

   /* Clear column one, source, and make corresponding changes in inv */

   for (i = 0; i < 3; i++) if (i != row1) {     /* for i = all rows but row1 */
   temp = -source[i][1];
      source[i][1]  = 0.0;
      source[i][2] += temp * source[row1][2];

      inv[i][row1]  = temp * inv[row1][row1];
      inv[i][row0] += temp * inv[row1][row0];
   }

   /* Scale row2 in source */
   if ((source[row2][2] < SMALL) && (source[row2][2] > -SMALL)) return(0);
   temp = 1.0 / source[row2][2];
   source[row2][2] = 1.0;       /* source[row2][*] is zero already */

   /* Scale row2 in inv */
   inv[row2][row2]  = temp;     /* it used to be a 1.0 */
   inv[row2][row0] *= temp;
   inv[row2][row1] *= temp;

   /* Clear column one, source, and make corresponding changes in inv */
   for (i = 0; i < 3; i++) if (i != row2) {     /* for i = all rows but row2 */
   temp = -source[i][2];
      source[i][2] = 0.0;
      inv[i][row0] += temp * inv[row2][row0];
      inv[i][row1] += temp * inv[row2][row1];
      inv[i][row2] += temp * inv[row2][row2];
   }

   /*
    * Now all is done except that the inverse needs to have its rows shuffled.
    * row0 needs to be moved to inv[0][*], row1 to inv[1][*], etc.
    *
    * We *didn't* do the swapping before the elimination so that we could more
    * easily keep track of what ops are needed to be done in the inverse.
    */
   matrix_inv3_swap(inv, row0, row1, row2);

   return(1);
}


/*****************************************************************************

Fast inversion routine for 3 x 3 matrices.   - Written by jfh.

This takes 30 multiplies/divides, as opposed to 39 for Cramer's Rule.
The algorithm consists of performing fast gaussian elimination, by never
doing any operations where the result is guaranteed to be zero, or where
one operand is guaranteed to be zero. This is done at the cost of clarity,
alas.

Returns 1 if the inverse was successful, 0 if it failed.

*****************************************************************************/
static int
matrix_invert3(float source[3][3], float inv[3][3])
{
   int   i, row0;
   float temp;
   float a, b, c;

   inv[0][0] = inv[1][1] = inv[2][2] = 1.0;
   inv[0][1] = inv[0][2] = inv[1][0] = inv[1][2] = inv[2][0] = inv[2][1] = 0.0;

   /* attempt to find the largest entry in first column to use as pivot */
   a = source[0][0]; if (a < 0) a = -a;
   b = source[1][0]; if (b < 0) b = -b;
   c = source[2][0]; if (c < 0) c = -c;

   if (a > b) {
      if (a > c) row0 = 0;
      else row0 = 2;
   }
   else {
      if (b > c) row0 = 1;
      else row0 = 2;
   }

   /* Scale row0 of source */
   if ((source[row0][0] < SMALL) && (source[row0][0] > -SMALL)) return(0);
   temp = 1.0 / source[row0][0];
   source[row0][0]  = 1.0;
   source[row0][1] *= temp;
   source[row0][2] *= temp;

   /* Scale row0 of inverse */
   inv[row0][row0] = temp;      /* other entries are zero -- no effort  */

   /* Clear column zero of source, and make corresponding changes in inverse */

   for (i = 0; i < 3; i++) if (i != row0) {     /* for i = all rows but row0 */
      temp = -source[i][0];
      source[i][0]  = 0.0;
      source[i][1] += temp * source[row0][1];
      source[i][2] += temp * source[row0][2];
      inv[i][row0]  = temp * inv[row0][row0];
   }


   /*
    * We've now done gaussian elimination so that the source and
    * inverse look like this:
    *
    *   1 * *           * 0 0
    *   0 * *           * 1 0
    *   0 * *           * 0 1
    *
    * We now proceed to do elimination on the second column.
    */
   if (!matrix_inv3_second_col(source, inv, row0)) return(0);

   return(1);
}


/*****************************************************************************

Finds a new pivot for a non-simple 4x4.  See comments in MatInvert().

*****************************************************************************/
static int
matrix_inv4_pivot(float src[4][4], float r[4], float *s, int *swap)
{
   int   i, j;
   float temp, max;

   *swap = -1;

   if (ABS(src[3][3]) < SMALL) {

      /* Look for a different pivot element: one with largest abs value */
      max = 0.0;

      for (i = 0; i < 4; i++) {
         if      (src[i][3] >  max) max =  src[*swap = i][3];
         else if (src[i][3] < -max) max = -src[*swap = i][3];
      }

      /* No pivot element available ! */
      if (*swap < 0) return(0);

      else for (j = 0; j < 4; j++) SWAP(src[*swap][j], src[3][j], temp);
   }

   r[0] = -src[0][3];
   r[1] = -src[1][3];
   r[2] = -src[2][3];

   *s = 1.0 / src[3][3];

   src[0][3] = src[1][3] = src[2][3] = 0.0;
   src[3][3]                         = 1.0;

   src[3][0] *= (*s);
   src[3][1] *= (*s);
   src[3][2] *= (*s);

   for (i = 0; i < 3; i++) {
      src[0][i] += r[0] * src[3][i];
      src[1][i] += r[1] * src[3][i];
      src[2][i] += r[2] * src[3][i];
   }

   return(1);
}


/*****************************************************************************

This returns the inverse of the given matrix.  The result matrix
may be the same as the one to invert.

Fast inversion routine for 4 x 4 matrices, written by jfh.

Returns 1 if the inverse was successful, 0 if it failed.

This routine has been specially tweaked to notice the following:
If the matrix has the form
       * * * 0
       * * * 0
       * * * 0
       * * * 1

(as do many matrices in graphics), then we compute the inverse of
the upper left 3x3 matrix and use this to find the general inverse.

  In the event that the right column is not 0-0-0-1, we do gaussian
elimination to make it so, then use the 3x3 inverse, and then do
our gaussian elimination.

*****************************************************************************/
int
floatMatInvert(float inv[4][4], float src[4][4])
{
   float mat[4][4];
   int   i, j, simple;
   float m[3][3], inv3[3][3], s, temp;
   float r[4], t[4];
   int   swap;

   /* invert code is row major */

   for (i=0; i<4; i++)
    for (j=0; j<4; j++) {
       mat[i][j] = src[i][j];
       inv[i][j] = 0;
    }
   inv[0][0] = 1;
   inv[1][1] = 1;
   inv[2][2] = 1;
   inv[3][3] = 1;

   /* If last column is not (0,0,0,1), use special code */
   simple = (mat[0][3] == 0.0 && mat[1][3] == 0.0 &&
             mat[2][3] == 0.0 && mat[3][3] == 1.0);

   if (! simple && !matrix_inv4_pivot(mat, r, &s, &swap)) return (0);

   t[0] = mat[3][0];
   t[1] = mat[3][1];
   t[2] = mat[3][2];

   /* Copy upper-left 3x3 matrix */
   for (i = 0; i < 3; i++) for (j = 0; j < 3; j++) m[i][j] = mat[i][j];

   if (! matrix_invert3(m, inv3)) return(0);

   for (i = 0; i < 3; i++) for (j = 0; j < 3; j++) inv[i][j] = inv3[i][j];

   for (i = 0; i < 3; i++) for (j = 0; j < 3; j++)
      inv[3][i] -= t[j] * inv3[j][i];

   if (! simple) {

      /* We still have to undo our gaussian elimination from earlier on */
      /* add r0 * first col to last col */
      /* add r1 * 2nd   col to last col */
      /* add r2 * 3rd   col to last col */

      for (i = 0; i < 4; i++) {
         inv[i][3] += r[0] * inv[i][0] +
                      r[1] * inv[i][1] +
                      r[2] * inv[i][2];
         inv[i][3] *= s;
      }

      if (swap >= 0)
         for (i = 0; i < 4; i++) SWAP(inv[i][swap], inv[i][3], temp);
   }

   return (1);
}