suvuctl.v 18.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
/**************************************************************************
 *                                                                        *
 *               Copyright (C) 1994, Silicon Graphics, Inc.               *
 *                                                                        *
 *  These coded instructions, statements, and computer programs  contain  *
 *  unpublished  proprietary  information of Silicon Graphics, Inc., and  *
 *  are protected by Federal copyright  law.  They  may not be disclosed  *
 *  to  third  parties  or copied or duplicated in any form, in whole or  *
 *  in part, without the prior written consent of Silicon Graphics, Inc.  *
 *                                                                        *
 *************************************************************************/
// $Id: suvuctl.v,v 1.1.1.1 2002/05/17 06:07:48 blythe Exp $

// suvuctl.v: 	RSP VU control generation and interlock detection

`timescale 1ns / 10ps

`include "sopcodes.h"

module suvuctl (clk, reset_l, 
	su_inst_a, vu_inst_a, su_inst_b, vu_inst_b, 
	choose_su_inst_b, choose_vu_inst_b, 
	kill_re_non_vu, kill_su_issue, kill_vu_issue,
	vu_reg_hazard_comp, vu_reg_hazard_ls, 
	vu_func, vu_elem, 
	elem_num, vu_comp_k, vu_ld_addr, vu_st_addr, vu_st_xpose_addr, 
	ex_ctc2_vc0, ex_ctc2_vc1, ex_ctc2_vc2, 
	vu_rd_store_type_k, vu_rd_storecfc2_k, 
	rd_cfvc0_k, rd_cfvc1_k, rd_cfvc2_k, 
	acc_wr_reg, acc_wr_en, 
	xpose);

   input		clk;
   input		reset_l;

   input	[31:0]	su_inst_a;
   input	[31:0]	vu_inst_a;		// RD stage
   input	[31:0]	su_inst_b;
   input	[31:0]	vu_inst_b;		// RD stage
   input		choose_su_inst_b;
   input		choose_vu_inst_b;

   input		kill_re_non_vu;
   input		kill_su_issue;
   input		kill_vu_issue;
   input	[3:0]	elem_num;
   input 		vu_comp_k;

   output		xpose;
						// RD stage to SU
   output		vu_reg_hazard_comp;
   output		vu_reg_hazard_ls;
						// RD stage to VU
   output	[5:0]	vu_func;
   output	[3:0]	vu_elem;
   output	[4:0]	vu_ld_addr;
   output	[4:0]	vu_st_addr;
   output	[4:0]	vu_st_xpose_addr;
   output		vu_rd_store_type_k;
   output		vu_rd_storecfc2_k;
   output		rd_cfvc0_k;
   output		rd_cfvc1_k;
   output		rd_cfvc2_k;
						// EX/ACC stage to VU
   output		ex_ctc2_vc0;
   output		ex_ctc2_vc1;
   output		ex_ctc2_vc2;
						// DF stage to VU
   output	[4:0]   acc_wr_reg;    	
   output		acc_wr_en;

   wire 	[31:0] 	su_inst;
   wire 	[31:0] 	vu_inst;
   wire         [5:0]	opc;
   wire         [5:0]	func;
   wire         [4:0]	rs;
   wire         [4:0]	rt;
   wire         [4:0]	rd;

   wire			rd_mfc2;
   wire			vu_rd_store_type;
   wire			vu_rd_storecfc2;
   wire		[4:0]	rd_st_src;

   // VU Pipe Signals:

   wire			vu_comp;
   wire		[4:0]	vd;
   wire		[4:0]	vd_a;
   wire		[4:0]	vd_b;
   wire		[4:0]	vu_ld_reg;
   wire		[4:0]	vu_st_reg;
   wire		[4:0]	vu_mf_reg;
   wire			mul_ld_en;
   wire			acc_ld_en;
   wire			wbv_ld_en;
   wire			mul_ld_xpose;
   wire			acc_ld_xpose;
   wire		[4:0]	mul_ld_reg;
   wire		[4:0]	acc_ld_reg;
   wire		[4:0]	wbv_ld_reg;
   wire			mul_wr_en;
   wire			wbv_wr_en;  	
   wire		[4:0]	mul_wr_reg;
   wire		[4:0]	acc_ld_dest;
   wire		[2:0]	df_elem_num;

   wire			ctc2_vc0;
   wire			ctc2_vc1;
   wire			ctc2_vc2;
   wire			ctc2_vc0_k;
   wire			ctc2_vc1_k;
   wire			ctc2_vc2_k;
   wire			rd_cfvc0;
   wire			rd_cfvc1;
   wire			rd_cfvc2;

   wire			ld_xpose;
   wire			st_xpose_a;
   wire			st_xpose_b;

   wire			use_vs;
   wire			use_vt;
   wire			use_mf_reg;
   wire			use_st_reg;

   wire			vu_rd_ld_en;
   wire			vu_rd_ld_en_k;

   wire		[31:0]	mul_dest_bit_mask_n; 
   wire		[31:0]	acc_dest_bit_mask_n;
   wire		[31:0]	dest_bit_mask_n;
   wire			mul_ld_en_n; 
   wire		[4:0]	mul_ld_reg_n;
   wire			mul_ld_xpose_n;
   wire			mul_wr_en_n;
   wire		[4:0]	mul_wr_reg_n; 
   wire			ex_ctc2_vc0_n;
   wire			ex_ctc2_vc1_n;
   wire			ex_ctc2_vc2_n;
   wire			acc_ld_en_n;
   wire		[4:0]	acc_ld_reg_n;
   wire			acc_ld_xpose_n;
   wire			acc_wr_en_n;
   wire		[4:0]	acc_wr_reg_n;
   wire		[2:0]	df_elem_num_n;

   //
   // RD stage signals: instruction decode, bypasses 
   //

   assign opc = su_inst[31:26];
   assign func = su_inst[5:0];
   assign rs = su_inst[25:21];
   assign rt = su_inst[20:16];
   assign rd = su_inst[15:11];

   assign rd_mfc2 = (opc[5:4]==2'b01) && (opc[1]==1'b1) && 
        (rs[4]==0) && (rs[2:1]==2'b00);

// VU Pipe Control, Take 2
   
   wire		[5:0]	opc_a;
   wire		[5:0]	vu_func_a;
   wire			vu_comp_a;
   wire		[4:0]	rs_a;
   wire		[4:0]	rt_a;
   wire		[4:0]	rd_a;
   wire		[4:0]	vs_a;
   wire		[4:0]	vt_a;
   wire			use_vs_a;
   wire			use_vt_a;
   wire			use_mf_a_reg;
   wire			use_st_a_reg;
   wire 	[31:0]	xpose_bit_mask_a;
   wire 	[31:0]	vs_a_decode_l;
   wire		[31:0]	vt_a_decode_l;
   wire		[31:0]	rt_a_decode_l;
   wire		[31:0]	rd_a_decode_l;
   wire		[31:0]	vs_bit_mask_a;
   wire		[31:0]	vt_bit_mask_a;
   wire		[31:0]	mf_bit_mask_a;
   wire		[31:0]	st_bit_mask_a;

   wire		[5:0]	opc_b;
   wire		[5:0]	vu_func_b;
   wire			vu_comp_b;
   wire		[4:0]	rs_b;
   wire		[4:0]	rt_b;
   wire		[4:0]	rd_b;
   wire		[4:0]	vs_b;
   wire		[4:0]	vt_b;
   wire			use_vs_b;
   wire			use_vt_b;
   wire			use_mf_b_reg;
   wire			use_st_b_reg;
   wire 	[31:0]	xpose_bit_mask_b;
   wire 	[31:0]	vs_b_decode_l;
   wire		[31:0]	vt_b_decode_l;
   wire		[31:0]	rt_b_decode_l;
   wire		[31:0]	rd_b_decode_l;
   wire		[31:0]	vs_bit_mask_b;
   wire		[31:0]	vt_bit_mask_b;
   wire		[31:0]	mf_bit_mask_b;
   wire		[31:0]	st_bit_mask_b;


   wire 	[31:0]	vs_decode_l;
   wire		[31:0]	vt_decode_l;
   wire		[31:0]	vd_decode_l;
   wire		[31:0]	vd_a_decode_l;
   wire		[31:0]	vd_b_decode_l;
   wire		[31:0]	rt_decode_l;
   wire		[31:0]	rd_decode_l;
   wire		[31:0]	vs_bit_mask;
   wire		[31:0]	vt_bit_mask;
   wire		[31:0]	mf_bit_mask;
   wire		[31:0]	st_bit_mask;
   wire		[31:0]	vd_bit_mask;
   wire		[31:0]	vd_a_bit_mask;
   wire		[31:0]	vd_b_bit_mask;
   wire		[31:0]	ld_bit_mask;
   wire		[31:0]	mt_bit_mask;
   wire		[31:0]	rd_dest_bit_mask_k;
   wire		[31:0]	mul_dest_bit_mask;
   wire		[31:0]	acc_dest_bit_mask;

   assign opc_a = su_inst_a[31:26];
   assign rs_a = su_inst_a[25:21];
   assign rt_a = su_inst_a[20:16];
   assign rd_a = su_inst_a[15:11];

   assign vu_comp_a = (vu_inst_a[31:25] == 7'b0100101) && 	// nop
	!((vu_func_a == 6'b110111) || (vu_func_a == 6'b111111));	
   assign vu_func_a = vu_inst_a[5:0];


   assign use_vs_a = 
	 vu_comp_a && !((vu_func_a[5:4] == 2'b11) ||    // !div-class
 		      (vu_func_a[5:0] == 6'b001011) ||  // !macq
 		      (vu_func_a[5:0] == 6'b011100) ||  // !vsum
		      (vu_func_a[5:0] == 6'b000010) ||  // !rnd
		      (vu_func_a[5:0] == 6'b001010) ||  // !rnd
		      (vu_func_a[5:2] == 4'b0111));     // !sar
   assign use_vt_a = 
	 vu_comp_a && !((vu_func_a[5:0] == 6'b001011) || // !macq
		      (vu_func_a[5:0] == 6'b011100) ||  // !vsum
		      (vu_func_a[5:2] == 4'b1111) ||    // !extract
		      (vu_func_a[5:2] == 4'b0111));     // !sar
   assign use_mf_a_reg = (opc_a=='h12) && (rs_a=='h00); // `COP2 && `MFC;  
   assign use_st_a_reg = (opc_a=='h3a);			// SWC2


   assign xpose_bit_mask_a[7:0] = 
	{8{(su_inst_a[14:11]==4'b1011)}} & {8{rt_a[4:3]==2'b00}};
   assign xpose_bit_mask_a[15:8]  = 
	{8{(su_inst_a[14:11]==4'b1011)}} & {8{rt_a[4:3]==2'b01}};
   assign xpose_bit_mask_a[23:16] = 
	{8{(su_inst_a[14:11]==4'b1011)}} & {8{rt_a[4:3]==2'b10} };
   assign xpose_bit_mask_a[31:24] = 
	{8{(su_inst_a[14:11]==4'b1011)}} & {8{rt_a[4:3]==2'b11}};

   sp_5_32_decode vs_a_dec (vs_a_decode_l, vs_a);
   sp_5_32_decode vt_a_dec (vt_a_decode_l, vt_a);
   sp_5_32_decode rt_a_dec (rt_a_decode_l, rt_a);
   sp_5_32_decode rd_a_dec (rd_a_decode_l, rd_a);

   assign vs_bit_mask_a = {32{use_vs_a}} & ~vs_a_decode_l;
   assign vt_bit_mask_a = {32{use_vt_a}} & ~vt_a_decode_l;
   assign mf_bit_mask_a = {32{use_mf_a_reg}} & ~rd_a_decode_l;
   assign st_bit_mask_a = {32{use_st_a_reg}} & (xpose_bit_mask_a | ~rt_a_decode_l);

   assign opc_b = su_inst_b[31:26];
   assign rs_b = su_inst_b[25:21];
   assign rt_b = su_inst_b[20:16];
   assign rd_b = su_inst_b[15:11];
   assign vu_comp_b = (vu_inst_b[31:25] == 7'b0100101) && 	// nop
	!((vu_func_b == 6'b110111) || (vu_func_b == 6'b111111));	
   assign vu_func_b = vu_inst_b[5:0];


   assign use_vs_b = 
	 vu_comp_b && !((vu_func_b[5:4] == 2'b11) ||    // !div-class
 		      (vu_func_b[5:0] == 6'b001011) ||  // !macq
 		      (vu_func_b[5:0] == 6'b011100) ||  // !vsum
		      (vu_func_b[5:0] == 6'b000010) ||  // !rnd
		      (vu_func_b[5:0] == 6'b001010) ||  // !rnd
		      (vu_func_b[5:2] == 4'b0111));     // !sar
   assign use_vt_b = 
	 vu_comp_b && !((vu_func_b[5:0] == 6'b001011) || // !macq
		      (vu_func_b[5:0] == 6'b011100) ||  // !vsum
		      (vu_func_b[5:2] == 4'b1111) ||    // !extract
		      (vu_func_b[5:2] == 4'b0111));     // !sar
   assign use_mf_b_reg = (opc_b=='h12) && (rs_b=='h00); // `COP2 && `MFC;  
   assign use_st_b_reg = (opc_b=='h3a);			// SWC2


   assign xpose_bit_mask_b[7:0] = 
	{8{(su_inst_b[14:11]==4'b1011)}} & {8{rt_b[4:3]==2'b00}};
   assign xpose_bit_mask_b[15:8]  = 
	{8{(su_inst_b[14:11]==4'b1011)}} & {8{rt_b[4:3]==2'b01}};
   assign xpose_bit_mask_b[23:16] = 
	{8{(su_inst_b[14:11]==4'b1011)}} & {8{rt_b[4:3]==2'b10} };
   assign xpose_bit_mask_b[31:24] = 
	{8{(su_inst_b[14:11]==4'b1011)}} & {8{rt_b[4:3]==2'b11}};

   sp_5_32_decode vs_b_dec (vs_b_decode_l, vs_b);
   sp_5_32_decode vt_b_dec (vt_b_decode_l, vt_b);
   sp_5_32_decode rt_b_dec (rt_b_decode_l, rt_b);
   sp_5_32_decode rd_b_dec (rd_b_decode_l, rd_b);

   assign vs_bit_mask_b = {32{use_vs_b}} & ~vs_b_decode_l;
   assign vt_bit_mask_b = {32{use_vt_b}} & ~vt_b_decode_l;
   assign mf_bit_mask_b = {32{use_mf_b_reg}} & ~rd_b_decode_l;
   assign st_bit_mask_b = {32{use_st_b_reg}} & (xpose_bit_mask_b | ~rt_b_decode_l);

   assign su_inst = choose_su_inst_b ? su_inst_b : su_inst_a;
   assign vu_inst = choose_vu_inst_b ? vu_inst_b : vu_inst_a;
   assign vd_a = vu_inst_a[10:6];
   assign vd_b = vu_inst_b[10:6];
   assign vd = choose_vu_inst_b ? vu_inst_b[10:6] : vu_inst_a[10:6];

   sp_5_32_decode vd_a_dec (vd_a_decode_l, vd_a);
   sp_5_32_decode vd_b_dec (vd_b_decode_l, vd_b);
   assign vd_bit_mask = choose_vu_inst_b ?
   	({32{vu_comp_b}} & ~vd_b_decode_l) :
	({32{vu_comp_a}} & ~vd_a_decode_l);
   assign ld_bit_mask = choose_su_inst_b ? 		// LWC2
	({32{opc_b=='h32}} & (xpose_bit_mask_b | ~rt_b_decode_l)) : 
	({32{opc_a=='h32}} & (xpose_bit_mask_a | ~rt_a_decode_l));
   assign mt_bit_mask = choose_su_inst_b ? 		// MTC
	({32{(opc_b=='h12 && rs_b=='h04)}} & ~rd_b_decode_l) : 
	({32{(opc_a=='h12 && rs_a=='h04)}} & ~rd_a_decode_l);

   assign rd_dest_bit_mask_k = 
	({32{!(kill_vu_issue || kill_re_non_vu || vu_reg_hazard_comp || (vu_reg_hazard_ls && !kill_su_issue))}} & vd_bit_mask) | 
	({32{!(kill_su_issue || kill_re_non_vu || vu_reg_hazard_ls || (vu_reg_hazard_comp && !kill_vu_issue))}} & (ld_bit_mask | mt_bit_mask));
   spasdff_32_0 su_re_dest_mask_ff (mul_dest_bit_mask, mul_dest_bit_mask_n, rd_dest_bit_mask_k, clk, reset_l);
   spasdff_32_0 su_ed_dest_mask_ff (acc_dest_bit_mask, acc_dest_bit_mask_n, mul_dest_bit_mask, clk, reset_l);


   wire [31:0] early_dest_bit_mask;
   wire [31:0] dest_bit_mask;

   assign early_dest_bit_mask = 
	rd_dest_bit_mask_k | mul_dest_bit_mask | acc_dest_bit_mask;
   spasdff_32_0 su_dest_mask_ff (dest_bit_mask, dest_bit_mask_n, early_dest_bit_mask, clk,   reset_l); 

   assign vs_bit_mask = choose_vu_inst_b ? vs_bit_mask_b : vs_bit_mask_a;
   assign vt_bit_mask = choose_vu_inst_b ? vt_bit_mask_b : vt_bit_mask_a;
   assign mf_bit_mask = choose_su_inst_b ? mf_bit_mask_b : mf_bit_mask_a;
   assign st_bit_mask = choose_su_inst_b ? st_bit_mask_b : st_bit_mask_a;

   assign vu_reg_hazard_ls = 
	(dest_bit_mask & (mf_bit_mask | st_bit_mask)) != 0;

   assign vu_reg_hazard_comp = 
	(dest_bit_mask & (vs_bit_mask | vt_bit_mask)) != 0;

   assign vu_func = choose_vu_inst_b ? vu_func_b : vu_func_a;

   assign ld_xpose = `LWC2 && (su_inst[14:11]==4'b1011);
   assign st_xpose_a =  (su_inst_a[31:26]==6'b111010) && 
			(su_inst_a[14:11]==4'b1011);
   assign st_xpose_b =  (su_inst_b[31:26]==6'b111010) && 
			(su_inst_b[14:11]==4'b1011);

   assign rd_cfvc0 = `COP2 && `CFC && (rd[1:0]==2'b00);
   assign ctc2_vc0 = `COP2 && `CTC && (rd[1:0]==2'b00);
   assign rd_cfvc1 = `COP2 && `CFC && (rd[1:0]==2'b01);
   assign ctc2_vc1 = `COP2 && `CTC && (rd[1:0]==2'b01);
   assign rd_cfvc2 = `COP2 && `CFC && (rd[1:0]==2'b10);
   assign ctc2_vc2 = `COP2 && `CTC && (rd[1:0]==2'b10);

   // *** Some of the followign should be generate from their _a and _b 
   // versions.

   assign vu_comp = choose_vu_inst_b ? vu_comp_b : vu_comp_a;

   assign vu_rd_ld_en = `LWC2 || (`COP2 && `MTC);
   assign vu_ld_reg = `LWC2 ? rt : rd;
   assign vu_st_reg = rt;
   assign vu_mf_reg = rd;


   assign use_vs = 
	 vu_comp && !((vu_func[5:4] == 2'b11) ||      // !div-class
 		      (vu_func[5:0] == 6'b001011) ||  // !macq
 		      (vu_func[5:0] == 6'b011100) ||  // !vsum
		      (vu_func[5:0] == 6'b000010) ||  // !rnd
		      (vu_func[5:0] == 6'b001010) ||  // !rnd
		      (vu_func[5:2] == 4'b0111));     // !sar
   assign use_vt = 
	 vu_comp && !((vu_func[5:0] == 6'b001011) ||  // !macq
		      (vu_func[5:0] == 6'b011100) ||  // !vsum
		      (vu_func[5:2] == 4'b1111) ||    // !extract
		      (vu_func[5:2] == 4'b0111));     // !sar

   assign use_mf_reg = `COP2 && `MFC;  
   assign use_st_reg = `SWC2;

   // VU control register hazards:
   // There aren't any involving outstanding writes, because the control 
   // registers are both read and written (by both computation instructions
   // and CTC2/CFC2) in the EX stage.  The only hazards involve dual issuing
   // instructions both of which want to access the same control register.
   // This is handled in the issue logic.

   // Kill: optionally kill EX stage signals

   assign vu_rd_ld_en_k = vu_rd_ld_en && !(kill_su_issue || kill_re_non_vu || vu_reg_hazard_ls || (vu_reg_hazard_comp && !kill_vu_issue));
   assign ctc2_vc0_k = ctc2_vc0 && !(kill_su_issue || kill_re_non_vu || vu_reg_hazard_ls || (vu_reg_hazard_comp && !kill_vu_issue));
   assign ctc2_vc1_k = ctc2_vc1 && !(kill_su_issue || kill_re_non_vu || vu_reg_hazard_ls || (vu_reg_hazard_comp && !kill_vu_issue));
   assign ctc2_vc2_k = ctc2_vc2 && !(kill_su_issue || kill_re_non_vu || vu_reg_hazard_ls || (vu_reg_hazard_comp && !kill_vu_issue));

   spasdff_1_0 su_re_vulden_ff(mul_ld_en,mul_ld_en_n, vu_rd_ld_en_k, clk, reset_l);
   spasdff_5_0 su_re_vu_ld_reg_ff(mul_ld_reg,mul_ld_reg_n, vu_ld_reg, clk, reset_l);
   spasdff_1_0 su_re_vu_xp_ff(mul_ld_xpose,mul_ld_xpose_n, ld_xpose, clk, reset_l);
   spasdff_1_0 su_re_vuwren_ff(mul_wr_en,mul_wr_en_n,vu_comp_k,clk,reset_l);
   spasdff_5_0 su_re_vu_wr_reg_ff(mul_wr_reg,mul_wr_reg_n, vd, clk, reset_l);
   spasdff_1_0 su_re_vu_ct0_ff(ex_ctc2_vc0,ex_ctc2_vc0_n, ctc2_vc0_k, clk, reset_l);
   spasdff_1_0 su_re_vu_ct1_ff(ex_ctc2_vc1,ex_ctc2_vc1_n, ctc2_vc1_k, clk, reset_l);
   spasdff_1_0 su_re_vu_ct2_ff(ex_ctc2_vc2,ex_ctc2_vc2_n, ctc2_vc2_k, clk, reset_l);

   spasdff_1_0 su_ed_vu_ld_en_ff(acc_ld_en,acc_ld_en_n, mul_ld_en, clk, reset_l);
   spasdff_5_0 su_ed_vu_ld_reg_ff(acc_ld_reg,acc_ld_reg_n, mul_ld_reg, clk, reset_l);
   spasdff_1_0 su_ed_vu_xp_en_ff(acc_ld_xpose,acc_ld_xpose_n, mul_ld_xpose, clk, reset_l);
   spasdff_1_0 su_ed_vu_wr_en_ff(acc_wr_en,acc_wr_en_n, mul_wr_en, clk, reset_l);
   spasdff_5_0 su_ed_vu_wr_reg_ff(acc_wr_reg,acc_wr_reg_n, mul_wr_reg, clk, reset_l);
   spasdff_3_0 su_ed_elem_ff(df_elem_num,df_elem_num_n, elem_num[3:1], clk,reset_l);

/* ********************************************************************** */

// VU Control Generation:

   assign vu_rd_store_type = `SWC2 || (`COP2 && `MFC); 
   assign vu_rd_storecfc2 = `SWC2 || (`COP2 && (`MFC || `CFC)); 
   assign vu_elem = vu_inst[24:21];	// *** used for vu_comp insts?

   function [4:0] rd_st_src_mux;
       input [4:0] rd_st_src_sel;
       input [4:0] in_a, in_b, in_c, in_d;
       begin
           case (1'b1)          // synopsys parallel_case full_case
               rd_st_src_sel[0] : rd_st_src_mux = in_a;
               rd_st_src_sel[1] : rd_st_src_mux = in_b;
               rd_st_src_sel[2] : rd_st_src_mux = in_c;
               default		: rd_st_src_mux = in_d;
           endcase
       end
   endfunction

   wire [2:0] rd_st_src_sel;
   assign rd_st_src_sel[0] = rd_mfc2;
   assign rd_st_src_sel[1] = !rd_mfc2 && choose_su_inst_b && st_xpose_b;
   assign rd_st_src_sel[2] = !rd_mfc2 && !choose_su_inst_b && st_xpose_a;

   assign rd_st_src = rd_st_src_mux(rd_st_src_sel, 
	su_inst[15:11], {su_inst_b[20:19], su_inst_b[10:8]}, 
	{su_inst_a[20:19], su_inst_a[10:8]}, su_inst[20:16]);

   assign xpose = (acc_ld_en && acc_ld_xpose) || 
		  (!acc_ld_en && choose_su_inst_b && st_xpose_b) ||
		  (!acc_ld_en && !choose_su_inst_b && st_xpose_a);

   assign rd_cfvc0_k = rd_cfvc0 && !(kill_su_issue || kill_re_non_vu || vu_reg_hazard_ls || (vu_reg_hazard_comp && !kill_vu_issue));
   assign rd_cfvc1_k = rd_cfvc1 && !(kill_su_issue || kill_re_non_vu || vu_reg_hazard_ls || (vu_reg_hazard_comp && !kill_vu_issue));
   assign rd_cfvc2_k = rd_cfvc2 && !(kill_su_issue || kill_re_non_vu || vu_reg_hazard_ls || (vu_reg_hazard_comp && !kill_vu_issue));
   assign vu_rd_store_type_k = vu_rd_store_type && !(kill_su_issue || kill_re_non_vu || vu_reg_hazard_ls || (vu_reg_hazard_comp && !kill_vu_issue));
   assign vu_rd_storecfc2_k = vu_rd_storecfc2 && !(kill_su_issue || kill_re_non_vu || vu_reg_hazard_ls || (vu_reg_hazard_comp && !kill_vu_issue));


   wire [4:0] vu_st_addr_a;
   wire [4:0] vu_st_xpose_addr_a;
   wire [4:0] vu_st_addr_b;
   wire [4:0] vu_st_xpose_addr_b;
   assign vu_ld_addr = 
	acc_ld_xpose ? {acc_ld_reg[4:3], df_elem_num} : acc_ld_reg;

   function [4:0] vu_st_addr_mux;
       input [4:0] vu_st_addr_sel;
       input [4:0] in_a, in_b, in_c, in_d;
       begin
           case (1'b1)          // synopsys parallel_case full_case
               vu_st_addr_sel[0] : vu_st_addr_mux = in_a;
               vu_st_addr_sel[1] : vu_st_addr_mux = in_b;
               vu_st_addr_sel[2] : vu_st_addr_mux = in_c;
               vu_st_addr_sel[3] : vu_st_addr_mux = in_d;
           endcase
       end
   endfunction

   wire [3:0] vu_st_addr_sel;
   assign vu_st_addr_sel[0] = !choose_su_inst_b && su_inst_a[29];
   assign vu_st_addr_sel[1] = !choose_su_inst_b && !su_inst_a[29];
   assign vu_st_addr_sel[2] = choose_su_inst_b && su_inst_b[29];
   assign vu_st_addr_sel[3] = choose_su_inst_b && !su_inst_b[29];

   assign vu_st_addr = vu_st_addr_mux(vu_st_addr_sel, 
	su_inst_a[20:16], su_inst_a[15:11],		// mfc2 or not
	su_inst_b[20:16], su_inst_b[15:11]);

/*
   assign vu_st_addr_a = 				// mfc2 or not
	su_inst_a[29] ? su_inst_a[20:16] : su_inst_a[15:11];
   assign vu_st_addr_b = 				// mfc2 or not
	su_inst_b[29] ? su_inst_b[20:16] : su_inst_b[15:11];
   assign vu_st_addr = 
	choose_su_inst_b ? vu_st_addr_b : vu_st_addr_a;
*/

   assign vu_st_xpose_addr_a = {su_inst_a[20:19], su_inst_a[10:8]};
   assign vu_st_xpose_addr_b = {su_inst_b[20:19], su_inst_b[10:8]};
   assign vu_st_xpose_addr = 
	choose_su_inst_b ? vu_st_xpose_addr_b : vu_st_xpose_addr_a;
   assign vs_a = vu_inst_a[15:11];
   assign vs_b = vu_inst_b[15:11];
   assign vt_a = vu_inst_a[20:16];
   assign vt_b = vu_inst_b[20:16];

endmodule