carttst2.tdf
6.44 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
TITLE "$Id: carttst2.tdf,v 1.1.1.1 2002/05/17 06:07:56 blythe Exp $ Copyright (C) 1994, 1995 Silicon Graphics, Inc.";
%*************************************************************************%
%* *%
%* Copyright (C) 1994, 1995 Silicon Graphics, Inc. *%
%* *%
%* These coded instructions, statements, and computer programs contain *%
%* unpublished proprietary information of Silicon Graphics, Inc., and *%
%* are protected by Federal copyright law. They may not be disclosed *%
%* to third parties or copied or duplicated in any form, in whole or *%
%* in part, without the prior written consent of Silicon Graphics, Inc. *%
%* *%
%*************************************************************************%
% cycle counts for various cycle types (1 less than actual) %
constant CNT_ADR = 5;
constant CNT_PGBRK = 1;
constant CNT_LWAIT = 5;
constant CNT_RD_WR = 4;
constant CNT_RELWIDTH = 1;
constant CNT_IDLE = 9;
% switch settings
+ swt1 0 => normal operation
+ 1 => reset
+ swt2 0 => 1 pass through memory when swt3 is toggled
+ 1 => continuous r/w looping
+ swt3 0 => if swt2 == 1, loop through low half of memory
+ 1 => if swt2 == 1, loop through all of memory
+ swt4 0 => if swt2 == 0, write memory
+ 1 => if swt2 == 0, read memory
+ swt6,swt5 00 => if swt2 == 0, use checkerboard pattern
+ 01 => if swt2 == 0, use inverted checkerboard pattern
+ 10 => if swt2 == 0, use address pattern
+ 11 => if swt2 == 0, use inverted address pattern
%
subdesign carttst2
(
clk, swt[6..1] : INPUT;
aleh, alel, rdB, wrB, chk : OUTPUT;
ad[15..0] : BIDIR;
)
variable
clock, adr_out[31..0], pagebreak, top_adr, ad_mux[15..0] : NODE;
cycleend, pbreak, adrinc, dataoe, count[7..0], nextcnt[7..0],
r_w, hold_idle, cntzero, prechk[7..0], chk, chkdly : DFF;
ad_save[15..0], ad_int[15..0], adr[23..1], pgcnt[3..0],
invert, save_idle, aleh, alel, wrB, rdB : DFFE;
ad[15..0] : TRI;
begin
clock = global(clk);
adr_out[31..24] = 0;
adr_out[23..1] = adr[];
adr_out[0] = GND;
pagebreak = (adr_out[13..0] == H"3ffe");
top_adr = (adr_out[23..0] == H"fffffe");
r_w.clk = clock;
r_w.clrn = swt[1];
if (!swt[2]) then r_w = swt[4];
elsif (top_adr & adrinc) then r_w = !r_w;
else r_w = r_w;
end if;
hold_idle.clk = clock;
hold_idle = !swt[2] & (swt[3] == save_idle);
save_idle.clk = clock;
save_idle.ena = !swt[1] # swt[2] # (top_adr & adrinc);
save_idle = swt[3];
pbreak.clk = clock;
pbreak = (adrinc & pagebreak) # (pbreak & !aleh);
cycleend.clk = clock;
cycleend = (adrinc & pagebreak & (pgcnt[] == 15)) # (cycleend & !aleh);
chk.clk = clock;
chk = (prechk[] != 0) # chkdly;
chkdly.clk = clock;
chkdly = (prechk[] != 0);
prechk[].clk = clock;
prechk[0] = cntzero & !rdB & (ad[1..0] != ad_save[1..0]);
prechk[1] = cntzero & !rdB & (ad[3..2] != ad_save[3..2]);
prechk[2] = cntzero & !rdB & (ad[5..4] != ad_save[5..4]);
prechk[3] = cntzero & !rdB & (ad[7..6] != ad_save[7..6]);
prechk[4] = cntzero & !rdB & (ad[9..8] != ad_save[9..8]);
prechk[5] = cntzero & !rdB & (ad[11..10] != ad_save[11..10]);
prechk[6] = cntzero & !rdB & (ad[13..12] != ad_save[13..12]);
prechk[7] = cntzero & !rdB & (ad[15..14] != ad_save[15..14]);
invert.clk = clock;
invert.clrn = swt[1];
if (!swt[2]) then
case swt[6..5] is
WHEN 0 => invert = adr[1]; % checkerboard %
WHEN 1 => invert = !adr[1]; % checkerboard bar %
WHEN 2 => invert = gnd; % address (32 bits) %
WHEN 3 => invert = vcc; % address bar (32 bits) %
end case;
elsif (top_adr & adrinc & r_w) then invert = !invert;
else invert = invert;
end if;
aleh.clk = clock;
aleh.prn = swt[1];
aleh.ena = cntzero;
!aleh = alel # (!aleh & !pbreak);
alel.clk = clock;
alel.clrn = swt[1];
alel.ena = cntzero;
alel = aleh & (!hold_idle # alel);
rdB.clk = clock;
rdB.prn = swt[1];
rdB.ena = cntzero;
!rdB = !alel & !aleh & rdB & r_w & !pbreak;
wrB.clk = clock;
wrB.prn = swt[1];
wrB.ena = cntzero;
!wrB = !alel & !aleh & wrB & !r_w & !pbreak;
% downcounter to provide delays for each state %
count[].clk = clock;
count[].prn = swt[1];
if (!cntzero) then count[] = count[] - 1;
elsif (aleh & !alel & hold_idle) then count[] = 0;
else count[] = nextcnt[];
end if;
nextcnt[].clk = clock;
if (aleh) then nextcnt[] = CNT_ADR;
elsif (!aleh & alel) then nextcnt[] = CNT_LWAIT;
elsif (cycleend) then nextcnt[] = CNT_IDLE;
elsif (pbreak) then nextcnt[] = CNT_PGBRK;
elsif (rdB & wrB) then nextcnt[] = CNT_RD_WR;
else nextcnt[] = CNT_RELWIDTH;
end if;
% select for count == 0 %
cntzero.clk = clock;
cntzero = ((count[] == 0) & hold_idle & aleh & !alel) # (count[] == 1);
pgcnt[].clk = clock;
pgcnt[].clrn = swt[1];
pgcnt[].ena = adrinc & pagebreak;
pgcnt[] = pgcnt[] + 1;
adrinc.clk = clock;
adrinc = (count[] == 1) & (!rdB # !wrB);
adr[].clk = clock;
adr[].clrn = swt[1];
adr[].ena = adrinc;
if (swt[2] & !swt[3]) then
adr[22..1] = adr[22..1] + 1;
adr[23] = gnd;
else
adr[] = adr[] + 1;
end if;
dataoe.clk = clock;
dataoe = alel # !wrB;
ad[].oe = dataoe;
ad[] = ad_int[];
ad_int[].clk = clock;
if (aleh) then ad_int[] = adr_out[31..16];
elsif (!aleh & alel) then ad_int[] = adr_out[15..0];
elsif (invert) then ad_int[] = !ad_mux[];
else ad_int[] = ad_mux[];
end if;
ad_save[].clk = clock;
if (aleh) then ad_save[] = adr_out[31..16];
elsif (!aleh & alel) then ad_save[] = adr_out[15..0];
elsif (invert) then ad_save[] = !ad_mux[];
else ad_save[] = ad_mux[];
end if;
if (!swt[2] & !swt[6]) then ad_mux[] = H"aaaa";
elsif (!adr[1]) then ad_mux[] = adr_out[31..16];
else ad_mux[15..2] = adr_out[15..2];
ad_mux[1..0] = 0;
end if;
end;