ewctr.v
14.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
/**************************************************************************
* *
* Copyright (C) 1994, Silicon Graphics, Inc. *
* *
* These coded instructions, statements, and computer programs contain *
* unpublished proprietary information of Silicon Graphics, Inc., and *
* are protected by Federal copyright law. They may not be disclosed *
* to third parties or copied or duplicated in any form, in whole or *
* in part, without the prior written consent of Silicon Graphics, Inc. *
* *
*************************************************************************/
// $Id: ewctr.v,v 1.4 2003/01/24 23:07:36 berndt Exp $
/////////////////////////////////////////////////////////////////////////
//
// Project Reality
//
// module: ewctr
// description: control module for edge walker
//
// designer: Mike M. Cai 5/11/94
//
/////////////////////////////////////////////////////////////////////////
module ewctr( // outputs
prim_busy,
ew_cv_newspan, ew_ms_length,
ew_ep_startspan,
ld_xmh, ld_dxmdy, ld_dxhdy, ld_dxldy,
switch_xl, ld_y, count_y, shift_xval,
sel_xval,
ld_xmajor,
clear_allxgemax, // clear_allxlessmin is same as clear_allxgemax
clear_xminor,
ld_a,
ra_addr, rb_addr,
wa_addr, wde_addr, wen_a, wen_de,
add_clear, add32b,
shuffle, noshuffle,
sel_dydx,
ld_x_frac,
ew_stall_attr, ew_stall_x,
start_mult, addr_newspan,
cmp_cross_valid,
// inputs
x_major, x_sc_max, x_sc_min,
allxlmin, allxgemax,
end_prim_y, equal_ym, allx_invalid,
left_xmajor, left_xminor,
sign_dxhdy, //sign_dxmdy, sign_dxldy,
cs_ew_newprim,
load_cmd, load_cmd_scissor,
load_cmd_tlut,
cycle_type, texel_size, pixel_size,
sc_field, odd_line, y_cur_lsb, flush,
reset_l, clk, start_gclk);
// outputs
output prim_busy;
output ew_cv_newspan;
output [11:0] ew_ms_length;
output ew_ep_startspan;
output ld_xmh, ld_dxmdy, ld_dxhdy, ld_dxldy;
output switch_xl, ld_y, count_y, shift_xval;
output sel_xval;
output ld_xmajor ;
output clear_allxgemax;
output clear_xminor;
output ld_a;
output [3:0] ra_addr, rb_addr;
output [3:0] wa_addr, wde_addr;
output wen_a, wen_de;
output add_clear, add32b;
output shuffle, noshuffle;
output [3:0] sel_dydx;
output ld_x_frac;
output ew_stall_attr, ew_stall_x;
output start_mult, addr_newspan;
output cmp_cross_valid;
// inputs
input [11:0] x_major;
input [11:0] x_sc_max, x_sc_min;
input allxlmin, allxgemax;
input end_prim_y, equal_ym, allx_invalid;
input left_xmajor, left_xminor;
input sign_dxhdy; // sign_dxmdy, sign_dxldy;
input cs_ew_newprim;
input load_cmd, load_cmd_scissor;
input load_cmd_tlut;
input [1:0] cycle_type, texel_size, pixel_size;
input sc_field, odd_line, y_cur_lsb, flush;
input reset_l, clk, start_gclk;
// state machine signals
reg [4:0] cnt_prim;
reg rst_cntx, rst_cntattr;
reg [3:0] nxt_cntx, nxt_cntattr;
reg [3:0] cnt_span_x, cnt_span_attr;
wire prim_busy;
reg span_valid_x;
// general control signals
wire span_valid;
reg ew_cv_newspan;
reg ew_ep_startspan_m, ew_ep_startspan;
// control signals for x's
wire ld_xmh, ld_dxmdy, ld_dxhdy, ld_dxldy;
wire switch_xl;
wire end_x;
// control signals for y's
wire ld_y, count_y, shift_xval;
reg sel_xval;
wire end_prim; // cancel_span_y;
// control signals for scissoring logic
wire ld_xmajor, clear_allxgemax;
reg clear_xminor;
// control signals for attributes
wire [3:0] ra_addr, rb_addr;
reg [3:0] wa_addr_m, wa_addr_s;
wire [3:0] wa_addr;
wire ld_a;
reg add_clear, add32b;
reg shuffle_m, shuffle, noshuffle_m, noshuffle;
reg [3:0] sel_dydx_m, sel_dydx_mm, sel_dydx_mmm, sel_dydx;
reg ld_x_frac_m,ld_x_frac_mm;
reg ld_x_frac_mmm, ld_x_frac;
wire ew_stall_attrb;
reg ew_stall_attr;
reg ew_stall_attr0d, ew_stall_attr2d,
ew_stall_attr3d, ew_stall_attr4d, ew_stall_attr5d,
ew_stall_attr6d, ew_stall_attr7d, ew_stall_attr8d;
wire [3:0] wde_addr;
wire wen_de, wen_a;
// signals for generating ew_stall_x
reg get_new_stall;
wire get_ew_stall;
reg [11:0] larger_x, smaller_x, num_pixel;
reg [2:0] num_shift;
reg [3:0] comp_value;
reg [12:0] num_cycles_new, num_cycles;
reg ew_stall_x;
wire ew_stall_xb;
reg [12:0] stall_decr, cnt_stall;
reg [11:0] ew_ms_length;
reg sc_field_s, odd_line_s;
// for address generation
wire start_mult, addr_newspan;
reg end_ew;
reg span_valid_s;
reg [1:0] end_prim_state;
reg span_valid_x_s;
wire cmp_cross_valid;
// State machines including three counters others
always @(posedge clk)
if (reset_l == 1'b0)
begin
cnt_prim <= 5'h0;
cnt_span_x <= 4'h0;
cnt_span_attr <= 4'h0;
// ew_busy <= 1'h0;
span_valid_x <= 1'h0;
end_ew <= 1'h0;
span_valid_s <= 1'h0;
// span_valid_attr <= 1'h0;
end
else if (start_gclk)
begin
if ( cs_ew_newprim & (cnt_prim == 5'h16))
cnt_prim <= 5'h1;
else
cnt_prim <= (~cs_ew_newprim) ? 5'h0 : // cs_ew_newprim is one cycle
(cnt_prim + cs_ew_newprim); // earlier than cs_ew_data
rst_cntx = (cnt_span_x == 4'h8) | (cnt_prim == 5'h4);
nxt_cntx = cnt_span_x + (ew_stall_xb);
cnt_span_x <= rst_cntx ? 4'h0 : nxt_cntx;
rst_cntattr = (cnt_span_attr == 4'h8) | (cnt_prim == 5'hd);
nxt_cntattr = cnt_span_attr + (ew_stall_attrb);
cnt_span_attr <= rst_cntattr ? 4'h0 : nxt_cntattr;
// ew_busy <= (cs_ew_newprim & ~(cnt_prim == 5'h15) & ~(cnt_prim == 5'h14))|
// (ew_busy & ~(end_prim_y & (cnt_span_x == 4'h6)));
end_ew <= end_prim_y & (cnt_span_x == 4'h8);
span_valid_x <= (cnt_prim == 5'h4) | (span_valid_x &
~(end_prim));
// span_valid_attr <= (cnt_prim == 5'hd) | (span_valid_attr &
// ~(end_prim));
span_valid_s <= span_valid;
end
always @(posedge clk)
if (start_gclk) begin
span_valid_x_s <= span_valid_x;
sc_field_s <= (cnt_prim == 5'hc) ? sc_field : sc_field_s;
odd_line_s <= (cnt_prim == 5'hc) ? odd_line : odd_line_s;
end
// control signals for detecting edge crossing
assign cmp_cross_valid = ~cnt_span_x[0] & ~cnt_span_x[3];
// Control signals for generating pixel addresses
assign start_mult = cnt_prim == 5'h2;
assign addr_newspan = (cnt_span_x == 4'h8) ;
// General control
assign span_valid =
span_valid_x & ~allx_invalid & ~allxlmin
& ~allxgemax & ~flush &
(~sc_field_s | load_cmd_scissor |
(sc_field_s & ~(y_cur_lsb ^ odd_line_s)));
always @(posedge clk)
if (start_gclk) begin
ew_cv_newspan <= (cnt_span_x == 4'h8) & span_valid;
ew_ep_startspan_m <= ew_cv_newspan;
ew_ep_startspan <= ew_ep_startspan_m;
end
// control for x's
assign ld_xmh = (cnt_prim == 5'h3) | (cnt_prim == 5'h4);
assign ld_dxmdy = (~(cnt_span_x == 4'h7) & ~ew_stall_x) | ld_xmh;
assign ld_dxhdy = ld_dxmdy;
assign ld_dxldy = cnt_prim == 5'h2;
assign switch_xl = (equal_ym & ~cnt_span_x[0] & ~cnt_span_x[3]) & ~ld_xmh;
assign end_x = cnt_span_x == 4'h8;
// control for y's
assign ld_y = cnt_prim == 5'h1;
assign count_y = ((cnt_span_x == 4'h1) | (cnt_span_x == 4'h3) |
(cnt_span_x == 4'h5) | (cnt_span_x == 4'h8) ) &
~( (cnt_prim == 5'h1) | (cnt_prim == 5'h2) |
(cnt_prim == 5'h3) | (cnt_prim == 5'h4)) &
~ew_stall_x & span_valid_x;
assign shift_xval = cnt_span_x[0];
assign end_prim = end_prim_y & end_x;
// Scissoring logic
assign ld_xmajor = (left_xmajor ^ sign_dxhdy) ?
(cnt_span_x == 4'h0) : (cnt_span_x == 4'h6);
// assign clear_allxlmin = cnt_span_x == 4'h0;
assign clear_allxgemax = cnt_span_x == 4'h0;
always @(posedge clk)
if (start_gclk) begin
clear_xminor <= ew_stall_x ? clear_xminor :
(cnt_span_x == 4'h0);
end
// ew attribute control
assign ra_addr = cnt_span_attr[3:0];
assign rb_addr = cnt_span_attr[3:0];
always @(posedge clk)
if (reset_l == 1'b0)
begin
ew_stall_attr0d <= 1'h0;
ew_stall_attr2d <= 1'h0;
ew_stall_attr3d <= 1'h0;
ew_stall_attr4d <= 1'h0;
ew_stall_attr5d <= 1'h0;
ew_stall_attr6d <= 1'h0;
ew_stall_attr7d <= 1'h0;
ew_stall_attr8d <= 1'h0;
ew_stall_attr <= 1'h0;
sel_xval <= 1'h0;
end
else if (start_gclk) begin
sel_xval <= cnt_span_x[3];
ew_stall_attr0d <= ew_stall_x;
ew_stall_attr2d <= ew_stall_attr0d;
ew_stall_attr3d <= ew_stall_attr2d;
ew_stall_attr4d <= ew_stall_attr3d;
ew_stall_attr5d <= ew_stall_attr4d;
ew_stall_attr6d <= ew_stall_attr5d;
ew_stall_attr7d <= ew_stall_attr6d;
ew_stall_attr8d <= ew_stall_attr7d;
ew_stall_attr <= ew_stall_attr8d;
end
always @(posedge clk)
if (start_gclk) begin
wa_addr_m <= ew_stall_attr ? wa_addr_m :cnt_span_attr;
wa_addr_s <= ew_stall_attr ? wa_addr_s :wa_addr_m;
add_clear <= ew_stall_attr ? add_clear :
(~cnt_span_attr[0]);
add32b <= ew_stall_attr ? add32b : cnt_span_attr[3];
shuffle_m <= ew_stall_attr ? shuffle_m : cnt_span_attr[0];
shuffle <= shuffle_m;
noshuffle_m <= ew_stall_attr ? noshuffle_m : cnt_span_attr[3];
noshuffle <= noshuffle_m;
sel_dydx_m <= ew_stall_attr ? sel_dydx_m : cnt_span_attr;
sel_dydx_mm <= sel_dydx_m ;
sel_dydx_mmm <= sel_dydx_mm;
sel_dydx <= sel_dydx_mmm;
ld_x_frac_m <= cnt_span_x == 4'h8;
ld_x_frac_mm <= ld_x_frac_m;
ld_x_frac_mmm <= ld_x_frac_mm;
ld_x_frac <= ld_x_frac_mmm;
end
assign ew_stall_attrb = ~ew_stall_attr;
/*
assign ld_a = (cnt_prim[3] & ~cnt_prim[1]) |
(cnt_prim[3] & ~cnt_prim[2]) |
(cnt_prim[2] & ~cnt_prim[1] & cnt_prim[0]) |
(~cnt_prim[3] & cnt_prim[2] & cnt_prim[1]);
*/
assign ld_a = (cnt_prim == 5'h5) | (cnt_prim == 5'h6) |
(cnt_prim == 5'h7) | (cnt_prim == 5'h8) |
(cnt_prim == 5'h9) | (cnt_prim == 5'ha) |
(cnt_prim == 5'hb) | (cnt_prim == 5'hc) |
(cnt_prim == 5'hd);
assign wa_addr = ld_a ? (cnt_prim - 5'h5) : wa_addr_s;
assign wde_addr = cnt_prim - 5'he;
assign wen_de = (cnt_prim == 5'he) | (cnt_prim == 5'hf) |
(cnt_prim == 5'h10) | (cnt_prim == 5'h11) |
(cnt_prim == 5'h12) | (cnt_prim == 5'h13) |
(cnt_prim == 5'h14) | (cnt_prim == 5'h15) |
(cnt_prim == 5'h16);
/* assign wen_a = ~((cnt_prim == 5'he) | (cnt_prim == 5'hf)) &
(~ew_stall_attr | cs_ew_newprim); */
assign wen_a = ~((cnt_prim == 5'he) | (cnt_prim == 5'hf)) &
(~ew_stall_attr);
// assign sel_dx = sel_y;
// ew stall logic
always @ (posedge clk)
if (start_gclk) begin
get_new_stall <= cnt_span_x[3] & span_valid;
end
assign get_ew_stall = get_new_stall | ew_stall_x;
always @ (posedge clk)
if ( reset_l == 1'b0)
begin
ew_stall_x <= 1'h0;
cnt_stall <= 13'h0;
end_prim_state <= 2'h0;
ew_ms_length <= 12'h0;
end
else if (start_gclk)
begin
larger_x = left_xminor ? x_sc_max : x_major;
smaller_x = left_xminor ? x_major : x_sc_min;
num_pixel = larger_x - smaller_x;
ew_ms_length <= num_pixel;
if ( ~load_cmd)
case (cycle_type)
2'h0:
begin
num_shift = 3'h0;
comp_value = 4'h8;
end
2'h1:
begin
num_shift = 3'h1;
comp_value = 4'h6;
end
2'h2:
begin
num_shift = 3'h2;
comp_value = 4'h7;
end
2'h3:
begin
comp_value = 4'h7;
case (pixel_size)
2'h0: num_shift = 3'h4;
2'h1: num_shift = 3'h3;
2'h2: num_shift = 3'h2;
2'h3: num_shift = 3'h1;
endcase
end
endcase
else
begin
if (load_cmd_tlut)
begin
comp_value = 4'h8;
num_shift = 3'b0;
end
else begin
comp_value = 4'h7;
case (texel_size)
2'h0: num_shift = 3'h4;
2'h1: num_shift = 3'h3;
2'h2: num_shift = 3'h2;
2'h3: num_shift = 3'h1;
endcase
end
end
if ( ~load_cmd & (cycle_type == 2'h1))
num_cycles_new = num_pixel << num_shift;
else
num_cycles_new = num_pixel >> num_shift;
num_cycles = get_new_stall ? num_cycles_new : cnt_stall;
ew_stall_x <= get_ew_stall ? (num_cycles > comp_value) : ew_stall_x;
// cnt_stall
stall_decr = get_new_stall ? (num_cycles_new - 1'h1) : (cnt_stall - 1'h1);
if ( ew_stall_x | (get_new_stall & ~(num_cycles == 13'b0)))
cnt_stall <= stall_decr;
else if ( (num_cycles == 13'h0))
cnt_stall <= 13'h0;
else
cnt_stall <= stall_decr;
// cnt_stall <= (ew_stall_x | get_new_stall) ? stall_decr :
// ((cnt_stall <= 13'h0) ? 13'h0 : stall_decr);
case (end_prim_state)
2'h0:
if (cs_ew_newprim)
end_prim_state <= 2'h3;
else
end_prim_state <= 2'h0;
2'h1:
if (cs_ew_newprim)
end_prim_state <= 2'h3;
else
end_prim_state <= 2'h1;
2'h2:
if (cnt_stall == 13'h0)
end_prim_state <= 2'h1;
else
end_prim_state <= 2'h2;
2'h3:
begin
if (cs_ew_newprim & end_ew & span_valid_s & (num_cycles > 13'h8))
end_prim_state <= 2'h2;
else if (cs_ew_newprim)
end_prim_state <= 2'h3;
else if (~span_valid_x_s)
end_prim_state <= 2'h1;
else if (end_ew & span_valid_s & (num_cycles > 13'h0))
end_prim_state <= 2'h2;
else if (end_ew & ~span_valid_s)
end_prim_state <=2'h1;
else if ( end_ew & (num_cycles == 13'h0))
end_prim_state <= 2'h1;
else
end_prim_state <= 2'h3;
end
endcase
end
assign ew_stall_xb = ~ew_stall_x;
assign prim_busy = end_prim_state[1];
endmodule // ewctr