vusb_up_int_bvci.v 151 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
/*******************************************************************************

-- File Type:    Verilog HDL 
-- Tool Version: VHDL2verilog  v4.4 Tue Sep 19 10:06:32 EDT 2000 SunOS 5.5.1 
-- Input file was: vusb_up_int_bvci
-- Date Created: Tue Jul 16 13:59:59 2002

*******************************************************************************/


`timescale 1 ns / 1 ns // timescale for following modules

// ----------------------------------------------------------------------------
//  Copyright 2000 VAutomation Inc. Nashua NH USA. All rights reserved.
//  This software is provided under license and contains proprietary
//  and confidential material which is the property of VAutomation Inc.
//  HTTP://www.vautomation.com
// ----------------------------------------------------------------------------
//  File Name: $Workfile: vusb_up_int_bvci.vhdl$
//  Revision: $Revision: 1.3 $
//  Description:
// 
//  Description:
//   Synthesizable VHDL description implementing the USB Serial Interface
//   Engine (SIE) Micro Processor Interface with a Basic Virtual
//   Component Interface (BVCI).
// 
//   This logic includes:
// 
//        1) the write register block that is accessed through target
//           cycles over the BVCI,
// 
//        2) Interrupt & error control logic for VUSB 1.1 interface,
// 
//        3) VUSB 1.1 Host Control registers
// 
//        4) Status FIFO implementation
// 
//        5) DMA Logic used to transfer data from/to memory accessed through the
//           BVCI Initiator interface and into/from the RX and TX FIFOs
// 
//        6) Read register block, slave accesses through the BVCI Target
//           Interface,
// 
//        7) Control Data Bus assignment. The control data bus interface defines
//        a common interface to the SIE. This allows designers to modify the
//        micro processor interface and still maintain a common known interface
//        interface to the SIE. See the bottom of this file for Control Data Bus
//        Definitions.
// 
// -----------------------------------------------------------------------------
//  This product is licensed to:
//  John Princen of RouteFree
// for use at site(s):
// broadon
// -----------Revision History--------------------------------------------------
//  $Log: 
//   37   VUSB      1.36        7/12/02 12:12:30 PM    Chris Kolb      Updated 
//         1msec count value for 12MHz clock enable.
//   36   VUSB      1.35        7/5/02 2:54:22 PM      Chris Kolb      syntax
//   35   VUSB      1.34        7/5/02 2:21:33 PM      Chris Kolb      Added 
//         LOW_SPEED_DEVICE constant to dp and dm pull-up equations.
//   34   VUSB      1.33        7/5/02 9:18:36 AM      Chris Kolb      Moved 
//         VUSB build configruation Revision constant to vusb_cfg, and updated 
//         the rev number to 3.0
//   33   VUSB      1.32        7/3/02 4:30:07 PM      Will Sanborn    Linestate
//          interrupt needed to be on bit 5, not bit 6. Also fixed 1ms interrupt
//          to be 1 ms (from shorter durration originally used for testing)
//   32   VUSB      1.31        6/27/02 6:04:03 PM     Will Sanborn    Doc 
//         Change Only: replacing "synopsysTM" in comments with "_synopsysTMTM" to 
//         prevent error with compiler interpreting those comments as pragmas.
//   31   VUSB      1.30        6/25/02 2:33:16 PM     Chris Kolb      Added 
//         Linestate stable status bit and linestate interrupt indication to the
//          OTG registers.
//   30   VUSB      1.29        6/7/02 3:12:29 PM      Tom Frechette   Added 
//         fifo flush signal to dma_wrt/rd_en signals so they reset when the 
//         rest of the system does.
//   29   VUSB      1.28        5/13/02 3:16:12 PM     Will Sanborn    Changing 
//         Reset structure of OTG processes so they will be translated correctly
//          by ChangeReset script.
//   28   VUSB      1.27        4/12/02 2:38:38 PM     Tom Frechette   First 
//         round of OTG Debug -- working.
//   27   VUSB      1.26        4/12/02 10:43:48 AM    Tom Frechette   Debugging
//          otg
//   26   VUSB      1.25        4/11/02 2:49:12 PM     Patrick Koran   all 
//         checked in from pats pc, week of Starteam upgrade 4.6 to 5.1
//   25   VUSB      1.24        3/19/02 11:10:34 AM    Tom Frechette   Syntax 
//         error on byte count equal.
//   24   VUSB      1.23        3/18/02 10:52:25 AM    Tom Frechette   Updated 
//         revision field.
//   23   VUSB      1.22        3/15/02 2:39:07 PM     Tom Frechette   Added 
//         Interupt info into add_info register.
//   22   VUSB      1.21        2/11/02 1:37:11 PM     Tom Frechette   Fixed 
//         sync resets for changereset script.
//   21   VUSB      1.20        2/7/02 4:40:34 PM      Tom Frechette   Changed 
//         rst_sync to rst.
//   20   VUSB      1.19        2/7/02 4:02:35 PM      Tom Frechette   Fixed 
//         dma_rd_en stuck when bdt is stalled.
//   19   VUSB      1.18        10/31/01 4:38:40 PM    Tom Frechette   Fixed 
//         typo on endpoint10 stall clear.
//   18   VUSB      1.17        10/30/01 11:05:42 AM   Tom Frechette   Removed 
//         un-necessary logic to get rid synthesis warnings.
//   17   VUSB      1.16        10/9/01 4:02:17 PM     Tom Frechette   
//         Registering stat_we to break async loop.
//   16   VUSB      1.15        10/5/01 7:11:59 AM     Tom Frechette   
//         Simplified CMD_NOP state.
//   15   VUSB      1.14        10/4/01 4:55:25 PM     Tom Frechette   Added 
//         BVCI NOP Support
//   14   VUSB      1.13        10/4/01 10:53:39 AM    Tom Frechette   Fixed 
//         data01_pid to update when writing the bdt. Added fifo flush signal to
//          clear out fifo state machines.
//   13   VUSB      1.12        9/6/01 10:25:37 AM     Tom Frechette   Removed 
//         registered version of current_endpoint on odd_bdt selects
//   12   VUSB      1.11        9/5/01 10:34:05 AM     Tom Frechette   
//         Implemented t_reop functionality; fixed current endpoint
//   11   VUSB      1.10        8/24/01 11:54:02 AM    Tom Frechette   Added 
//         byte enables to target writes.
//   10   VUSB      1.9         8/22/01 2:34:27 PM     Tom Frechette   
//         Registering endpoint and out_data01_pid at the beggining of a packet 
//         only if last is finished.
//   9    VUSB      1.8         8/15/01 2:57:31 PM     Tom Frechette   
//   8    VUSB      1.7         8/13/01 11:05:07 AM    Tom Frechette   Fixed rx 
//         flushing on <8 byte packets.
//   7    VUSB      1.6         7/30/01 11:10:20 AM    Tom Frechette   Changed 
//         cmdack to go low when writes start until rspack comes back.
//   6    VUSB      1.5         7/23/01 2:22:01 PM     Tom Frechette   Fixed ID 
//         regsiter in read mode.
//   5    VUSB      1.4         7/18/01 12:00:33 PM    Tom Frechette   Looking 
//         at empty and full fifo flags instead of the half full.
//   4    VUSB      1.3         7/13/01 11:37:09 AM    Tom Frechette   Added 
//         Peripheral ID Register.
//   3    VUSB      1.2         6/22/01 9:10:00 AM     Tom Frechette   Changed 
//         name of config package
//   2    VUSB      1.1         6/21/01 10:42:33 AM    Tom Frechette   Changed 
//         name.
//   1    VUSB      1.0         6/21/01 9:25:02 AM     Tom Frechette   
//  $
//  $NoKeywords$
// -----------------------------------------------------------------------------
//  Block Diagram:
// 
//  Processor
//  Interface
//   Signals +--------------------+
//           |vusb_up_int_bvci.vhd|
//   ------->+                    |
//           |                    |
//   <-------+                    | cdb_in
//           |                    +--------->
//   ------->+                    |
//           |                    | cdb_out
//   <-------+                    +<---------
//           |                    |
//   <-------+                    |
//           |                    |
//   ------->+                    |
//           |                    |
//           +--------------------+
// 
//  For timing of the busses, see the BVCI specification.
//  
// ------------------------------------------------------------------------------
// ------------------------------------------------------------------------------
//  Copyright 1995 VAutomation Inc. Nashua NH (603)882-2282 ALL RIGHTS RESERVED.
//  This software is provided under license and contains proprietary and 
//  confidential material which is the property of VAutomation Inc.
// 
//  File: vusb_cfg.vhd	USB Configuration file.
// 
//  Revision: $Revision: 1.3 $
// 
//  Description: A Package file for the usb core that defines global usb constants
//      that contol how the VUSB core is synthesised.
// 
// ---------------------------------------------------------------------------
//  This product is licensed to:
//  $name$ of $company$
//  for use at site(s): 
//  $site$
// ------------------------------------------------------------------------------
//  Revision History
//  $Log: 
//   32   VUSB      1.31        7/5/02 9:15:50 AM      Chris Kolb      Moved 
//         VUSB build configruation Revision constant to vusb_cfg, and updated 
//         the rev number to 3.0.
//   31   VUSB      1.30        4/11/02 2:49:09 PM     Patrick Koran   all 
//         checked in from pats pc, week of Starteam upgrade 4.6 to 5.1
//   30   VUSB      1.29        3/18/02 10:52:11 AM    Tom Frechette   Changed 
//         IRQ_NUM default to 0x0.
//   29   VUSB      1.28        3/15/02 2:39:08 PM     Tom Frechette   Added 
//         Interupt info into add_info register.
//   28   VUSB      1.27        2/7/02 4:49:00 PM      Tom Frechette   Removed 
//         sync config variable.
//   27   VUSB      1.26        8/23/01 9:48:58 AM     Tom Frechette   
//   26   VUSB      1.25        7/25/01 3:41:35 PM     Tom Frechette   Changed 
//         FIFO Parameter Names.
//   25   VUSB      1.24        7/10/01 3:03:41 PM     Tom Frechette   Moved 
//         HOST comment for verilog.
//   24   VUSB      1.23        7/6/01 7:44:00 AM      Tom Frechette   Added 
//         host comments around host constant to make it look like vusb_sie.
//   23   VUSB      1.22        7/6/01 7:34:33 AM      Tom Frechette   Added 
//         device constant comment for ARC.
//   22   VUSB      1.21        7/3/01 4:42:08 PM      Tom Frechette   Changed 
//         mode to a constant in vusb_cfg.
//   21   VUSB      1.20        6/22/01 3:09:48 PM     Tom Frechette   Changed 
//         endpoint number.
//   20   VUSB      1.19        6/21/01 9:59:56 AM     Tom Frechette   Changed 
//         the name and added fifo constants
//   19   VUSB      1.18        6/21/01 9:51:24 AM     Tom Frechette   
//   18   VUSB      1.17        5/25/01 10:25:08 AM    Monika Leary    Set 
//         synchronous reset constant to '1'
//   17   VUSB      1.16        5/17/01 2:52:48 PM     Monika Leary    Added 
//         USE_SYNC_RESET constant
//   16   VUSB      1.15        12/14/00 8:42:11 AM    Christopher Meyers RCS 
//         Keyword To StarTeam Keyword Translation
//   15   VUSB      1.14        12/13/00 7:58:39 PM    Chris Kolb      Removed 
//         the HOST_WITHOUT_HUB constant. This control is now a Endpt0 control 
//         register bit in up_int.vhd.
//   14   VUSB      1.13        12/13/00 7:58:31 PM    Gregory Recupero Removed 
//         ^M's
//   13   VUSB      1.12        12/13/00 7:58:26 PM    Mark Pettigrew  
//         ulogicified source - no functional changes
//   12   VUSB      1.11        12/13/00 7:58:19 PM    Chris Kolb      Change 
//         type of HOST_WITHOUT_HUB from std_logic to integer so that it could 
//         be used to initialize a _synopsysTM(TM) compatible generic.
//   11   VUSB      1.10        12/13/00 7:58:14 PM    Chris Kolb      Set 
//         constant to support Host to Low Speed device thru a hub.
//   10   VUSB      1.9         12/13/00 7:58:07 PM    Chris Kolb      Changed 
//         LOW_SPEED_DEV constant to type integer to support generics.
//   9    VUSB      1.8         12/13/00 7:57:58 PM    Christopher Meyers 
//         removed ASIC_IMPLEMENTATION constant
//   8    VUSB      1.7         12/13/00 7:57:46 PM    Chris Kolb      Remove 
//         ^M's. No functional changes.
//   7    VUSB      1.6         12/13/00 7:57:39 PM    Chris Kolb      Added 
//         HOST_WITHOUT_HUB constant to support new code in the DPLLNRZI.
//   6    VUSB      1.5         12/13/00 7:57:19 PM    Chris Kolb      Turned 
//         host mode back on.
//   5    VUSB      1.4         12/13/00 7:57:12 PM    Chris Kolb      Reverted 
//         to device only implementation.
//   4    VUSB      1.3         12/13/00 7:57:08 PM    Chris Kolb      Added 
//         revision string.
//   3    VUSB      1.2         12/13/00 7:57:03 PM    Chris Kolb      Enabled 
//         implementation of embedded host functions.
//   2    VUSB      1.1         12/13/00 7:56:58 PM    Chris Kolb      Added 
//         IMPLEMENT_EMBEDED_HOST constant.
//   1    VUSB      1.0         12/13/00 7:56:51 PM    Chris Kolb      initial 
//         revision
//  $
// 
// 
// ------------------------------------------------------------------------------
module vusb_up_int_bvci (clk,
   rst,
   rst_a,
   sys_clken12,
   i_cmdack,
   i_rdata,
   i_reop,
   i_rspval,
   i_address,
   i_be,
   i_cmd,
   i_cmdval,
   i_eop,
   i_rspack,
   i_wdata,
   t_address,
   t_be,
   t_cmd,
   t_cmdval,
   t_eop,
   t_rspack,
   t_wdata,
   t_cmdack,
   t_rdata,
   t_reop,
   t_rspval,
   vusb_irq,
   cdb_in,
   cdb_out,
   flush,
   rcv,
   se0,
   host_mode_en,
   low_speed_req,
   host_wo_hub,
   usb_en,
   stat_empty,
   stat_full,
   stat_rdata,
   stat_re,
   stat_we,
   stat_wdata,
   rx_empty,
   rx_rdata,
   rx_re,
   tx_full,
   tx_wdata,
   tx_we,
   usb_id,
   usb_sess_vld,
   usb_a_vbus_vld,
   usb_b_sess_end,
   usb_dp_high,
   usb_dm_high,
   usb_dp_low_n,
   usb_dm_low_n,
   usb_vbus_on,
   usb_vbus_chg,
   usb_vbus_dschg);

 		// file containing translation of VHDL package 'vusb_cfg' 

`include "vusb_cfg.v"
input   clk; //  VUSB synthesis and simulation configuration constants.
//  system clock
input   rst; //  sync reset
input   rst_a; //  async reset
input   sys_clken12; //  12 mhz clock enable on sys slock domain
input   i_cmdack; //  init. command acknowledge
input   [31:0] i_rdata; //  init. read data
input   i_reop; //  init. response end of packet
input   i_rspval; //  init. response valid
output   [31:0] i_address; //  init. address
output   [3:0] i_be; //  init. byte enables
output   [1:0] i_cmd; //  init. command
output   i_cmdval; //  init. command valid
output   i_eop; //  init. end of packet
output   i_rspack; //  init. response acknowledge
output   [31:0] i_wdata; //  init. write data
input   [31:0] t_address; //  target address
input   [3:0] t_be; //  target byte enables
input   [1:0] t_cmd; //  target command
input   t_cmdval; //  target command valid
input   t_eop; //  target end of packet
input   t_rspack; //  target response acknowledge
input   [31:0] t_wdata; //  target write data
output   t_cmdack; //  target command acknowledge
output   [31:0] t_rdata; //  target read data
output   t_reop; //  target response end of packet
output   t_rspval; //  target response valid
output   vusb_irq; 
input   [45:0] cdb_in; //  Control/Data bus in
output   [43:0] cdb_out; //  Control/Data bus out
input   flush; //  fifo flush
input   rcv; //  USB data input
input   se0; //  USB single ended zero
output   host_mode_en; //  embedded host controller enable
output   low_speed_req; //  set USB communication to low speed
output   host_wo_hub; //  set USB communication to low speed
output   usb_en; //  USB pull up enable
input   stat_empty; //  status FIFO empty
input   stat_full; //  status FIFO full
input   [7:0] stat_rdata; 
output   stat_re; //  status FIFO read enable
output   stat_we; //  status FIFO write enable
output   [7:0] stat_wdata; 
input   rx_empty; //  Rx FIFO empty
input   [7:0] rx_rdata; //  Rx FIFO read data
output   rx_re; //  Rx FIFO read enable
input   tx_full; //  Tx FIFO full
output   [7:0] tx_wdata; //  Tx FIFO write data
output   tx_we; //  Tx FIFO write enable
input   usb_id; //  id pin from mini connectors
input   usb_sess_vld; //  session valid
input   usb_a_vbus_vld; //  "A" VBUS valid
input   usb_b_sess_end; //  "B" session end
output   usb_dp_high; //  pull up dplus
output   usb_dm_high; //  pull up dminus
output   usb_dp_low_n; //  pull down dplus
output   usb_dm_low_n; //  pull down dminus
output   usb_vbus_on; //  turn on vbus
output   usb_vbus_chg; //  charge vbus
output   usb_vbus_dschg; 
//  system signals
wire    [31:0] i_address; 
wire    [3:0] i_be; 
wire    [1:0] i_cmd; 
wire    i_cmdval; 
wire    i_eop; 
wire    i_rspack; 
//  BVCI Target Interface
wire    [31:0] i_wdata; 
wire    t_cmdack; 
wire    [31:0] t_rdata; 
wire    t_reop; 
//  usb 1.1 interrupt
wire    t_rspval; 
//  Control/Data bus Interface
wire    vusb_irq; 
wire    [43:0] cdb_out; 
wire    host_mode_en; 
wire    low_speed_req; 
wire    host_wo_hub; 
//  Status FIFO Interface
wire    usb_en; 
wire    stat_re; 
reg     stat_we; 
//  RX FIFO Interface
wire    [7:0] stat_wdata; 
wire    rx_re; 
wire    [7:0] tx_wdata; 
//  OTG signals
wire    tx_we; 
wire    usb_dp_high; 
wire    usb_dm_high; 
wire    usb_dp_low_n; 
wire    usb_dm_low_n; 
wire    usb_vbus_on; 
wire    usb_vbus_chg; 
//  discharge vbus    
wire    usb_vbus_dschg; 
parameter ID_FIELD_ADD = 6'b 000000; //  00
parameter ID_COMP_ADD = 6'b 000001; //  04
parameter REV_ADD = 6'b 000010; //  08
parameter ADD_INFO_ADD = 6'b 000011; //  0C
//  otg
parameter OTG_ISTAT_ADD = 6'b 000100; //  10
parameter OTG_ICTRL_ADD = 6'b 000101; //  14
parameter OTG_STAT_ADD = 6'b 000110; //  18
parameter OTG_CTRL_ADD = 6'b 000111; //  1C
parameter INT_STAT_ADD = 6'b 100000; //  80
parameter INT_ENBL_ADD = 6'b 100001; //  84
parameter ERR_STAT_ADD = 6'b 100010; //  88
parameter ERR_ENBL_ADD = 6'b 100011; //  8C
parameter USB_STAT_ADD = 6'b 100100; //  90
parameter USB_CTRL_ADD = 6'b 100101; //  94
parameter USB_ADDR_ADD = 6'b 100110; //  98
parameter BDT_PAG1_ADD = 6'b 100111; //  9C
parameter FRM_NUML_ADD = 6'b 101000; //  A0
parameter FRM_NUMH_ADD = 6'b 101001; //  A4
parameter HST_TOKN_ADD = 6'b 101010; //  A8
parameter SOF_THLD_ADD = 6'b 101011; //  AC
parameter BDT_PAG2_ADD = 6'b 101100; //  B0
parameter BDT_PAG3_ADD = 6'b 101101; //  B4
parameter NOT_USD0_ADD = 6'b 101110; //  B8
parameter NOT_USD1_ADD = 6'b 101111; //  BC
parameter END_CTL0_ADD = 6'b 110000; //  C0
parameter END_CTL1_ADD = 6'b 110001; //  C4
parameter END_CTL2_ADD = 6'b 110010; //  C8
parameter END_CTL3_ADD = 6'b 110011; //  CC
parameter END_CTL4_ADD = 6'b 110100; //  D0
parameter END_CTL5_ADD = 6'b 110101; //  D4
parameter END_CTL6_ADD = 6'b 110110; //  D8
parameter END_CTL7_ADD = 6'b 110111; //  DC
parameter END_CTL8_ADD = 6'b 111000; //  E0
parameter END_CTL9_ADD = 6'b 111001; //  E4
parameter END_CTLA_ADD = 6'b 111010; //  E8
parameter END_CTLB_ADD = 6'b 111011; //  EC
parameter END_CTLC_ADD = 6'b 111100; //  F0
parameter END_CTLD_ADD = 6'b 111101; //  F4
parameter END_CTLE_ADD = 6'b 111110; //  F8
parameter END_CTLF_ADD = 6'b 111111; //  FC
//  ID Field Defines
parameter ID_FIELD = 8'b 00000100; //  04
parameter COMP_ID = 8'b 11111011; //  fb
//  Additional info field
parameter ADD_INFO_HST = 3'b 001; //  01
parameter ADD_INFO_DEV = 3'b 000; //  00
//  bvci commands
parameter CMD_NOP = 2'b 00; 
parameter CMD_RD = 2'b 01; 
parameter CMD_WR = 2'b 10; 
parameter CMD_LCK = 2'b 11; //  not used
// ---------------------------------------------------------------------------
//  bvci target signals
// ---------------------------------------------------------------------------

// TYPE bvci_target_states:
parameter bvci_target_states_BVCI_T_IDLE = 0;
parameter bvci_target_states_BVCI_T_RD_DATA = 1;
parameter bvci_target_states_BVCI_T_WR_DATA = 2;

reg     [1:0] bvci_target_state_r; 
reg     [1:0] bvci_target_state_nxt; 
reg     t_rspval_nxt; 
reg     t_cmdack_nxt; 
reg     t_reop_nxt; 
reg     [7:0] rd_datao_nxt; 
reg     t_rspval_r; 
reg     t_cmdack_r; 
reg     t_reop_r; 
reg     [7:0] rd_datao_r; 
wire    [5:0] addr_i; //  for address decoding
wire    [7:0] rd_datao; //  placeholder for data
wire    [7:0] rd_data_id; //  placeholder for ids
// ---------------------------------------------------------------------------
//  VUSB Microprocessor Registers
// ---------------------------------------------------------------------------
wire    [7:0] int_stat_rg; //  Interrupt status 
reg     [7:0] int_enb_r; //  Interrupt enable 
wire    [7:0] err_stat_rg; //  Error status 
reg     [7:0] err_enb_r; //  Error enable 
reg     [4:0] ctl_r; //  Control 
wire    [7:0] ctl_rg_out; //  Control 
wire    usb_en_int; //  Control reg bit 0
wire    odd_rst; //  Control reg bit 1
reg     [7:0] usb_addr_r; //  Address 
reg     [7:0] bdt_page1_r; //  BDT page 
reg     [7:0] bdt_page2_r; //  BDT page 
reg     [7:0] bdt_page3_r; //  BDT page
wire    [31:0] bdt_addr; //  bdt address
wire    [31:0] bdt_wrt_data; //  bdt write data
// ---------------------------------------------------------------------------
//  Endpoint Registers
// ---------------------------------------------------------------------------
reg     [4:0] endpt0_r; //  Endpoint ctrl reg0
reg     [4:0] endpt1_r; //  Endpoint ctrl reg1
reg     [4:0] endpt2_r; //  Endpoint ctrl reg2
reg     [4:0] endpt3_r; //  Endpoint ctrl reg3
reg     [4:0] endpt4_r; //  Endpoint ctrl reg4
reg     [4:0] endpt5_r; //  Endpoint ctrl reg5
reg     [4:0] endpt6_r; //  Endpoint ctrl reg6
reg     [4:0] endpt7_r; //  Endpoint ctrl reg7
reg     [4:0] endpt8_r; //  Endpoint ctrl reg8
reg     [4:0] endpt9_r; //  Endpoint ctrl reg9
reg     [4:0] endpt10_r; //  Endpoint ctrl reg10
reg     [4:0] endpt11_r; //  Endpoint ctrl reg11
reg     [4:0] endpt12_r; //  Endpoint ctrl reg12
reg     [4:0] endpt13_r; //  Endpoint ctrl reg13
reg     [4:0] endpt14_r; //  Endpoint ctrl reg14
reg     [4:0] endpt15_r; //  Endpoint ctrl reg15
//  these should disappear if these endpoints aren't used
wire    [4:0] endpt4_reg; 
wire    [4:0] endpt5_reg; 
wire    [4:0] endpt6_reg; 
wire    [4:0] endpt7_reg; 
wire    [4:0] endpt8_reg; 
wire    [4:0] endpt9_reg; 
wire    [4:0] endpt10_reg; 
wire    [4:0] endpt11_reg; 
wire    [4:0] endpt12_reg; 
wire    [4:0] endpt13_reg; 
wire    [4:0] endpt14_reg; 
wire    [4:0] endpt15_reg; 
// ---------------------------------------------------------------------------
//  interrupts and error signals & their clears
// ---------------------------------------------------------------------------
reg     stall_int_r; //  stall register
reg     sleep_r; //  Sleep interrupt
reg     resume_r; //  Resume interrupt
reg     sof_tok_r; //  SOF token interrupt
reg     error_r; //  Error interrupt
reg     usb_rst_r; //  USB reset interrupt
reg     bts_err_r; //  Bit stuff error interrupt
reg     own_err_r; //  Own error interrupt
reg     dma_err_r; //  DMA error interrupt
reg     bto_err_r; //  Bus timeout error interrupt
reg     dfn8_err_r; //  Data field not 8-bits error interrupt
reg     crc5_err_r; //  CRC5 error interrupt
reg     crc16_err_r; //  CRC16 error interrupt
reg     pid_err_r; //  PID error interrupt
reg     stall_int_clr_r; 
reg     sleep_clr_r; 
reg     resume_clr_r; 
reg     tok_dne_clr_r; 
reg     sof_tok_clr_r; 
reg     error_clr_r; 
reg     usb_rst_clr_r; 
reg     bts_err_clr_r; 
reg     own_err_clr_r; 
reg     dma_err_clr_r; 
reg     bto_err_clr_r; 
reg     dfn8_err_clr_r; 
reg     crc16_err_clr_r; 
reg     crc5_err_clr_r; 
reg     pid_err_clr_r; 
// ---------------------------------------------------------------------------
//  other register bits
// ---------------------------------------------------------------------------
//  target mode transmit suspend / host mode token busy dual use signal
reg     txdsuspend_tokbusy_r; //  register
wire    endpt_stall; 
// ---------------------------------------------------------------------------
//  control data bus input signals
// ---------------------------------------------------------------------------
wire    txd_token; 
reg     txd_token_r; 
wire    endpt_stall_clr; 
wire    endpt_stall_set; 
wire    txdsuspend_tokbusy_clr; 
wire    txdsuspend_tokbusy_set; 
wire    out_data01_pid; 
reg     out_data01_pid_r; 
wire    [3:0] bdt_wrt_pid; 
wire    [7:0] frm_numh_rg; 
wire    [7:0] frm_numl_rg; 
wire    [3:0] current_endpt; 
reg     [3:0] current_endpt_r; 
wire    tx_datpkt_proc; 
wire    out_token_proc; 
wire    [3:2] sie_dma_req; 
wire    bts_err_set; 
wire    own_err_set; 
wire    dma_err_set; 
wire    bto_err_set; 
wire    dfn8_err_set; 
wire    crc16_err_set; 
wire    crc5_err_set; 
wire    pid_err_set; 
wire    stall_int_set; 
wire    resume_set; 
wire    sleep_set; 
wire    tok_dne_set; 
wire    sof_tok_set; 
wire    error_set; 
wire    usb_rst_set; 
// ---------------------------------------------------------------------------
//  control data bus outputs
// ---------------------------------------------------------------------------
wire    resume_req; 
wire    byte_count_eq; 
wire    [4:0] endpt_ctl; 
// ---------------------------------------------------------------------------
//  host control signals
// ---------------------------------------------------------------------------
wire    hc_en; //  host enable
wire    [7:0] hc_en_byte; 
wire    host_mode_int; //  host enable
wire    hc_rst_req; //  host reset request
reg     hc_token_ld_r; //  load token reg
reg     [7:0] hc_token_r; 
wire    [7:0] hc_token_rg; 
reg     [7:0] hc_sof_thld_r; //  SOF Threshold 
wire    [7:0] hc_sof_thld_rg; //  gated output
wire    [3:0] hc_token_endpt; 
wire    [3:0] hc_token_pid; 
wire    hc_attach; //  attach / detach register
reg     hc_attach_r; 
wire    hc_attach_set; 
wire    host_wo_hub_int; //  host without hub control
reg     host_wo_hub_r; //  host without hub control
wire    hc_retry_disable; //  host retry disabled to SIE
reg     hc_retry_disable_r; //  host retry disabled to SIE
// ---------------------------------------------------------------------------
//  Buffer Discriptor Table (bdt) signals
// ---------------------------------------------------------------------------
reg     [31:0] dma_addr_r; //  DMA address
wire    own; //  own bit (0 = micro, 1 = SIE)
wire    keep; //  keep control bit 
wire    ninc; //  not increment
reg     bdt_valid_r; 
reg     [3:0] bdt_wrt_pid_r; 
reg     [7:0] bdt_rg0_r; //  BDT register0
reg     [7:0] bdt_rg0_nxt; //  BDT register0
reg     [9:0] byte_cnt_r; //  DMA byte count
reg     [9:0] byte_cnt_nxt; //  DMA byte count
wire    bdt_ld; 
reg     [9:0] byte_cntr_r; 
reg     [2:0] txfr_cntr_r; 
// ---------------------------------------------------------------------------
//  Endpoint odd address bits
// ---------------------------------------------------------------------------
wire    endpt_txd_odd; //  Endpoint in odd address bit
reg     endpt0_txd_odd_r; //  Endpoint0 in odd
reg     endpt1_txd_odd_r; //  Endpoint1 in odd
reg     endpt2_txd_odd_r; //  Endpoint2 in odd
reg     endpt3_txd_odd_r; //  Endpoint3 in odd
reg     endpt4_txd_odd_r; //  Endpoint4 in odd
reg     endpt5_txd_odd_r; //  Endpoint5 in odd
reg     endpt6_txd_odd_r; //  Endpoint6 in odd
reg     endpt7_txd_odd_r; //  Endpoint7 in odd
reg     endpt8_txd_odd_r; //  Endpoint8 in odd
reg     endpt9_txd_odd_r; //  Endpoint9 in odd
reg     endpt10_txd_odd_r; //  Endpoint10 in odd
reg     endpt11_txd_odd_r; //  Endpoint11 in odd
reg     endpt12_txd_odd_r; //  Endpoint12 in odd
reg     endpt13_txd_odd_r; //  Endpoint13 in odd
reg     endpt14_txd_odd_r; //  Endpoint14 in odd
reg     endpt15_txd_odd_r; //  Endpoint15 in odd
wire    endpt_rxd_odd; //  Endpoint out odd address bit
reg     endpt0_rxd_odd_r; //  Endpoint0 out odd
reg     endpt1_rxd_odd_r; //  Endpoint1 out odd
reg     endpt2_rxd_odd_r; //  Endpoint2 out odd
reg     endpt3_rxd_odd_r; //  Endpoint3 out odd
reg     endpt4_rxd_odd_r; //  Endpoint4 out odd
reg     endpt5_rxd_odd_r; //  Endpoint5 out odd
reg     endpt6_rxd_odd_r; //  Endpoint6 out odd
reg     endpt7_rxd_odd_r; //  Endpoint7 out odd
reg     endpt8_rxd_odd_r; //  Endpoint8 out odd
reg     endpt9_rxd_odd_r; //  Endpoint9 out odd
reg     endpt10_rxd_odd_r; //  Endpoint10 out odd
reg     endpt11_rxd_odd_r; //  Endpoint11 out odd
reg     endpt12_rxd_odd_r; //  Endpoint12 out odd
reg     endpt13_rxd_odd_r; //  Endpoint13 out odd
reg     endpt14_rxd_odd_r; //  Endpoint14 out odd
reg     endpt15_rxd_odd_r; //  Endpoint15 out odd
// ---------------------------------------------------------------------------
//  token done state machine signals
// ---------------------------------------------------------------------------

// TYPE tok_dne_states:
parameter tok_dne_states_TOK_DNE_IDLE = 0;
parameter tok_dne_states_TOK_DNE_PEND = 1;
parameter tok_dne_states_TOK_DNE_WAIT = 2;
parameter tok_dne_states_TOK_DNE_FIFO = 3;

reg     [1:0] tok_dne_state_r; 
reg     [1:0] tok_dne_state_nxt; 
reg     tok_dne_r; 
reg     tok_dne_nxt; 
// ---------------------------------------------------------------------------
//  rx fifo state machine signals
// ---------------------------------------------------------------------------

// TYPE rxfifo_states:
parameter rxfifo_states_RXFIFO_IDLE = 0;
parameter rxfifo_states_RXFIFO_READ = 1;
parameter rxfifo_states_RXFIFO_WAIT = 2;
parameter rxfifo_states_RXFIFO_DONE = 3;

reg     [1:0] rx_fifo_state_r; 
reg     [1:0] rx_fifo_state_nxt; 
reg     rx_re_r; 
reg     rx_re_nxt; 
reg     [31:0] rx_tdata_r; 
reg     [31:0] rx_tdata_nxt; 
reg     rx_fifo_flush_r; 
reg     dma_wrt_data_r; 
reg     dma_wrt_data_nxt; 
reg     [3:0] dma_be_r; 
reg     [3:0] dma_be_nxt; 
reg     [1:0] rx_fifo_cntr_r; 
reg     [1:0] rx_fifo_cntr_nxt; 
reg     [1:0] flush_cnt_r; 
reg     [1:0] flush_cnt_nxt; 
// ---------------------------------------------------------------------------
//  tx fifo state machine signals
// ---------------------------------------------------------------------------

// TYPE txfifo_states:
parameter txfifo_states_TXFIFO_IDLE = 0;
parameter txfifo_states_TXFIFO_WAIT = 1;
parameter txfifo_states_TXFIFO_WRT = 2;
parameter txfifo_states_TXFIFO_DONE = 3;

reg     [1:0] tx_fifo_state_r; 
reg     [1:0] tx_fifo_state_nxt; 
reg     dma_rd_data_r; 
reg     dma_rd_data_nxt; 
reg     [1:0] tx_fifo_cntr; 
reg     [1:0] tx_fifo_cntr_nxt; 
reg     [31:0] tx_tdata_r; 
reg     [31:0] tx_tdata_nxt; 
reg     [7:0] tx_wdata_r; 
reg     [7:0] tx_wdata_nxt; 
reg     tx_we_r; 
reg     tx_we_nxt; 
// ---------------------------------------------------------------------------
//  dma state machine signals
// ---------------------------------------------------------------------------

// TYPE bvci_states:
parameter bvci_states_BVCI_IDLE = 0;
parameter bvci_states_BVCI_WR_BDT_ACK = 1;
parameter bvci_states_BVCI_WR_BDT_WAIT_RSP = 2;
parameter bvci_states_RD_BDT_WAIT_CMDACK1_D1 = 3;
parameter bvci_states_RD_BDT_WAIT_CMDACK2_D2 = 4;
parameter bvci_states_RD_BDT_WAIT_CMDACK1 = 5;
parameter bvci_states_RD_BDT_WAIT_CMD = 6;
parameter bvci_states_RD_BDT_WAIT_CMDACK2 = 7;
parameter bvci_states_RD_BDT_WAIT_DATA1 = 8;
parameter bvci_states_RD_BDT_WAIT_DATA2 = 9;
parameter bvci_states_RD_BDT_WAIT_DATA1_2 = 10;
parameter bvci_states_BVCI_RD_DATA_ACK = 11;
parameter bvci_states_BVCI_RD_DATA = 12;
parameter bvci_states_BVCI_RD_CMD_ACK = 13;
parameter bvci_states_BVCI_WR_DATA_ACK = 14;
parameter bvci_states_BVCI_WR_DATA = 15;
parameter bvci_states_BVCI_WR_DATA_WAIT_RSP = 16;
parameter bvci_states_BVCI_DMA_TXFR = 17;
parameter bvci_states_BVCI_DMA_DONE = 18;

reg     [4:0] bvci_state_r; 
reg     [4:0] bvci_state_nxt; 
wire    dma_overrun; 
reg     dma_req_clr_r; 
reg     dma_req_clr_nxt; 
reg     wrt_bdt_clr_r; 
reg     wrt_bdt_clr_nxt; 
reg     rd_bdt_clr_r; 
reg     rd_bdt_clr_nxt; 
wire    odd_bdt; 
reg     odd_bdt_r; 
reg     dma_rd_en_r; 
reg     dma_wrt_en_r; 
reg     dma_rd_bdt_r; 
reg     dma_wrt_bdt_r; 
reg     dma_wrt_bdt_lat_r; 
reg     end_cycle_r; 
wire    byte_cnt_inc; 
// ---------------------------------------------------------------------------
//  bvci initiator signals
// ---------------------------------------------------------------------------
reg     [31:0] i_addr_r; 
reg     [3:0] i_be_r; 
reg     [1:0] i_cmd_r; 
reg     i_cmdval_r; 
reg     i_eop_r; 
reg     [31:0] i_wdata_r; 
reg     [31:0] i_addr_nxt; 
reg     [3:0] i_be_nxt; 
reg     [1:0] i_cmd_nxt; 
reg     i_cmdval_nxt; 
reg     i_eop_nxt; 
reg     [31:0] i_wdata_nxt; 
// ---------------------------------------------------------------------------
//  additional info reg
// ---------------------------------------------------------------------------
wire    [7:0] add_info; 
// ----------------------------------------------------------------------------------------------------------
//  otg signals
// ----------------------------------------------------------------------------------------------------------
wire    [7:0] otg_istat; 
reg     [7:0] otg_ictrl_r; 
wire    [7:0] otg_stat; 
reg     [7:0] otg_ctrl_r; 
//  interrupt enables
wire    usb_id_int_en; 
wire    usb_1msec_int_en; 
wire    usb_linestate_int_en; 
wire    usb_b_sess_end_int_en; 
wire    usb_sess_vld_int_en; 
wire    usb_a_vbus_vld_int_en; 
//  interrupt registers
reg     usb_id_int_r; 
reg     usb_1msec_int_r; 
reg     usb_linestate_int_r; 
reg     usb_b_sess_end_int_r; 
reg     usb_sess_vld_int_r; 
reg     usb_a_vbus_vld_int_r; 
//  interrupt clear signals
reg     usb_id_int_clr_r; 
reg     usb_1msec_int_clr_r; 
reg     usb_linestate_int_clr_r; 
reg     usb_b_sess_end_int_clr_r; 
reg     usb_sess_vld_int_clr_r; 
reg     usb_a_vbus_vld_int_clr_r; 
wire    hc_usb_id_int_clr; 
wire    hc_usb_1msec_int_clr; 
wire    hc_usb_linestate_int_clr; 
wire    hc_usb_b_sess_end_int_clr; 
wire    hc_usb_sess_vld_int_clr; 
wire    hc_usb_a_vbus_vld_int_clr; 
//  combined otg interrupt
wire    otg_int; 
//  sync signals
reg     usb_id_r1; 
reg     usb_id_r2; 
reg     usb_sess_vld_r1; 
reg     usb_sess_vld_r2; 
reg     usb_b_sess_end_r1; 
reg     usb_b_sess_end_r2; 
reg     usb_a_vbus_vld_r1; 
reg     usb_a_vbus_vld_r2; 
wire    hc_usb_id_r2; 
wire    hc_usb_sess_vld_r2; 
wire    hc_usb_b_sess_end_r2; 
wire    hc_usb_a_vbus_vld_r2; 
//  1 msec latch signals
reg     otg_stable_id_r; 
reg     otg_stable_se0_r; 
reg     otg_stable_jstate_r; 
wire    otg_stable_linestate; 
reg     otg_stable_linestate_r; 
reg     otg_stable_sess_vld_r; 
reg     otg_stable_b_sess_end_r; 
reg     otg_stable_a_vbus_vld_r; 
wire    hc_otg_stable_id; 
wire    hc_otg_stable_se0; 
wire    hc_otg_stable_jstate; 
wire    hc_otg_stable_linestate; 
wire    hc_otg_stable_sess_vld; 
wire    hc_otg_stable_b_sess_end; 
wire    hc_otg_stable_a_vbus_vld; 
//  debounce signals
reg     usb_id_deb_r; 
reg     usb_se0_deb_r; 
reg     usb_jstate_deb_r; 
reg     usb_sess_vld_deb_r; 
reg     usb_b_sess_end_deb_r; 
reg     usb_a_vbus_vld_deb_r; 
wire    hc_usb_id_deb; 
wire    hc_usb_se0_deb; 
wire    hc_usb_jstate_deb; 
wire    hc_usb_sess_vld_deb; 
wire    hc_usb_b_sess_end_deb; 
wire    hc_usb_a_vbus_vld_deb; 
//  last value signals
reg     usb_id_last_r; 
reg     usb_se0_last_r; 
reg     usb_jstate_last_r; 
reg     usb_sess_vld_last_r; 
reg     usb_b_sess_end_last_r; 
reg     usb_a_vbus_vld_last_r; 
wire    hc_usb_id_last; 
wire    hc_usb_se0_last; 
wire    hc_usb_jstate_last; 
wire    hc_usb_sess_vld_last; 
wire    hc_usb_b_sess_end_last; 
wire    hc_usb_a_vbus_vld_last; 
wire    lsdev; 
// ----------------------------------------------------------------------------------------------------------
//  1 msec timer signals
// ----------------------------------------------------------------------------------------------------------
parameter ONE_MS_TMR_LD = {2'b 10, 4'b 1110, 4'b 1101, 4'b 1111}; //  2edfh = 12,000
reg     [13:0] usb_1msec_tmr_r; 
reg     usb_1msec_r; 
wire    hc_usb_1msec; 
// ---------------------------------------------------------------------------
//  code begins here
// ---------------------------------------------------------------------------
// -------------------------------------------------------------------------
//  misc stuff
// -------------------------------------------------------------------------

assign usb_en = usb_en_int; 
// -------------------------------------------------------------------------
//  BVCI Target State Machine
// -------------------------------------------------------------------------
always @(t_cmdval or t_cmd or t_rspack or rd_datao or rd_datao_r
 or t_rspval_r or t_reop_r or t_cmdack_r or bvci_target_state_r or t_eop)
   begin : bvci_target_state_nxt_PROC
   rd_datao_nxt <= rd_datao_r;	
   bvci_target_state_nxt <= bvci_target_state_r;	
   t_rspval_nxt <= t_rspval_r;	
   t_cmdack_nxt <= t_cmdack_r;	
   t_reop_nxt <= t_reop_r;	
   case (bvci_target_state_r)
   bvci_target_states_BVCI_T_IDLE:
      begin
      if (t_cmdval == 1'b 1 & (t_cmd == CMD_RD | 
	t_cmd == CMD_NOP))
         begin
         t_cmdack_nxt <= 1'b 0;	
         t_rspval_nxt <= 1'b 1;	
         t_reop_nxt <= t_eop;	
         rd_datao_nxt <= rd_datao;	
         bvci_target_state_nxt <= bvci_target_states_BVCI_T_RD_DATA;	
         end
      else if (t_cmdval == 1'b 1 & t_cmd == CMD_WR )
         begin
         t_cmdack_nxt <= 1'b 0;	
         t_rspval_nxt <= 1'b 1;	
         t_reop_nxt <= t_eop;	
         bvci_target_state_nxt <= bvci_target_states_BVCI_T_WR_DATA;	
         end
      end
//  for a read or nop do a read cycle
   bvci_target_states_BVCI_T_RD_DATA:
      begin
      if (t_rspack == 1'b 1)
         begin
         t_cmdack_nxt <= 1'b 1;	
         t_rspval_nxt <= 1'b 0;	
         t_reop_nxt <= 1'b 0;	
         bvci_target_state_nxt <= bvci_target_states_BVCI_T_IDLE;	
         end
      end
   bvci_target_states_BVCI_T_WR_DATA:
      begin
      if (t_rspack == 1'b 1)
         begin
         t_cmdack_nxt <= 1'b 1;	
         t_rspval_nxt <= 1'b 0;	
         t_reop_nxt <= 1'b 0;	
         bvci_target_state_nxt <= bvci_target_states_BVCI_T_IDLE;	
         end
      end
   default:
      begin
      t_cmdack_nxt <= 1'b 1;	
      t_rspval_nxt <= 1'b 0;	
      t_reop_nxt <= 1'b 0;	
      rd_datao_nxt <= {8{1'b 0}};	
      bvci_target_state_nxt <= bvci_target_states_BVCI_T_IDLE;	
      end
   endcase
   end
// -------------------------------------------------------------------------
//  sync part of state machine
// -------------------------------------------------------------------------
//  assign default values
always @(posedge clk or posedge rst_a)
   begin : bvci_target_state_r_PROC
   if (rst_a == 1'b 1)
      begin
      t_cmdack_r <= 1'b 1;	
      t_rspval_r <= 1'b 0;	
      t_reop_r <= 1'b 0;	
      rd_datao_r <= {8{1'b 0}};	
      bvci_target_state_r <= bvci_target_states_BVCI_T_IDLE;	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         t_cmdack_r <= 1'b 1;	
         t_rspval_r <= 1'b 0;	
         t_reop_r <= 1'b 0;	
         rd_datao_r <= {8{1'b 0}};	
         bvci_target_state_r <= bvci_target_states_BVCI_T_IDLE;	
         end
      else
         begin
         t_cmdack_r <= t_cmdack_nxt;	
         t_rspval_r <= t_rspval_nxt;	
         t_reop_r <= t_reop_nxt;	
         rd_datao_r <= rd_datao_nxt;	
         bvci_target_state_r <= bvci_target_state_nxt;	
         end
      end
   end
//  drive out bvci signals
assign t_reop = t_reop_r; 
assign t_rspval = t_rspval_r; 
assign t_cmdack = t_cmdack_r; 
assign t_rdata = {8'b 00000000, 8'b 00000000, 8'b 00000000, rd_datao_r}; 
//  pick off address bus for decode
assign addr_i = t_address[7:2]; 
// -------------------------------------------------------------------------
//  Implement microprocessor interface registers
// -------------------------------------------------------------------------
//  interrupt enable register
always @(posedge clk or posedge rst_a)
   begin : int_enb_r_PROC
   if (rst_a == 1'b 1)
      begin
      int_enb_r <= {8{1'b 0}};	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         int_enb_r <= {8{1'b 0}};	
         end
      else if (addr_i == INT_ENBL_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1 )
         begin
         int_enb_r <= t_wdata[7:0];	
         end
      end
   end
//  error enable register
always @(posedge clk or posedge rst_a)
   begin : err_enb_r_PROC
   if (rst_a == 1'b 1)
      begin
      err_enb_r <= {8{1'b 0}};	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         err_enb_r <= {8{1'b 0}};	
         end
      else if (addr_i == ERR_ENBL_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1 )
         begin
         err_enb_r <= t_wdata[7:0];	
         end
      end
   end
//  control register
always @(posedge clk or posedge rst_a)
   begin : ctl_r_PROC
   if (rst_a == 1'b 1)
      begin
      ctl_r <= {5{1'b 0}};	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         ctl_r <= {5{1'b 0}};	
         end
      else if (addr_i == USB_CTRL_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1 )
         begin
         ctl_r <= t_wdata[4:0];	
         end
      end
   end
//  this bit is used in device and host mode, in device mode it is set by
//  the sie when a token has been processed, the processor should clear this
//  bit when it's done with the token.
//  in host mode the processor sets this bit by writing data pin 4 in the
//  token register, (hc_token_ld), the sie will clear this bit when he is
//  done with transmitting the token
always @(posedge clk or posedge rst_a)
   begin : txsusp_r_PROC
   if (rst_a == 1'b 1)
      begin
      txdsuspend_tokbusy_r <= 1'b 0;	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         txdsuspend_tokbusy_r <= 1'b 0;	
         end
      else if (addr_i == USB_CTRL_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1 )
         begin
         txdsuspend_tokbusy_r <= t_wdata[5];	
         end
      else if (txdsuspend_tokbusy_clr == 1'b 1 )
         begin
         txdsuspend_tokbusy_r <= 1'b 0;	
         end
      else if (txdsuspend_tokbusy_set == 1'b 1 | hc_token_ld_r == 1'b 1 )
         begin
         txdsuspend_tokbusy_r <= 1'b 1;	
         end
      end
   end
//  address register
always @(posedge clk or posedge rst_a)
   begin : usb_addr_r_PROC
   if (rst_a == 1'b 1)
      begin
      usb_addr_r <= {8{1'b 0}};	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         usb_addr_r <= {8{1'b 0}};	
         end
      else if (addr_i == USB_ADDR_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1 )
         begin
         usb_addr_r <= t_wdata[7:0];	
         end
      end
   end
//  assign bit 7 to low speed signal
assign low_speed_req = usb_addr_r[7]; 
//  bdt page registers
always @(posedge clk or posedge rst_a)
   begin : bdt_page_r_PROC
   if (rst_a == 1'b 1)
      begin
      bdt_page1_r <= {8{1'b 0}};	
      bdt_page2_r <= {8{1'b 0}};	
      bdt_page3_r <= {8{1'b 0}};	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         bdt_page1_r <= {8{1'b 0}};	
         bdt_page2_r <= {8{1'b 0}};	
         bdt_page3_r <= {8{1'b 0}};	
         end
      else
         begin
         if (addr_i == BDT_PAG1_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1)
            begin
            bdt_page1_r <= t_wdata[7:0];	
            end
         if (addr_i == BDT_PAG2_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1)
            begin
            bdt_page2_r <= t_wdata[7:0];	
            end
         if (addr_i == BDT_PAG3_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1)
            begin
            bdt_page3_r <= t_wdata[7:0];	
            end
         end
      end
   end
//  assembly the address for ease of use, take the upper 16 bits which are
//  stored in bdt page regs 3 & 2. The lower 16 bits of the address are bdt
//  page reg 1 bits 7:1 and then the endpoint, direction and odd bits. Each
//  descriptor takes up 8 bytes. Each endpoint takes 4 descriptors; 2 for
//  each direction.
assign bdt_addr = {bdt_page3_r, bdt_page2_r, bdt_page1_r[7:1], current_endpt_r, 
	txd_token_r, odd_bdt_r, 3'b 000}; //  9 bits
//  7 bits
//  assembly the write data for writing the bdt back
//  DATA01=out_data01_pid if out or setup token else it is bdt_rg(6)
assign bdt_wrt_data[31:26] = {6{1'b 0}}; 
assign bdt_wrt_data[25:16] = byte_cntr_r; 
assign bdt_wrt_data[15:8] = {8{1'b 0}}; 
assign bdt_wrt_data[7:0] = {(bdt_rg0_r[7] & bdt_rg0_r[5]), (out_data01_pid_r & ~txd_token_r | 
	bdt_rg0_r[6] & txd_token_r), bdt_wrt_pid_r, 2'b 00}; 
//  endpoint control registers
always @(posedge clk or posedge rst_a)
   begin : endpt_r_PROC
   if (rst_a == 1'b 1)
      begin
      endpt0_r <= {5{1'b 0}};	
      endpt1_r <= {5{1'b 0}};	
      endpt2_r <= {5{1'b 0}};	
      endpt3_r <= {5{1'b 0}};	
      endpt4_r <= {5{1'b 0}};	
      endpt5_r <= {5{1'b 0}};	
      endpt6_r <= {5{1'b 0}};	
      endpt7_r <= {5{1'b 0}};	
      endpt8_r <= {5{1'b 0}};	
      endpt9_r <= {5{1'b 0}};	
      endpt10_r <= {5{1'b 0}};	
      endpt11_r <= {5{1'b 0}};	
      endpt12_r <= {5{1'b 0}};	
      endpt13_r <= {5{1'b 0}};	
      endpt14_r <= {5{1'b 0}};	
      endpt15_r <= {5{1'b 0}};	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         endpt0_r <= {5{1'b 0}};	//  endpoint 0
         endpt1_r <= {5{1'b 0}};	
         endpt2_r <= {5{1'b 0}};	
         endpt3_r <= {5{1'b 0}};	
         endpt4_r <= {5{1'b 0}};	
         endpt5_r <= {5{1'b 0}};	
         endpt6_r <= {5{1'b 0}};	
         endpt7_r <= {5{1'b 0}};	
         endpt8_r <= {5{1'b 0}};	
         endpt9_r <= {5{1'b 0}};	
         endpt10_r <= {5{1'b 0}};	
         endpt11_r <= {5{1'b 0}};	
         endpt12_r <= {5{1'b 0}};	
         endpt13_r <= {5{1'b 0}};	
         endpt14_r <= {5{1'b 0}};	
         endpt15_r <= {5{1'b 0}};	
         end
      else
         begin
         if (addr_i == END_CTL0_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1)
            begin
            endpt0_r <= t_wdata[4:0];	
            end
         else if (current_endpt_r == 4'b 0000 & endpt_stall_set == 1'b 1 )
            begin
            endpt0_r <= {endpt0_r[4:2], 1'b 1, endpt0_r[0]};	
            end
         else if (current_endpt_r == 4'b 0000 & endpt_stall_clr == 1'b 1 )
            begin
            endpt0_r <= {endpt0_r[4:2], 1'b 0, endpt0_r[0]};	
//  endpoint 1
            end
         if (addr_i == END_CTL1_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1)
            begin
            endpt1_r <= t_wdata[4:0];	
            end
         else if (current_endpt_r == 4'b 0001 & endpt_stall_set == 1'b 1 )
            begin
            endpt1_r <= {endpt1_r[4:2], 1'b 1, endpt1_r[0]};	
            end
         else if (current_endpt_r == 4'b 0001 & endpt_stall_clr == 1'b 1 )
            begin
            endpt1_r <= {endpt1_r[4:2], 1'b 0, endpt1_r[0]};	
//  endpoint 2
            end
         if (addr_i == END_CTL2_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1)
            begin
            endpt2_r <= t_wdata[4:0];	
            end
         else if (current_endpt_r == 4'b 0010 & endpt_stall_set == 1'b 1 )
            begin
            endpt2_r <= {endpt2_r[4:2], 1'b 1, endpt2_r[0]};	
            end
         else if (current_endpt_r == 4'b 0010 & endpt_stall_clr == 1'b 1 )
            begin
            endpt2_r <= {endpt2_r[4:2], 1'b 0, endpt2_r[0]};	
//  endpoint 3
            end
         if (addr_i == END_CTL3_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1)
            begin
            endpt3_r <= t_wdata[4:0];	
            end
         else if (current_endpt_r == 4'b 0011 & endpt_stall_set == 1'b 1 )
            begin
            endpt3_r <= {endpt3_r[4:2], 1'b 1, endpt3_r[0]};	
            end
         else if (current_endpt_r == 4'b 0011 & endpt_stall_clr == 1'b 1 )
            begin
            endpt3_r <= {endpt3_r[4:2], 1'b 0, endpt3_r[0]};	
//  endpoint 4
            end
         if (addr_i == END_CTL4_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1)
            begin
            endpt4_r <= t_wdata[4:0];	
            end
         else if (current_endpt_r == 4'b 0100 & endpt_stall_set == 1'b 1 )
            begin
            endpt4_r <= {endpt4_r[4:2], 1'b 1, endpt4_r[0]};	
            end
         else if (current_endpt_r == 4'b 0100 & endpt_stall_clr == 1'b 1 )
            begin
            endpt4_r <= {endpt4_r[4:2], 1'b 0, endpt4_r[0]};	
//  endpoint 5
            end
         if (addr_i == END_CTL5_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1)
            begin
            endpt5_r <= t_wdata[4:0];	
            end
         else if (current_endpt_r == 4'b 0101 & endpt_stall_set == 1'b 1 )
            begin
            endpt5_r <= {endpt5_r[4:2], 1'b 1, endpt5_r[0]};	
            end
         else if (current_endpt_r == 4'b 0101 & endpt_stall_clr == 1'b 1 )
            begin
            endpt5_r <= {endpt5_r[4:2], 1'b 0, endpt5_r[0]};	
//  endpoint 6
            end
         if (addr_i == END_CTL6_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1)
            begin
            endpt6_r <= t_wdata[4:0];	
            end
         else if (current_endpt_r == 4'b 0110 & endpt_stall_set == 1'b 1 )
            begin
            endpt6_r <= {endpt6_r[4:2], 1'b 1, endpt6_r[0]};	
            end
         else if (current_endpt_r == 4'b 0110 & endpt_stall_clr == 1'b 1 )
            begin
            endpt6_r <= {endpt6_r[4:2], 1'b 0, endpt6_r[0]};	
//  endpoint 7
            end
         if (addr_i == END_CTL7_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1)
            begin
            endpt7_r <= t_wdata[4:0];	
            end
         else if (current_endpt_r == 4'b 0111 & endpt_stall_set == 1'b 1 )
            begin
            endpt7_r <= {endpt7_r[4:2], 1'b 1, endpt7_r[0]};	
            end
         else if (current_endpt_r == 4'b 0111 & endpt_stall_clr == 1'b 1 )
            begin
            endpt7_r <= {endpt7_r[4:2], 1'b 0, endpt7_r[0]};	
//  endpoint 8
            end
         if (addr_i == END_CTL8_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1)
            begin
            endpt8_r <= t_wdata[4:0];	
            end
         else if (current_endpt_r == 4'b 1000 & endpt_stall_set == 1'b 1 )
            begin
            endpt8_r <= {endpt8_r[4:2], 1'b 1, endpt8_r[0]};	
            end
         else if (current_endpt_r == 4'b 1000 & endpt_stall_clr == 1'b 1 )
            begin
            endpt8_r <= {endpt8_r[4:2], 1'b 0, endpt8_r[0]};	
//  endpoint 9
            end
         if (addr_i == END_CTL9_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1)
            begin
            endpt9_r <= t_wdata[4:0];	
            end
         else if (current_endpt_r == 4'b 1001 & endpt_stall_set == 1'b 1 )
            begin
            endpt9_r <= {endpt9_r[4:2], 1'b 1, endpt9_r[0]};	
            end
         else if (current_endpt_r == 4'b 1001 & endpt_stall_clr == 1'b 1 )
            begin
            endpt9_r <= {endpt9_r[4:2], 1'b 0, endpt9_r[0]};	
//  endpoint 10
            end
         if (addr_i == END_CTLA_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1)
            begin
            endpt10_r <= t_wdata[4:0];	
            end
         else if (current_endpt_r == 4'b 1010 & endpt_stall_set == 1'b 1 )
            begin
            endpt10_r <= {endpt10_r[4:2], 1'b 1, endpt10_r[0]};	
            end
         else if (current_endpt_r == 4'b 1010 & endpt_stall_clr == 1'b 1 )
            begin
            endpt10_r <= {endpt10_r[4:2], 1'b 0, endpt10_r[0]};	
//  endpoint 11
            end
         if (addr_i == END_CTLB_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1)
            begin
            endpt11_r <= t_wdata[4:0];	
            end
         else if (current_endpt_r == 4'b 1011 & endpt_stall_set == 1'b 1 )
            begin
            endpt11_r <= {endpt11_r[4:2], 1'b 1, endpt11_r[0]};	
            end
         else if (current_endpt_r == 4'b 1011 & endpt_stall_clr == 1'b 1 )
            begin
            endpt11_r <= {endpt11_r[4:2], 1'b 0, endpt11_r[0]};	
//  endpoint 12
            end
         if (addr_i == END_CTLC_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1)
            begin
            endpt12_r <= t_wdata[4:0];	
            end
         else if (current_endpt_r == 4'b 1100 & endpt_stall_set == 1'b 1 )
            begin
            endpt12_r <= {endpt12_r[4:2], 1'b 1, endpt12_r[0]};	
            end
         else if (current_endpt_r == 4'b 1100 & endpt_stall_clr == 1'b 1 )
            begin
            endpt12_r <= {endpt12_r[4:2], 1'b 0, endpt12_r[0]};	
//  endpoint 13
            end
         if (addr_i == END_CTLD_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1)
            begin
            endpt13_r <= t_wdata[4:0];	
            end
         else if (current_endpt_r == 4'b 1101 & endpt_stall_set == 1'b 1 )
            begin
            endpt13_r <= {endpt13_r[4:2], 1'b 1, endpt13_r[0]};	
            end
         else if (current_endpt_r == 4'b 1101 & endpt_stall_clr == 1'b 1 )
            begin
            endpt13_r <= {endpt13_r[4:2], 1'b 0, endpt13_r[0]};	
//  endpoint 14
            end
         if (addr_i == END_CTLE_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1)
            begin
            endpt14_r <= t_wdata[4:0];	
            end
         else if (current_endpt_r == 4'b 1110 & endpt_stall_set == 1'b 1 )
            begin
            endpt14_r <= {endpt14_r[4:2], 1'b 1, endpt14_r[0]};	
            end
         else if (current_endpt_r == 4'b 1110 & endpt_stall_clr == 1'b 1 )
            begin
            endpt14_r <= {endpt14_r[4:2], 1'b 0, endpt14_r[0]};	
//  endpoint 15
            end
         if (addr_i == END_CTLF_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1)
            begin
            endpt15_r <= t_wdata[4:0];	
            end
         else if (current_endpt_r == 4'b 1111 & endpt_stall_set == 1'b 1 )
            begin
            endpt15_r <= {endpt15_r[4:2], 1'b 1, endpt15_r[0]};	
            end
         else if (current_endpt_r == 4'b 1111 & endpt_stall_clr == 1'b 1 )
            begin
            endpt15_r <= {endpt15_r[4:2], 1'b 0, endpt15_r[0]};	
            end
         end
      end
   end
//  get rid of output signals if the endpoints are disabled in config
assign endpt4_reg = EN_EP_CTL_4_7 == 1'b 1 ? endpt4_r : 
	5'b 00000; 
assign endpt5_reg = EN_EP_CTL_4_7 == 1'b 1 ? endpt5_r : 
	5'b 00000; 
assign endpt6_reg = EN_EP_CTL_4_7 == 1'b 1 ? endpt6_r : 
	5'b 00000; 
assign endpt7_reg = EN_EP_CTL_4_7 == 1'b 1 ? endpt7_r : 
	5'b 00000; 
assign endpt8_reg = EN_EP_CTL_8_15 == 1'b 1 ? endpt8_r : 
	5'b 00000; 
assign endpt9_reg = EN_EP_CTL_8_15 == 1'b 1 ? endpt9_r : 
	5'b 00000; 
assign endpt10_reg = EN_EP_CTL_8_15 == 1'b 1 ? endpt10_r : 
	5'b 00000; 
assign endpt11_reg = EN_EP_CTL_8_15 == 1'b 1 ? endpt11_r : 
	5'b 00000; 
assign endpt12_reg = EN_EP_CTL_8_15 == 1'b 1 ? endpt12_r : 
	5'b 00000; 
assign endpt13_reg = EN_EP_CTL_8_15 == 1'b 1 ? endpt13_r : 
	5'b 00000; 
assign endpt14_reg = EN_EP_CTL_8_15 == 1'b 1 ? endpt14_r : 
	5'b 00000; 
assign endpt15_reg = EN_EP_CTL_8_15 == 1'b 1 ? endpt15_r : 
	5'b 00000; 
// -------------------------------------------------------------------------
//  The current endpoint signal is a 16:1 mux that will select the endpoint
//  control register based on the current endpoint info from the sie.
// -------------------------------------------------------------------------
assign endpt_stall = endpt_ctl[1]; 
// -------------------------------------------------------------------------
//  Interrupt Clear Logic -
//  Interrupts are cleared by writing to the interrupt status register. The
//  clear signals are one clock wide.
// -------------------------------------------------------------------------
always @(posedge clk or posedge rst_a)
   begin : int_clr_r_PROC
   if (rst_a == 1'b 1)
      begin
      stall_int_clr_r <= 1'b 0;	
      resume_clr_r <= 1'b 0;	
      sleep_clr_r <= 1'b 0;	
      tok_dne_clr_r <= 1'b 0;	
      sof_tok_clr_r <= 1'b 0;	
      error_clr_r <= 1'b 0;	
      usb_rst_clr_r <= 1'b 0;	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         stall_int_clr_r <= 1'b 0;	
         resume_clr_r <= 1'b 0;	
         sleep_clr_r <= 1'b 0;	
         tok_dne_clr_r <= 1'b 0;	
         sof_tok_clr_r <= 1'b 0;	
         error_clr_r <= 1'b 0;	
         usb_rst_clr_r <= 1'b 0;	
         end
      else if (addr_i == INT_STAT_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1 )
         begin
         stall_int_clr_r <= t_wdata[7];	
         resume_clr_r <= t_wdata[5];	
         sleep_clr_r <= t_wdata[4];	
         tok_dne_clr_r <= t_wdata[3];	
         sof_tok_clr_r <= t_wdata[2];	
         error_clr_r <= t_wdata[1];	
         usb_rst_clr_r <= t_wdata[0];	
         end
      else
         begin
         stall_int_clr_r <= 1'b 0;	
         resume_clr_r <= 1'b 0;	
         sleep_clr_r <= 1'b 0;	
         tok_dne_clr_r <= 1'b 0;	
         sof_tok_clr_r <= 1'b 0;	
         error_clr_r <= 1'b 0;	
         usb_rst_clr_r <= 1'b 0;	
         end
      end
   end
// -------------------------------------------------------------------------
//  Error Clear Logic -
//  Errors are cleared by writing to the error status register. The clear
//  signals are one clock wide.
// -------------------------------------------------------------------------
always @(posedge clk or posedge rst_a)
   begin : err_clr_r_PROC
   if (rst_a == 1'b 1)
      begin
      bts_err_clr_r <= 1'b 0;	
      own_err_clr_r <= 1'b 0;	
      dma_err_clr_r <= 1'b 0;	
      bto_err_clr_r <= 1'b 0;	
      dfn8_err_clr_r <= 1'b 0;	
      crc16_err_clr_r <= 1'b 0;	
      crc5_err_clr_r <= 1'b 0;	
      pid_err_clr_r <= 1'b 0;	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         bts_err_clr_r <= 1'b 0;	
         own_err_clr_r <= 1'b 0;	
         dma_err_clr_r <= 1'b 0;	
         bto_err_clr_r <= 1'b 0;	
         dfn8_err_clr_r <= 1'b 0;	
         crc16_err_clr_r <= 1'b 0;	
         crc5_err_clr_r <= 1'b 0;	
         pid_err_clr_r <= 1'b 0;	
         end
      else if (addr_i == ERR_STAT_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1 )
         begin
         bts_err_clr_r <= t_wdata[7];	
         own_err_clr_r <= t_wdata[6];	
         dma_err_clr_r <= t_wdata[5];	
         bto_err_clr_r <= t_wdata[4];	
         dfn8_err_clr_r <= t_wdata[3];	
         crc16_err_clr_r <= t_wdata[2];	
         crc5_err_clr_r <= t_wdata[1];	
         pid_err_clr_r <= t_wdata[0];	
         end
      else
         begin
         bts_err_clr_r <= 1'b 0;	
         own_err_clr_r <= 1'b 0;	
         dma_err_clr_r <= 1'b 0;	
         bto_err_clr_r <= 1'b 0;	
         dfn8_err_clr_r <= 1'b 0;	
         crc16_err_clr_r <= 1'b 0;	
         crc5_err_clr_r <= 1'b 0;	
         pid_err_clr_r <= 1'b 0;	
         end
      end
   end
// -------------------------------------------------------------------------
//  Interrupt Status Generation Logic -
//  Interrupt conditions are set from SIE inputs and cleared by
//  writing to the interrupt status register.
// -------------------------------------------------------------------------
always @(posedge clk or posedge rst_a)
   begin : intr_PROC
   if (rst_a == 1'b 1)
      begin
      stall_int_r <= 1'b 0;	//  Reset Stall
      resume_r <= 1'b 0;	//  Reset RESUME
      sleep_r <= 1'b 0;	//  Reset SLEEP
      sof_tok_r <= 1'b 0;	//  Reset SOF_TOK
      error_r <= 1'b 0;	//  Reset ERROR
      usb_rst_r <= 1'b 0;	//  Reset USB_RST
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         stall_int_r <= 1'b 0;	//  Reset Stall
         resume_r <= 1'b 0;	//  Reset RESUME
         sleep_r <= 1'b 0;	//  Reset SLEEP
         sof_tok_r <= 1'b 0;	//  Reset SOF_TOK
         error_r <= 1'b 0;	//  Reset ERROR
         usb_rst_r <= 1'b 0;	//  Reset USB_RST
         end
      else
         begin
         if (stall_int_set == 1'b 1)
            begin
            stall_int_r <= 1'b 1;	
            end
         else if (stall_int_clr_r == 1'b 1 )
            begin
            stall_int_r <= 1'b 0;	
            end
         if (resume_set == 1'b 1)
            begin
            resume_r <= 1'b 1;	
            end
//  RESUME interrupt
         else if (resume_clr_r == 1'b 1 )
            begin
            resume_r <= 1'b 0;	
            end
         if (sleep_set == 1'b 1)
            begin
            sleep_r <= 1'b 1;	
            end
//  Implements SLEEP interrupt
         else if (sleep_clr_r == 1'b 1 )
            begin
            sleep_r <= 1'b 0;	
            end
         if (sof_tok_set == 1'b 1)
            begin
            sof_tok_r <= 1'b 1;	
            end
//  SOF_TOK interrupt 
         else if (sof_tok_clr_r == 1'b 1 )
            begin
            sof_tok_r <= 1'b 0;	
            end
         if (error_set == 1'b 1)
            begin
            error_r <= 1'b 1;	
            end
//  ERROR interrupt 
         else if (error_clr_r == 1'b 1 )
            begin
            error_r <= 1'b 0;	
            end
         if (usb_rst_set == 1'b 1)
            begin
            usb_rst_r <= 1'b 1;	
            end
//  USB_RST interrupt 
         else if (usb_rst_clr_r == 1'b 1 )
            begin
            usb_rst_r <= 1'b 0;	
            end
         end
      end
   end
// ----------------------------------------------------------------------------------------------------------
//  otg register implementation
// ----------------------------------------------------------------------------------------------------------
//  interrupt enable register
always @(posedge clk or posedge rst_a)
   begin : otg_ictrl_r_PROC
   if (rst_a == 1'b 1)
      begin
      otg_ictrl_r <= {8{1'b 0}};	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         otg_ictrl_r <= {8{1'b 0}};	
         end
      else if (hc_en == 1'b 1 & addr_i == OTG_ICTRL_ADD & 
	t_cmd == CMD_WR & t_cmdval == 1'b 1 & 
	t_be[0] == 1'b 1 )
         begin
         otg_ictrl_r <= t_wdata[7:0];	
         end
      end
   end
//  unbundle the interrupt control
assign usb_id_int_en = hc_en & otg_ictrl_r[7]; 
assign usb_1msec_int_en = hc_en & otg_ictrl_r[6]; 
assign usb_linestate_int_en = hc_en & otg_ictrl_r[5]; 
assign usb_sess_vld_int_en = hc_en & otg_ictrl_r[3]; 
assign usb_b_sess_end_int_en = hc_en & otg_ictrl_r[2]; 
assign usb_a_vbus_vld_int_en = hc_en & otg_ictrl_r[0]; 
//  control register
always @(posedge clk or posedge rst_a)
   begin : otg_ctrl_r_PROC
   if (rst_a == 1'b 1)
      begin
      otg_ctrl_r <= {8{1'b 0}};	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         otg_ctrl_r[7] <= 1'b 0;	
         otg_ctrl_r[6] <= 1'b 0;	
         otg_ctrl_r[5:0] <= {6{1'b 0}};	
         end
      else
         begin
         if (addr_i == OTG_CTRL_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1)
            begin
            otg_ctrl_r[7] <= t_wdata[7];	
            end
         if (addr_i == OTG_CTRL_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1)
            begin
            otg_ctrl_r[6] <= t_wdata[6];	
            end
         if (hc_en == 1'b 1 & addr_i == OTG_CTRL_ADD & 
	t_cmd == CMD_WR & t_cmdval == 1'b 1 & 
	t_be[0] == 1'b 1)
            begin
            otg_ctrl_r[5:0] <= t_wdata[5:0];	
            end
         end
      end
   end
//  unbundle the control signals these bits are used for device mode as well as
//  host(OTG) in device mode the pull up resistor is controlled by the usb_en
//  bit in the control register.  If bit-2 of the OTG_CTL register is set then the pull
//  up and pull down resistors are controlled by the OTG_CTL register.
assign lsdev = LOW_SPEED_DEV == 1 ? 1'b 1 : 
	1'b 0; 
assign usb_dp_high = usb_en_int & ~otg_ctrl_r[2] & ~lsdev | otg_ctrl_r[7] & 
	otg_ctrl_r[2]; 
assign usb_dm_high = usb_en_int & ~otg_ctrl_r[2] & lsdev | otg_ctrl_r[6] & 
	otg_ctrl_r[2]; 
//  these are just used for host(OTG)
assign usb_dp_low_n = ~(host_mode_int & ~otg_ctrl_r[2] | otg_ctrl_r[5] & otg_ctrl_r[2]); 
assign usb_dm_low_n = ~(host_mode_int & ~otg_ctrl_r[2] | otg_ctrl_r[4] & otg_ctrl_r[2]); 
assign usb_vbus_on = otg_ctrl_r[3]; 
//  bit 2 is the 
assign usb_vbus_chg = otg_ctrl_r[1]; 
assign usb_vbus_dschg = otg_ctrl_r[0]; 
//  assembly the usb status register
assign otg_stat = {hc_usb_id_deb, hc_usb_1msec, hc_otg_stable_linestate, 1'b 0, 
	hc_usb_sess_vld_deb, hc_usb_b_sess_end_deb, 1'b 0, hc_usb_a_vbus_vld_deb} & 
	hc_en_byte; 
// -------------------------------------------------------------------------
//  OTG Interrupt Logic -
//  Interrupts are cleared by writing to the OTG interrupt status register. 
// -------------------------------------------------------------------------
//  clear signals
always @(posedge clk or posedge rst_a)
   begin : otg_int_clr_r_PROC
   if (rst_a == 1'b 1)
      begin
      usb_id_int_clr_r <= 1'b 0;	
      usb_1msec_int_clr_r <= 1'b 0;	
      usb_linestate_int_clr_r <= 1'b 0;	
      usb_b_sess_end_int_clr_r <= 1'b 0;	
      usb_sess_vld_int_clr_r <= 1'b 0;	
      usb_a_vbus_vld_int_clr_r <= 1'b 0;	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         usb_id_int_clr_r <= 1'b 0;	
         usb_1msec_int_clr_r <= 1'b 0;	
         usb_linestate_int_clr_r <= 1'b 0;	
         usb_b_sess_end_int_clr_r <= 1'b 0;	
         usb_sess_vld_int_clr_r <= 1'b 0;	
         usb_a_vbus_vld_int_clr_r <= 1'b 0;	
         end
      else if (hc_en == 1'b 1 & addr_i == OTG_ISTAT_ADD & 
	t_cmd == CMD_WR & t_cmdval == 1'b 1 & 
	t_be[0] == 1'b 1 )
         begin
         usb_id_int_clr_r <= t_wdata[7];	
         usb_1msec_int_clr_r <= t_wdata[6];	
         usb_linestate_int_clr_r <= t_wdata[5];	
         usb_sess_vld_int_clr_r <= t_wdata[3];	
         usb_b_sess_end_int_clr_r <= t_wdata[2];	
         usb_a_vbus_vld_int_clr_r <= t_wdata[0];	
         end
      else
         begin
         usb_id_int_clr_r <= 1'b 0;	
         usb_1msec_int_clr_r <= 1'b 0;	
         usb_linestate_int_clr_r <= 1'b 0;	
         usb_sess_vld_int_clr_r <= 1'b 0;	
         usb_b_sess_end_int_clr_r <= 1'b 0;	
         usb_a_vbus_vld_int_clr_r <= 1'b 0;	
         end
      end
   end

assign hc_usb_id_int_clr = hc_en & usb_id_int_clr_r; 
assign hc_usb_1msec_int_clr = hc_en & usb_1msec_int_clr_r; 
assign hc_usb_linestate_int_clr = hc_en & usb_linestate_int_clr_r; 
assign hc_usb_sess_vld_int_clr = hc_en & usb_sess_vld_int_clr_r; 
assign hc_usb_b_sess_end_int_clr = hc_en & usb_b_sess_end_int_clr_r; 
assign hc_usb_a_vbus_vld_int_clr = hc_en & usb_a_vbus_vld_int_clr_r; 
//  interrupt registers
always @(posedge clk or posedge rst_a)
   begin : otg_int_r_PROC
   if (rst_a == 1'b 1)
      begin
      usb_id_int_r <= 1'b 0;	
      usb_1msec_int_r <= 1'b 0;	
      usb_linestate_int_r <= 1'b 0;	
      usb_b_sess_end_int_r <= 1'b 0;	
      usb_sess_vld_int_r <= 1'b 0;	
      usb_a_vbus_vld_int_r <= 1'b 0;	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         usb_id_int_r <= 1'b 0;	
         usb_1msec_int_r <= 1'b 0;	
         usb_linestate_int_r <= 1'b 0;	
         usb_b_sess_end_int_r <= 1'b 0;	
         usb_sess_vld_int_r <= 1'b 0;	
         usb_a_vbus_vld_int_r <= 1'b 0;	
         end
      else
         begin
         if (hc_usb_id_int_clr == 1'b 1)
            begin
            usb_id_int_r <= 1'b 0;	
            end
         else if ((hc_en & usb_1msec_r & hc_otg_stable_id) == 1'b 1 & 
	hc_usb_id_deb != hc_usb_id_last )
            begin
            usb_id_int_r <= 1'b 1;	
            end
         if (hc_usb_1msec_int_clr == 1'b 1)
            begin
            usb_1msec_int_r <= 1'b 0;	
            end
         else if (hc_en == 1'b 1 & usb_1msec_r == 1'b 1 )
            begin
            usb_1msec_int_r <= 1'b 1;	
            end
         if (hc_usb_linestate_int_clr == 1'b 1)
            begin
            usb_linestate_int_r <= 1'b 0;	
            end
         else if ((hc_en & usb_1msec_r) == 1'b 1 & (hc_otg_stable_se0 == 
	1'b 1 & hc_usb_se0_last != hc_usb_se0_deb | hc_otg_stable_se0 == 
	1'b 1 & hc_otg_stable_jstate == 1'b 1 & (hc_usb_jstate_last != 
	hc_usb_jstate_deb & hc_usb_se0_last == 1'b 0)) )
            begin
            usb_linestate_int_r <= 1'b 1;	//  then interrupt
            end
//  when SE0 is false
         if (hc_usb_b_sess_end_int_clr == 1'b 1)
            begin
            usb_b_sess_end_int_r <= 1'b 0;	
            end
         else if ((hc_en & usb_1msec_r & hc_otg_stable_b_sess_end) == 1'b 1 & 
	hc_usb_b_sess_end_deb != hc_usb_b_sess_end_last )
            begin
            usb_b_sess_end_int_r <= 1'b 1;	
            end
         if (hc_usb_sess_vld_int_clr == 1'b 1)
            begin
            usb_sess_vld_int_r <= 1'b 0;	
            end
         else if ((hc_en & usb_1msec_r & hc_otg_stable_sess_vld) == 1'b 1 & 
	hc_usb_sess_vld_deb != hc_usb_sess_vld_last )
            begin
            usb_sess_vld_int_r <= 1'b 1;	
            end
         if (hc_usb_a_vbus_vld_int_clr == 1'b 1)
            begin
            usb_a_vbus_vld_int_r <= 1'b 0;	
            end
         else if ((hc_en & usb_1msec_r & hc_otg_stable_a_vbus_vld) == 1'b 1 & 
	hc_usb_a_vbus_vld_deb != hc_usb_a_vbus_vld_last )
            begin
            usb_a_vbus_vld_int_r <= 1'b 1;	
            end
         end
      end
   end

assign otg_istat = {usb_id_int_r, usb_1msec_int_r, usb_linestate_int_r, 1'b 0, 
	usb_sess_vld_int_r, usb_b_sess_end_int_r, 1'b 0, usb_a_vbus_vld_int_r} & 
	hc_en_byte; 
//  otg interrupt
assign otg_int = hc_en & (usb_id_int_r & usb_id_int_en | usb_1msec_int_r & 
	usb_1msec_int_en | usb_linestate_int_r & usb_linestate_int_en | usb_b_sess_end_int_r & 
	usb_b_sess_end_int_en | usb_sess_vld_int_r & usb_sess_vld_int_en | usb_a_vbus_vld_int_r & 
	usb_a_vbus_vld_int_en); 
// -------------------------------------------------------------------------
//  token done state machine -
//  keep track of tokens and keep the interrupt set, looking at the fifo
//  empty and latched token sets from sie.        
// -------------------------------------------------------------------------
always @(tok_dne_state_r or bvci_state_r or tok_dne_set or tok_dne_r or tok_dne_clr_r
 or i_cmdack or stat_empty)
   begin : tok_dne_state_nxt_PROC
   tok_dne_state_nxt <= tok_dne_state_r;	
   tok_dne_nxt <= tok_dne_r;	
   case (tok_dne_state_r)
   tok_dne_states_TOK_DNE_IDLE:
      begin
      if (tok_dne_set == 1'b 1)
         begin
         tok_dne_state_nxt <= tok_dne_states_TOK_DNE_PEND;	
         end
      end
   tok_dne_states_TOK_DNE_PEND:
      begin
      if (bvci_state_r == bvci_states_BVCI_WR_BDT_ACK & i_cmdack == 1'b 1)
         begin
         tok_dne_nxt <= 1'b 1;	
         tok_dne_state_nxt <= tok_dne_states_TOK_DNE_WAIT;	
         end
      end
//  finished writing the bdt
   tok_dne_states_TOK_DNE_WAIT:
      begin
      if (tok_dne_clr_r == 1'b 1)
         begin
         tok_dne_nxt <= 1'b 0;	
         tok_dne_state_nxt <= tok_dne_states_TOK_DNE_FIFO;	
         end
      end
//  wait for FIFO to update empty
   tok_dne_states_TOK_DNE_FIFO:
      begin
      if (stat_empty == 1'b 0)
         begin
         tok_dne_nxt <= 1'b 1;	
         tok_dne_state_nxt <= tok_dne_states_TOK_DNE_WAIT;	
         end
      else
         begin
         tok_dne_state_nxt <= tok_dne_states_TOK_DNE_IDLE;	
         end
      end
//  look at the status fifo empty flag if
//  it's not empty, we have more tokens to
//  process
   default:
      begin
      tok_dne_nxt <= 1'b 0;	
      tok_dne_state_nxt <= tok_dne_states_TOK_DNE_IDLE;	
      end
   endcase
   end
//  sync part of state machine
//  set outputs to default states
always @(posedge clk or posedge rst_a)
   begin : tok_dne_state_r_PROC
   if (rst_a == 1'b 1)
      begin
      tok_dne_r <= 1'b 0;	
      tok_dne_state_r <= tok_dne_states_TOK_DNE_IDLE;	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         tok_dne_r <= 1'b 0;	
         tok_dne_state_r <= tok_dne_states_TOK_DNE_IDLE;	
         end
      else
         begin
         tok_dne_r <= tok_dne_nxt;	
         tok_dne_state_r <= tok_dne_state_nxt;	
         end
      end
   end
// -------------------------------------------------------------------------
//  Error Status Generation Logic -
//  Error conditions are set from sie inputs and cleared by
//  writing to the error status register.
// -------------------------------------------------------------------------
always @(posedge clk or posedge rst_a)
   begin : error_r_PROC
   if (rst_a == 1'b 1)
      begin
      bts_err_r <= 1'b 0;	
      own_err_r <= 1'b 0;	
      dma_err_r <= 1'b 0;	
      bto_err_r <= 1'b 0;	
      dfn8_err_r <= 1'b 0;	
      crc16_err_r <= 1'b 0;	
      crc5_err_r <= 1'b 0;	
      pid_err_r <= 1'b 0;	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         bts_err_r <= 1'b 0;	
         own_err_r <= 1'b 0;	
         dma_err_r <= 1'b 0;	
         bto_err_r <= 1'b 0;	
         dfn8_err_r <= 1'b 0;	
         crc16_err_r <= 1'b 0;	
         crc5_err_r <= 1'b 0;	
         pid_err_r <= 1'b 0;	
         end
      else
         begin
         if (bts_err_set == 1'b 1)
            begin
            bts_err_r <= 1'b 1;	
            end
//  bts error
         else if (bts_err_clr_r == 1'b 1 )
            begin
            bts_err_r <= 1'b 0;	
            end
         if (own_err_set == 1'b 1)
            begin
            own_err_r <= 1'b 1;	
            end
//  own error
         else if (own_err_clr_r == 1'b 1 )
            begin
            own_err_r <= 1'b 0;	
            end
         if (dma_err_set == 1'b 1 | dma_overrun == 1'b 1)
            begin
            dma_err_r <= 1'b 1;	
            end
//  DMA timeout error 
         else if (dma_err_clr_r == 1'b 1 )
            begin
            dma_err_r <= 1'b 0;	
            end
         if (bto_err_set == 1'b 1)
            begin
            bto_err_r <= 1'b 1;	
            end
//  Bus timeout error
         else if (bto_err_clr_r == 1'b 1 )
            begin
            bto_err_r <= 1'b 0;	
            end
         if (dfn8_err_set == 1'b 1)
            begin
            dfn8_err_r <= 1'b 1;	
            end
//  Data Field not 8-bits error  
         else if (dfn8_err_clr_r == 1'b 1 )
            begin
            dfn8_err_r <= 1'b 0;	
            end
         if (crc16_err_set == 1'b 1)
            begin
            crc16_err_r <= 1'b 1;	
            end
//  CRC16 error 
         else if (crc16_err_clr_r == 1'b 1 )
            begin
            crc16_err_r <= 1'b 0;	
            end
         if (crc5_err_set == 1'b 1)
            begin
            crc5_err_r <= 1'b 1;	
            end
//  CRC5 error
         else if (crc5_err_clr_r == 1'b 1 )
            begin
            crc5_err_r <= 1'b 0;	
            end
         if (pid_err_set == 1'b 1)
            begin
            pid_err_r <= 1'b 1;	
            end
//  PID error
         else if (pid_err_clr_r == 1'b 1 )
            begin
            pid_err_r <= 1'b 0;	
            end
         end
      end
   end
//  assembly the interrupt and status registers
assign int_stat_rg = {stall_int_r, hc_attach, resume_r, sleep_r, 
	tok_dne_r, sof_tok_r, error_r, usb_rst_r}; 
assign err_stat_rg = {bts_err_r, own_err_r, dma_err_r, bto_err_r, 
	dfn8_err_r, crc16_err_r, crc5_err_r, pid_err_r}; 
//  generate error interrupt on any enabled errors
assign error_set = (err_stat_rg & err_enb_r) != 8'b 00000000 ? 1'b 1 : 
	1'b 0; 
// -------------------------------------------------------------------------
//  Interrupt output
//  This signal is active (high) whenever a bit in the int_stat_rg is set and
//  the corresponding enable bit in the int_enb_r is set.
// -------------------------------------------------------------------------
assign vusb_irq = int_stat_rg[7] & int_enb_r[7] | int_stat_rg[6] & int_enb_r[6] | 
	int_stat_rg[5] & int_enb_r[5] | int_stat_rg[4] & int_enb_r[4] | 
	int_stat_rg[3] & int_enb_r[3] | int_stat_rg[2] & int_enb_r[2] | 
	int_stat_rg[1] & int_enb_r[1] | int_stat_rg[0] & int_enb_r[0] | 
	otg_int; 
// -------------------------------------------------------------------------
//  assemble the control register
// -------------------------------------------------------------------------
assign ctl_rg_out = {rcv, se0, txdsuspend_tokbusy_r, ctl_r}; 
//  assign control register bits to meaningful names
assign hc_rst_req = ctl_r[4]; 
assign host_mode_int = ctl_r[3]; //  internal version of host_mode_en.
assign resume_req = ctl_r[2]; 
assign odd_rst = ctl_r[1]; 
assign usb_en_int = ctl_r[0]; 
// -------------------------------------------------------------------------
//  Host Logic  -
//  This should disappear if the host IMPLEMENT_EMBEDDED_HOST bit
//  is not set. Some of this looks bizarre but was implemented this way so
//  this logic would disappear if it's only a device.
// -------------------------------------------------------------------------
//  enables
assign hc_en = IMPLEMENT_EMBEDED_HOST; // and host_mode_int;  -- host enable
assign hc_en_byte = hc_en == 1'b 1 ? 8'b 11111111 : 
	8'b 00000000; 
assign host_mode_en = host_mode_int; 
// -------------------------------------------------------------------------
//  host register bits
// -------------------------------------------------------------------------
//  when the processor writes bit 4 of the token register, generate the
//  token load signal
always @(posedge clk or posedge rst_a)
   begin : hc_token_ld_r_PROC
   if (rst_a == 1'b 1)
      begin
      hc_token_ld_r <= 1'b 0;	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         hc_token_ld_r <= 1'b 0;	
         end
      else if (addr_i == HST_TOKN_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_wdata[4] == 1'b 1 )
         begin
         hc_token_ld_r <= 1'b 1;	
         end
      else
         begin
         hc_token_ld_r <= 1'b 0;	
         end
      end
   end
//  the sie will generate a attach_set signal to indicate a device is
//  attached.This signal is read in the interrupt status register. The
//  processor clears this signal by writting bit 6 of the interrupt status
//  reg.  
always @(posedge clk or posedge rst_a)
   begin : hc_attach_r_PROC
   if (rst_a == 1'b 1)
      begin
      hc_attach_r <= 1'b 0;	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         hc_attach_r <= 1'b 0;	
         end
      else if (hc_attach_set == 1'b 1 & hc_en == 1'b 1 )
         begin
         hc_attach_r <= 1'b 1;	
         end
      else if (addr_i == INT_STAT_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_wdata[6] == 1'b 1 )
         begin
         hc_attach_r <= 1'b 0;	
         end
      end
   end

assign hc_attach = hc_attach_r & hc_en; 
always @(posedge clk or posedge rst_a)
   begin : host_endpt0_r_PROC
   if (rst_a == 1'b 1)
      begin
      host_wo_hub_r <= 1'b 0;	
      hc_retry_disable_r <= 1'b 0;	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         host_wo_hub_r <= 1'b 0;	
         hc_retry_disable_r <= 1'b 0;	
         end
      else if (addr_i == END_CTL0_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1 )
         begin
         host_wo_hub_r <= t_wdata[7];	
         hc_retry_disable_r <= t_wdata[6];	
         end
      end
   end

assign host_wo_hub_int = host_wo_hub_r & hc_en; 
assign host_wo_hub = host_wo_hub_int; 
assign hc_retry_disable = hc_retry_disable_r & hc_en; 
//  host token register writting to this register loads the token pid and
//  endpoint information
always @(posedge clk or posedge rst_a)
   begin : host_token_r_PROC
   if (rst_a == 1'b 1)
      begin
      hc_token_r <= {8{1'b 0}};	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         hc_token_r <= {8{1'b 0}};	
         end
      else if (addr_i == HST_TOKN_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1 )
         begin
         hc_token_r <= t_wdata[7:0];	
         end
      end
   end

assign hc_token_rg = hc_token_r & hc_en_byte; 
//  pick off the register bits for pid and endpoint
assign hc_token_pid = hc_token_rg[7:4]; 
assign hc_token_endpt = hc_token_rg[3:0]; 
//  host SOF threshold register - loads counter with size of transfers so
//  that sie won't start a token if the sof needs to fire within that time.
always @(posedge clk or posedge rst_a)
   begin : host_sof_PROC
   if (rst_a == 1'b 1)
      begin
      hc_sof_thld_r <= {8{1'b 0}};	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         hc_sof_thld_r <= {8{1'b 0}};	
         end
      else if (addr_i == SOF_THLD_ADD & t_cmd == CMD_WR & 
	t_cmdval == 1'b 1 & t_be[0] == 1'b 1 )
         begin
         hc_sof_thld_r <= t_wdata[7:0];	
         end
      end
   end

assign hc_sof_thld_rg = hc_sof_thld_r & hc_en_byte; 
// -------------------------------------------------------------------------
//  status fifo and logic -
//  when a token done interrupt is set, write the status bits in the fifo
//  unless the fifo is full, the status will be available on the data output
//  pins of the fifo which the processor can read by accessing the status
//  register. When the processor clears the token done interrupt, a read
//  fifo signal is generated which causes the fifo to output the next status
//  if one is present.
// -------------------------------------------------------------------------
//  Status fifo write data
assign stat_wdata = {current_endpt_r, txd_token_r, odd_bdt_r, 2'b 00}; 
//  Status FIFO read enable
assign stat_re = tok_dne_clr_r; 
//  Status FIFO write enable register this to break timing loop
always @(posedge clk or posedge rst_a)
   begin : stat_we_PROC
   if (rst_a == 1'b 1)
      begin
      stat_we <= 1'b 0;	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         stat_we <= 1'b 0;	
         end
      else
         begin
         stat_we <= tok_dne_set & ~stat_full;	
         end
      end
   end
// -------------------------------------------------------------------------
//  dma read & write enable logic -
// 
//  capture dma request signals from sie, keep track if a write request has
//  been issued but hasn't completed. If that is the case ignore the read
//  request and let the sie bus time out that packet.
// -------------------------------------------------------------------------
always @(posedge clk or posedge rst_a)
   begin : dma_en_PROC
   if (rst_a == 1'b 1)
      begin
      dma_rd_en_r <= 1'b 0;	//  read from memory write to tx_fifo
      dma_wrt_en_r <= 1'b 0;	//  write to memory read rx_fifo
      dma_rd_bdt_r <= 1'b 0;	//  read bdt from memory
      dma_wrt_bdt_lat_r <= 1'b 0;	//  write bdt latched
      dma_wrt_bdt_r <= 1'b 0;	//  now write the bdt
      end_cycle_r <= 1'b 0;	//  write bdt hasn't finished
      bdt_valid_r <= 1'b 0;	//  the bdt is valid
      rx_fifo_flush_r <= 1'b 0;	
      bdt_wrt_pid_r <= 4'b 0000;	//  update the pid
      current_endpt_r <= 4'b 0000;	//  current endpoint
      txd_token_r <= 1'b 0;	//  update the txd token
      odd_bdt_r <= 1'b 0;	//  update the odd bdt bit
      out_data01_pid_r <= 1'b 0;	//  out data
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         dma_rd_en_r <= 1'b 0;	
         dma_wrt_en_r <= 1'b 0;	
         dma_rd_bdt_r <= 1'b 0;	
         dma_wrt_bdt_lat_r <= 1'b 0;	
         dma_wrt_bdt_r <= 1'b 0;	
         end_cycle_r <= 1'b 0;	
         bdt_valid_r <= 1'b 0;	
         rx_fifo_flush_r <= 1'b 0;	
         bdt_wrt_pid_r <= 4'b 0000;	
         current_endpt_r <= 4'b 0000;	
         txd_token_r <= 1'b 0;	
         odd_bdt_r <= 1'b 0;	
         out_data01_pid_r <= 1'b 0;	
//  clear the read enable after we write the bdt or
//  we read the bdt and we don't own it or it's stalled or
//  the byte count expires.
         end
      else
         begin
         if (wrt_bdt_clr_r == 1'b 1 | flush == 1'b 1 | 
	bdt_ld == 1'b 1 & (bdt_rg0_r[7] == 1'b 0 | 
	endpt_stall == 1'b 1 | bdt_rg0_r[2] == 1'b 1) | 
	tx_fifo_state_r == txfifo_states_TXFIFO_WRT & byte_count_eq == 1'b 1)
            begin
            dma_rd_en_r <= 1'b 0;	
//  dma read enable set when we request the BDT read for a tx data packet.
            end
         else if (txd_token == 1'b 1 & dma_rd_bdt_r == 1'b 1 & 
	end_cycle_r == 1'b 0 )
            begin
            dma_rd_en_r <= 1'b 1;	
//  DMA write enable set when we request the BDT read for a rx data packet.
//  remains set until the BDT is written back to memory, or the BDT read and
//  own = 0 or stalled.
            end
         if (wrt_bdt_clr_r == 1'b 1 | flush == 1'b 1 | 
	bdt_ld == 1'b 1 & (bdt_rg0_r[7] == 1'b 0 | 
	endpt_stall == 1'b 1 | bdt_rg0_r[2] == 1'b 1))
            begin
            dma_wrt_en_r <= 1'b 0;	
            end
         else if (txd_token == 1'b 0 & dma_rd_bdt_r == 1'b 1 & 
	end_cycle_r == 1'b 0 )
            begin
            dma_wrt_en_r <= 1'b 1;	
//  latch the sie request to read the bdt if the previous write bdt is
//  finished 
            end
         if (rd_bdt_clr_r == 1'b 1)
            begin
            dma_rd_bdt_r <= 1'b 0;	
            end
         else if (sie_dma_req[2] == 1'b 1 & end_cycle_r == 1'b 0 )
            begin
            dma_rd_bdt_r <= 1'b 1;	
//  when sie requests to write the bdt, the transfer is over but if 
//  keep is set we don't bother writing the bdt
            end
         if (wrt_bdt_clr_r == 1'b 1)
            begin
            dma_wrt_bdt_lat_r <= 1'b 0;	
            end
         else if (sie_dma_req[3] == 1'b 1 & keep == 1'b 0 )
            begin
            dma_wrt_bdt_lat_r <= 1'b 1;	
//  request a bdt write
//  for in tokens just do it
//  for out tokens wait til the rx_fifo has been
//  flushed and written to memory
            end
         if (wrt_bdt_clr_r == 1'b 1)
            begin
            dma_wrt_bdt_r <= 1'b 0;	
            end
         else if (dma_wrt_bdt_lat_r == 1'b 1 & txd_token_r == 1'b 1 )
            begin
            dma_wrt_bdt_r <= 1'b 1;	
            end
         else if (dma_wrt_bdt_lat_r == 1'b 1 & rx_empty == 1'b 1 & 
	rx_fifo_state_r == rxfifo_states_RXFIFO_IDLE )
            begin
            dma_wrt_bdt_r <= 1'b 1;	
//  create a signal that tells me that a wrt bdt cycle has started use
//  this to prevent a read bdt from happening until this finished
            end
         if (wrt_bdt_clr_r == 1'b 1)
            begin
            end_cycle_r <= 1'b 0;	
            end
         else if (sie_dma_req[3] == 1'b 1 )
            begin
            end_cycle_r <= 1'b 1;	
//  set bdt valid when the bdt is read clear it on the next request
            end
         if (bdt_ld == 1'b 1)
            begin
            bdt_valid_r <= 1'b 1;	
            end
         else if (dma_rd_bdt_r == 1'b 1 | dma_wrt_bdt_r == 1'b 1 )
            begin
            bdt_valid_r <= 1'b 0;	
//  if the sie requests a write bdt and the rx_fifo_state machine
//  isn't idle, then flush the temp reg
            end
         if (sie_dma_req[3] == 1'b 1 & ~(rx_fifo_state_r == rxfifo_states_RXFIFO_IDLE))
            begin
            rx_fifo_flush_r <= 1'b 1;	
            end
         else if (dma_req_clr_r == 1'b 1 & rx_empty == 1'b 1 )
            begin
            rx_fifo_flush_r <= 1'b 0;	
//  grab the pid at bdt write request
            end
         if (sie_dma_req[3] == 1'b 1)
            begin
            bdt_wrt_pid_r <= bdt_wrt_pid;	
//  update the txd token and odd bits when the sie requests a new bdt
//  but make sure we're finished writing the last bdt
            end
         if (sie_dma_req[2] == 1'b 1 & end_cycle_r == 1'b 0)
            begin
            current_endpt_r <= current_endpt;	
            end
         if (sie_dma_req[2] == 1'b 1 & end_cycle_r == 1'b 0)
            begin
            txd_token_r <= txd_token;	
            end
         if (sie_dma_req[2] == 1'b 1 & end_cycle_r == 1'b 0)
            begin
            odd_bdt_r <= odd_bdt;	
//  update this signal when we get a bdt write request; it's not
//  valid when the bdt read comes along
            end
         if (sie_dma_req[3] == 1'b 1)
            begin
            out_data01_pid_r <= out_data01_pid;	
            end
         end
      end
   end
// -------------------------------------------------------------------------
//  dma counters - byte counter -  transfer counter - dma address -
// -------------------------------------------------------------------------
always @(posedge clk or posedge rst_a)
   begin : byte_cnt_PROC
   if (rst_a == 1'b 1)
      begin
      byte_cntr_r <= {10{1'b 0}};	
      txfr_cntr_r <= {3{1'b 0}};	
      dma_addr_r <= {32{1'b 0}};	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         byte_cntr_r <= {10{1'b 0}};	
         txfr_cntr_r <= {3{1'b 0}};	
         dma_addr_r <= {32{1'b 0}};	
//  the byte counter counts the number of bytes transferred for a
//  packet, it gets cleared when the bdt is loaded and is allowed to
//  count for the number of bytes dma'd
         end
      else
         begin
         if (bdt_ld == 1'b 1)
            begin
            byte_cntr_r <= {10{1'b 0}};	
            end
         else if (byte_cnt_inc == 1'b 1 )
            begin
            byte_cntr_r <= byte_cntr_r + 1'b 1;	
//  the transfer counter is loaded with either the byte enable value
//  for receiving data or the least significant bits of the dma
//  address. While the txfr_cntr_r is not equal to zero the dma
//  address counts. Also if we get a byte_count_equal then terminate
//  the counters
            end
         if (dma_req_clr_r == 1'b 1 & txd_token_r == 1'b 0)
            begin
            case (i_be_r)
            4'b 1111:
               begin
               txfr_cntr_r <= 3'b 100;	//  loads 4
               end
            4'b 1110:
               begin
               txfr_cntr_r <= 3'b 011;	//  loads 3
               end
            4'b 0111:
               begin
               txfr_cntr_r <= 3'b 011;	//  loads 3
               end
            4'b 1100:
               begin
               txfr_cntr_r <= 3'b 010;	//  loads 2
               end
            4'b 0011:
               begin
               txfr_cntr_r <= 3'b 010;	//  loads 2
               end
            default:
               begin
               txfr_cntr_r <= 3'b 001;	//  loads 1
               end
            endcase
            end
         else if (dma_req_clr_r == 1'b 1 & txd_token_r == 1'b 1 )
            begin
            case (dma_addr_r[1:0])
            2'b 00:
               begin
               txfr_cntr_r <= 3'b 100;	//  loads 4
               end
            2'b 01:
               begin
               txfr_cntr_r <= 3'b 011;	//  loads 3
               end
            2'b 10:
               begin
               txfr_cntr_r <= 3'b 010;	//  loads 2
               end
            default:
               begin
               txfr_cntr_r <= 3'b 001;	//  loads 1
               end
            endcase
            end
         else if (txfr_cntr_r == 3'b 000 | byte_count_eq == 1'b 1 )
            begin
            txfr_cntr_r <= 3'b 000;	
            end
         else if (byte_cnt_inc == 1'b 1 )
            begin
            txfr_cntr_r <= txfr_cntr_r - 1'b 1;	
//  the dma address is loaded from the data bus during a bdt read,
//  it is allowed to increment by the number of bytes that were dma'd.
            end
         if (bdt_ld == 1'b 1)
            begin
            dma_addr_r <= i_rdata;	
            end
         else if (byte_cnt_inc == 1'b 1 & ninc == 1'b 0 )
            begin
            dma_addr_r <= dma_addr_r + 1'b 1;	
            end
         end
      end
   end
//  decode some outputs from the counters
//  this one allows the counters to increment
assign byte_cnt_inc = txfr_cntr_r != 3'b 000 & byte_count_eq == 1'b 0 & 
	tx_full == 1'b 0 ? 1'b 1 : 
	1'b 0; 
//  DMA byte count equals saved byte count indicating that we have read/written
//  all data from/to memory.
assign byte_count_eq = byte_cnt_r == byte_cntr_r ? 1'b 1 : 
	1'b 0; 
//  DMA buffer overrun Note the data is not written to memory, bufffer is not overrun,
//  but rather the end of the packet is dropped because there was
//  insufficient buffer space allocated.
assign dma_overrun = byte_cnt_inc & byte_count_eq; 
// -------------------------------------------------------------------------
//  tx fifo state machine -
//  This state machine will wait for the dma_rd_en to be set and the own bit
//  from a new bdt load and then start moving data from memory into the tx
//  fifo. The transfer will end when the byte counter expires or when the
//  read enable goes away.
// -------------------------------------------------------------------------
always @(tx_fifo_state_r or dma_addr_r or dma_req_clr_r or tx_full or tx_we_r
 or tx_fifo_cntr or dma_rd_data_r or tx_wdata_r or own or dma_rd_en_r
 or endpt_stall or byte_count_eq or tx_tdata_r)
   begin : tx_fifo_state_nxt_PROC
   tx_fifo_state_nxt <= tx_fifo_state_r;	
   tx_fifo_cntr_nxt <= tx_fifo_cntr;	
   tx_wdata_nxt <= tx_wdata_r;	
   tx_we_nxt <= tx_we_r;	
   dma_rd_data_nxt <= dma_rd_data_r;	
   case (tx_fifo_state_r)
   txfifo_states_TXFIFO_IDLE:
      begin
      if (dma_rd_en_r == 1'b 1 & own == 1'b 1 & 
	endpt_stall == 1'b 0 & byte_count_eq == 1'b 0 & 
	tx_full == 1'b 0)
         begin
         dma_rd_data_nxt <= 1'b 1;	
         tx_fifo_cntr_nxt <= ~dma_addr_r[1:0];	//  save byte cnt
         tx_fifo_state_nxt <= txfifo_states_TXFIFO_WAIT;	
         end
      end
   txfifo_states_TXFIFO_WAIT:
      begin
      if (dma_req_clr_r == 1'b 1)
         begin
         dma_rd_data_nxt <= 1'b 0;	
         tx_fifo_state_nxt <= txfifo_states_TXFIFO_WRT;	
         end
      end
//  wait for dma to finish moving data
//  into the temp register
   txfifo_states_TXFIFO_WRT:
      begin
      if (byte_count_eq == 1'b 0 & tx_full == 1'b 0)
         begin
         tx_we_nxt <= 1'b 1;	
         tx_fifo_cntr_nxt <= tx_fifo_cntr - 1'b 1;	
//  # of bytes dma transfered
         case (tx_fifo_cntr)
         2'b 11:
            begin
            tx_wdata_nxt <= tx_tdata_r[7:0];	
            end
         2'b 10:
            begin
            tx_wdata_nxt <= tx_tdata_r[15:8];	
            end
         2'b 01:
            begin
            tx_wdata_nxt <= tx_tdata_r[23:16];	
            end
         default:
            begin
            tx_wdata_nxt <= tx_tdata_r[31:24];	
            tx_fifo_state_nxt <= txfifo_states_TXFIFO_DONE;	
            end
         endcase
         end
      else if (byte_count_eq == 1'b 0 & tx_full == 1'b 1 )
         begin
         tx_we_nxt <= 1'b 0;	
         end
      else if (byte_count_eq == 1'b 1 )
         begin
         tx_we_nxt <= 1'b 0;	
         tx_fifo_state_nxt <= txfifo_states_TXFIFO_DONE;	
         end
      end
//  now write the data into the fifo
   txfifo_states_TXFIFO_DONE:
      begin
      tx_we_nxt <= 1'b 0;	
      tx_fifo_state_nxt <= txfifo_states_TXFIFO_IDLE;	
      end
//  take away the write after we finished
   default:
      begin
      tx_fifo_state_nxt <= txfifo_states_TXFIFO_IDLE;	
      tx_fifo_cntr_nxt <= 2'b 00;	
      tx_wdata_nxt <= {8{1'b 0}};	
      tx_we_nxt <= 1'b 0;	
      dma_rd_data_nxt <= 1'b 0;	
      end
   endcase
   end
//  sync part of state machine
//  set outputs to default states
always @(posedge clk or posedge rst_a)
   begin : tx_fifo_state_r_PROC
   if (rst_a == 1'b 1)
      begin
      tx_fifo_state_r <= txfifo_states_TXFIFO_IDLE;	
      tx_fifo_cntr <= 2'b 00;	
      dma_rd_data_r <= 1'b 0;	
      tx_wdata_r <= {8{1'b 0}};	
      tx_we_r <= 1'b 0;	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         tx_fifo_state_r <= txfifo_states_TXFIFO_IDLE;	
         tx_fifo_cntr <= 2'b 00;	
         dma_rd_data_r <= 1'b 0;	
         tx_wdata_r <= {8{1'b 0}};	
         tx_we_r <= 1'b 0;	
         end
      else
         begin
         if (flush == 1'b 1)
            begin
            tx_fifo_state_r <= txfifo_states_TXFIFO_IDLE;	
            tx_fifo_cntr <= 2'b 00;	
            dma_rd_data_r <= 1'b 0;	
            tx_wdata_r <= {8{1'b 0}};	
            tx_we_r <= 1'b 0;	
            end
         else
            begin
            tx_fifo_state_r <= tx_fifo_state_nxt;	
            tx_fifo_cntr <= tx_fifo_cntr_nxt;	
            dma_rd_data_r <= dma_rd_data_nxt;	
            tx_wdata_r <= tx_wdata_nxt;	
            tx_we_r <= tx_we_nxt;	
            end
         end
      end
   end

assign tx_wdata = tx_wdata_r; //  drive tx wdata out
assign tx_we = tx_we_r; //  drive tx read enable out to fifo
// -------------------------------------------------------------------------
//  rx fifo state machine -
//  This state machine monitors the empty flag from the RX FIFO and
//  the rx flush command to move data from the RX FIFO and assemble them
//  into a 32 bit wide holding register. Based on the dma address register
//  bits 1 & 0 it will  load 1, 2, 3 or 4 bytes to handle any odd alignments
//  at the beginning or end of a packet. After assembling the bytes it will
//  tell the bvci_state machine to perform the transfer. When a flush
//  occurs, this state machine will assembly bytes in the holding register
//  and tell the bvci to write them to memory until the fifo is empty.
//  Cycles can't start unless the bvci state machine is in idle.
// -------------------------------------------------------------------------
always @(rx_fifo_state_r or dma_addr_r or rx_empty or rx_re_r or rx_rdata
 or rx_tdata_r or rx_fifo_flush_r or bvci_state_r or dma_wrt_data_r or dma_be_r
 or dma_wrt_en_r or endpt_stall or byte_count_eq or own or rx_fifo_cntr_r
 or dma_req_clr_r or flush_cnt_r)
   begin : rx_fifo_state_nxt_PROC
   rx_fifo_state_nxt <= rx_fifo_state_r;	
   dma_wrt_data_nxt <= dma_wrt_data_r;	
   dma_be_nxt <= dma_be_r;	
   rx_re_nxt <= rx_re_r;	
   rx_tdata_nxt <= rx_tdata_r;	
   rx_fifo_cntr_nxt <= rx_fifo_cntr_r;	
   flush_cnt_nxt <= flush_cnt_r;	
   case (rx_fifo_state_r)
   rxfifo_states_RXFIFO_IDLE:
      begin
      if (dma_wrt_en_r == 1'b 1 & endpt_stall == 1'b 0 & 
	byte_count_eq == 1'b 0 & rx_empty == 1'b 0 & 
	own == 1'b 1 & bvci_state_r == bvci_states_BVCI_IDLE)
         begin
         rx_fifo_state_nxt <= rxfifo_states_RXFIFO_READ;	//  there's data to read
         rx_fifo_cntr_nxt <= ~dma_addr_r[1:0];	
         rx_re_nxt <= 1'b 1;	
         end
      end
   rxfifo_states_RXFIFO_READ:
      begin
      rx_fifo_cntr_nxt <= rx_fifo_cntr_r - 1'b 1;	//  dec cntr for next
      rx_re_nxt <= 1'b 0;	
      case (rx_fifo_cntr_r)
      2'b 11:
         begin
         rx_tdata_nxt[7:0] <= rx_rdata;	
         dma_be_nxt[0] <= 1'b 1;	
         rx_fifo_state_nxt <= rxfifo_states_RXFIFO_WAIT;	
         end
      2'b 10:
         begin
         rx_tdata_nxt[15:8] <= rx_rdata;	
         dma_be_nxt[1] <= 1'b 1;	
         rx_fifo_state_nxt <= rxfifo_states_RXFIFO_WAIT;	
         end
      2'b 01:
         begin
         rx_tdata_nxt[23:16] <= rx_rdata;	
         dma_be_nxt[2] <= 1'b 1;	
         rx_fifo_state_nxt <= rxfifo_states_RXFIFO_WAIT;	
         end
      default:
         begin
         rx_tdata_nxt[31:24] <= rx_rdata;	
         rx_fifo_state_nxt <= rxfifo_states_RXFIFO_DONE;	
         dma_wrt_data_nxt <= 1'b 1;	
         dma_be_nxt[3] <= 1'b 1;	
         end
      endcase
      end
   rxfifo_states_RXFIFO_WAIT:
      begin
      if (rx_empty == 1'b 0)
         begin
         rx_fifo_state_nxt <= rxfifo_states_RXFIFO_READ;	
         rx_re_nxt <= 1'b 1;	
         end
//  go read the next byte
      else if (rx_fifo_flush_r == 1'b 1 )
         begin
         rx_fifo_state_nxt <= rxfifo_states_RXFIFO_DONE;	
         dma_wrt_data_nxt <= 1'b 1;	
         end
//  no more data so write it out
      end
   rxfifo_states_RXFIFO_DONE:
      begin
      if (dma_req_clr_r == 1'b 1)
         begin
         rx_fifo_state_nxt <= rxfifo_states_RXFIFO_IDLE;	
         dma_wrt_data_nxt <= 1'b 0;	
         dma_be_nxt <= 4'b 0000;	
         end
      end
   default:
      begin
      rx_fifo_state_nxt <= rxfifo_states_RXFIFO_IDLE;	
      dma_wrt_data_nxt <= 1'b 0;	
      dma_be_nxt <= 4'b 0000;	
      rx_re_nxt <= 1'b 0;	
      rx_tdata_nxt <= {32{1'b 0}};	
      rx_fifo_cntr_nxt <= 2'b 00;	
      flush_cnt_nxt <= 2'b 00;	
      end
   endcase
   end
//  sync part of state machine
//  drive outputs to defaults
always @(posedge clk or posedge rst_a)
   begin : rx_fifo_state_r_PROC
   if (rst_a == 1'b 1)
      begin
      rx_fifo_state_r <= rxfifo_states_RXFIFO_IDLE;	
      dma_wrt_data_r <= 1'b 0;	
      dma_be_r <= 4'b 0000;	
      rx_re_r <= 1'b 0;	
      rx_tdata_r <= {32{1'b 0}};	
      rx_fifo_cntr_r <= 2'b 00;	
      flush_cnt_r <= 2'b 00;	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         rx_fifo_state_r <= rxfifo_states_RXFIFO_IDLE;	
         dma_wrt_data_r <= 1'b 0;	
         dma_be_r <= 4'b 0000;	
         rx_re_r <= 1'b 0;	
         rx_tdata_r <= {32{1'b 0}};	
         rx_fifo_cntr_r <= 2'b 00;	
         flush_cnt_r <= 2'b 00;	
         end
      else
         begin
         if (flush == 1'b 1)
            begin
            rx_fifo_state_r <= rxfifo_states_RXFIFO_IDLE;	
            dma_wrt_data_r <= 1'b 0;	
            dma_be_r <= 4'b 0000;	
            rx_re_r <= 1'b 0;	
            rx_tdata_r <= {32{1'b 0}};	
            rx_fifo_cntr_r <= 2'b 00;	
            flush_cnt_r <= 2'b 00;	
            end
         else
            begin
            rx_fifo_state_r <= rx_fifo_state_nxt;	
            dma_wrt_data_r <= dma_wrt_data_nxt;	
            dma_be_r <= dma_be_nxt;	
            rx_re_r <= rx_re_nxt;	
            rx_tdata_r <= rx_tdata_nxt;	
            rx_fifo_cntr_r <= rx_fifo_cntr_nxt;	
            flush_cnt_r <= flush_cnt_nxt;	
            end
         end
      end
   end

assign rx_re = rx_re_r; //  drive rx read enable out to fifo
// -------------------------------------------------------------------------
//  BVCI Initiator State Machine
//  This state machine will handle requests to read/write the Buffer
//  Descriptor Table or read/write data from the buffers from/to the fifo.
//  When reading the BDT, two 4-byte back to back cycles will take place.
//  When writing the BDT, one 4-byte cycle will take place.
//  When transfering data between the buffers and the FIFO, a single 4-byte 
//  cycle will take place unless there is less data to transfer at the
//  beginning or end of packets..
// -------------------------------------------------------------------------
always @(bvci_state_r or dma_rd_bdt_r or dma_rd_data_r or dma_req_clr_r or wrt_bdt_clr_r
 or rd_bdt_clr_r or dma_wrt_bdt_r or dma_wrt_data_r or dma_be_r or bdt_addr
 or bdt_wrt_data or dma_addr_r or bdt_rg0_r or byte_cnt_r or i_addr_r
 or i_be_r or i_cmd_r or i_cmdval_r or i_eop_r or i_wdata_r
 or i_rspval or i_rdata or i_cmdack or rx_tdata_r or txfr_cntr_r
 or tx_tdata_r)
   begin : bvci_state_nxt_PROC
   bvci_state_nxt <= bvci_state_r;	
   i_addr_nxt <= i_addr_r;	
   i_be_nxt <= i_be_r;	
   i_cmd_nxt <= i_cmd_r;	
   i_cmdval_nxt <= i_cmdval_r;	
   i_eop_nxt <= i_eop_r;	
   i_wdata_nxt <= i_wdata_r;	
   bdt_rg0_nxt <= bdt_rg0_r;	
   byte_cnt_nxt <= byte_cnt_r;	
   wrt_bdt_clr_nxt <= wrt_bdt_clr_r;	
   rd_bdt_clr_nxt <= rd_bdt_clr_r;	
   dma_req_clr_nxt <= dma_req_clr_r;	
   tx_tdata_nxt <= tx_tdata_r;	
   case (bvci_state_r)
   bvci_states_BVCI_IDLE:
      begin
      if (dma_wrt_bdt_r == 1'b 1)
         begin
         i_addr_nxt <= bdt_addr;	
         i_be_nxt <= 4'b 1111;	
         i_wdata_nxt <= bdt_wrt_data;	
         i_cmd_nxt <= CMD_WR;	
         i_cmdval_nxt <= 1'b 1;	
         i_eop_nxt <= 1'b 1;	
         wrt_bdt_clr_nxt <= 1'b 1;	
         bvci_state_nxt <= bvci_states_BVCI_WR_BDT_ACK;	
         end
      else if (dma_rd_bdt_r == 1'b 1 )
         begin
         i_addr_nxt <= bdt_addr;	
         i_be_nxt <= 4'b 1111;	
         i_cmd_nxt <= CMD_RD;	
         i_cmdval_nxt <= 1'b 1;	
         i_eop_nxt <= 1'b 0;	
         rd_bdt_clr_nxt <= 1'b 1;	
         bvci_state_nxt <= bvci_states_RD_BDT_WAIT_CMDACK1;	
         end
      else if (dma_wrt_data_r == 1'b 1 )
         begin
         i_addr_nxt <= {dma_addr_r[31:2], 2'b 00};	
         i_wdata_nxt <= rx_tdata_r;	//  temp holding register
         i_be_nxt <= dma_be_r;	
         i_cmd_nxt <= CMD_WR;	
         i_cmdval_nxt <= 1'b 1;	
         i_eop_nxt <= 1'b 1;	
         bvci_state_nxt <= bvci_states_BVCI_WR_DATA_ACK;	
         end
      else if (dma_rd_data_r == 1'b 1 )
         begin
         i_addr_nxt <= {dma_addr_r[31:2], 2'b 00};	
         i_be_nxt <= 4'b 1111;	
         i_cmd_nxt <= CMD_RD;	
         i_cmdval_nxt <= 1'b 1;	
         i_eop_nxt <= 1'b 1;	
         bvci_state_nxt <= bvci_states_BVCI_RD_CMD_ACK;	
// -------------------------------------------------------------------
//  read bdt states
// -------------------------------------------------------------------
//  sent 1st command waiting for comamnd ack and or data valid
         end
      end
   bvci_states_RD_BDT_WAIT_CMDACK1:
      begin
      if (i_cmdack == 1'b 1 & i_rspval == 1'b 1)
         begin
         i_addr_nxt[2] <= 1'b 1;	//  inc add 2 for the next 4 bytes
         i_eop_nxt <= 1'b 1;	
         bdt_rg0_nxt <= i_rdata[7:0];	
         byte_cnt_nxt <= i_rdata[25:16];	
         rd_bdt_clr_nxt <= 1'b 0;	
         bvci_state_nxt <= bvci_states_RD_BDT_WAIT_CMDACK2;	
         end
//  accepted cmd, has data
      else if (i_cmdack == 1'b 1 & i_rspval == 1'b 0 )
         begin
         i_addr_nxt[2] <= 1'b 1;	//  inc add 2 for the next 4 bytes
         i_eop_nxt <= 1'b 1;	
         rd_bdt_clr_nxt <= 1'b 0;	
         bvci_state_nxt <= bvci_states_RD_BDT_WAIT_DATA1;	
         end
//  accepted cmd, no data
      else if (i_cmdack == 1'b 0 & i_rspval == 1'b 1 )
         begin
         bdt_rg0_nxt <= i_rdata[7:0];	
         byte_cnt_nxt <= i_rdata[25:16];	
         rd_bdt_clr_nxt <= 1'b 0;	
         bvci_state_nxt <= bvci_states_RD_BDT_WAIT_CMDACK1_D1;	
//  this is a weird state would a target accept data but not the command
         end
//  accepted data not cmd
      end
   bvci_states_RD_BDT_WAIT_CMDACK1_D1:
      begin
      if (i_cmdack == 1'b 1)
         begin
         i_addr_nxt[2] <= 1'b 1;	//  inc add 2 for the next 4 bytes
         i_eop_nxt <= 1'b 1;	
         bvci_state_nxt <= bvci_states_RD_BDT_WAIT_CMDACK2;	
//  sent 2nd command waiting for 2nd ack & 2nd data valid
         end
//  accepted cmd
      end
   bvci_states_RD_BDT_WAIT_CMDACK2:
      begin
      if (i_cmdack == 1'b 1 & i_rspval == 1'b 1)
         begin
         i_eop_nxt <= 1'b 0;	
         i_cmdval_nxt <= 1'b 0;	
         i_cmd_nxt <= CMD_NOP;	
         bvci_state_nxt <= bvci_states_BVCI_IDLE;	
         end
//  accepted cmd has data
      else if (i_cmdack == 1'b 1 & i_rspval == 1'b 0 )
         begin
         i_addr_nxt[2] <= 1'b 1;	//  inc add 2 for the next 4 bytes
         i_cmdval_nxt <= 1'b 0;	
         i_cmd_nxt <= CMD_NOP;	
         i_eop_nxt <= 1'b 0;	
         bvci_state_nxt <= bvci_states_RD_BDT_WAIT_DATA2;	
         end
//  accepted cmd no data
      else if (i_cmdack == 1'b 0 & i_rspval == 1'b 1 )
         begin
         bvci_state_nxt <= bvci_states_RD_BDT_WAIT_CMDACK2_D2;	
//  this is a weird state would a target accept data but not the command
         end
//  accepted data no cmd
      end
   bvci_states_RD_BDT_WAIT_CMDACK2_D2:
      begin
      if (i_cmdack == 1'b 1)
         begin
         i_eop_nxt <= 1'b 0;	
         i_cmdval_nxt <= 1'b 0;	
         i_cmd_nxt <= CMD_NOP;	
         bvci_state_nxt <= bvci_states_BVCI_IDLE;	
//  sent 2nd command waiting for 1st data valid
         end
//  accepted cmd
      end
   bvci_states_RD_BDT_WAIT_DATA1:
      begin
      if (i_cmdack == 1'b 1 & i_rspval == 1'b 1)
         begin
         i_eop_nxt <= 1'b 0;	
         i_cmdval_nxt <= 1'b 0;	
         i_cmd_nxt <= CMD_NOP;	
         bdt_rg0_nxt <= i_rdata[7:0];	
         byte_cnt_nxt <= i_rdata[25:16];	
         bvci_state_nxt <= bvci_states_RD_BDT_WAIT_DATA2;	
         end
//  accepted cmd has data
      else if (i_cmdack == 1'b 1 & i_rspval == 1'b 0 )
         begin
         i_eop_nxt <= 1'b 0;	
         i_cmdval_nxt <= 1'b 0;	
         i_cmd_nxt <= CMD_NOP;	
         bvci_state_nxt <= bvci_states_RD_BDT_WAIT_DATA1_2;	
         end
//  accepted cmd no data
      else if (i_cmdack == 1'b 0 & i_rspval == 1'b 1 )
         begin
         bdt_rg0_nxt <= i_rdata[7:0];	
         byte_cnt_nxt <= i_rdata[25:16];	
         bvci_state_nxt <= bvci_states_RD_BDT_WAIT_CMDACK2;	
//  sent both commands waiting for 1st response
         end
//  accepted data no cmd
      end
   bvci_states_RD_BDT_WAIT_DATA1_2:
      begin
      if (i_rspval == 1'b 1)
         begin
         bdt_rg0_nxt <= i_rdata[7:0];	
         byte_cnt_nxt <= i_rdata[25:16];	
         bvci_state_nxt <= bvci_states_RD_BDT_WAIT_DATA2;	
//  waiting for 2nd data valid
         end
//  has data
      end
   bvci_states_RD_BDT_WAIT_DATA2:
      begin
      if (i_rspval == 1'b 1)
         begin
         bvci_state_nxt <= bvci_states_BVCI_IDLE;	
// -------------------------------------------------------------------
//  write bdt 
// -------------------------------------------------------------------
//  waiting for ack to command write
         end
//  accepted cmd has data
      end
   bvci_states_BVCI_WR_BDT_ACK:
      begin
      if (i_cmdack == 1'b 1 & i_rspval == 1'b 1)
         begin
         i_eop_nxt <= 1'b 0;	
         i_cmdval_nxt <= 1'b 0;	
         i_cmd_nxt <= CMD_NOP;	
         wrt_bdt_clr_nxt <= 1'b 0;	
         bvci_state_nxt <= bvci_states_BVCI_IDLE;	
         end
//  accepted cmd, no data
      else if (i_cmdack == 1'b 1 & i_rspval == 1'b 0 )
         begin
         i_eop_nxt <= 1'b 0;	
         i_cmdval_nxt <= 1'b 0;	
         i_cmd_nxt <= CMD_NOP;	
         wrt_bdt_clr_nxt <= 1'b 0;	
         bvci_state_nxt <= bvci_states_BVCI_WR_BDT_WAIT_RSP;	
         end
//  accepted cmd & data
      end
   bvci_states_BVCI_WR_BDT_WAIT_RSP:
      begin
      if (i_rspval == 1'b 1)
         begin
         bvci_state_nxt <= bvci_states_BVCI_IDLE;	
// -------------------------------------------------------------------
//  write data
// -------------------------------------------------------------------
//  waiting for ack to command write
         end
      end
   bvci_states_BVCI_WR_DATA_ACK:
      begin
      if (i_cmdack == 1'b 1 & i_rspval == 1'b 1)
         begin
         i_eop_nxt <= 1'b 0;	
         i_cmdval_nxt <= 1'b 0;	
         i_cmd_nxt <= CMD_NOP;	
         dma_req_clr_nxt <= 1'b 1;	
         bvci_state_nxt <= bvci_states_BVCI_DMA_TXFR;	
         end
//  acc. cmd, data
      else if (i_cmdack == 1'b 1 & i_rspval == 1'b 0 )
         begin
         i_eop_nxt <= 1'b 0;	
         i_cmdval_nxt <= 1'b 0;	
         i_cmd_nxt <= CMD_NOP;	
         bvci_state_nxt <= bvci_states_BVCI_WR_DATA_WAIT_RSP;	
         end
//  acc. cmd, no data
      end
   bvci_states_BVCI_WR_DATA_WAIT_RSP:
      begin
      if (i_rspval == 1'b 1)
         begin
         dma_req_clr_nxt <= 1'b 1;	
         bvci_state_nxt <= bvci_states_BVCI_DMA_TXFR;	
// -------------------------------------------------------------------
//  read data states
// -------------------------------------------------------------------
         end
      end
   bvci_states_BVCI_RD_CMD_ACK:
      begin
      if (i_cmdack == 1'b 1 & i_rspval == 1'b 1)
         begin
         i_eop_nxt <= 1'b 0;	
         i_cmdval_nxt <= 1'b 0;	
         i_cmd_nxt <= CMD_NOP;	
         tx_tdata_nxt <= i_rdata;	
         dma_req_clr_nxt <= 1'b 1;	
         bvci_state_nxt <= bvci_states_BVCI_DMA_TXFR;	
         end
//  accepted cmd has data
      else if (i_cmdack == 1'b 1 & i_rspval == 1'b 0 )
         begin
         i_eop_nxt <= 1'b 0;	
         i_cmdval_nxt <= 1'b 0;	
         i_cmd_nxt <= CMD_NOP;	
         bvci_state_nxt <= bvci_states_BVCI_RD_DATA;	
         end
//  accepted cmd no data
      else if (i_cmdack == 1'b 0 & i_rspval == 1'b 1 )
         begin
         tx_tdata_nxt <= i_rdata;	
         dma_req_clr_nxt <= 1'b 1;	
         bvci_state_nxt <= bvci_states_BVCI_RD_DATA_ACK;	
//  this is a weird state I don't think the target will respnd to data
//  before the command, but just in case
         end
//  accepted data not
//  cmd
      end
   bvci_states_BVCI_RD_DATA_ACK:
      begin
      if (i_cmdack == 1'b 1)
         begin
         i_eop_nxt <= 1'b 0;	
         i_cmdval_nxt <= 1'b 0;	
         i_cmd_nxt <= CMD_NOP;	
         bvci_state_nxt <= bvci_states_BVCI_DMA_TXFR;	
         end
//  accepted cmd 
      end
   bvci_states_BVCI_RD_DATA:
      begin
      if (i_rspval == 1'b 1)
         begin
         tx_tdata_nxt <= i_rdata;	
         dma_req_clr_nxt <= 1'b 1;	
         bvci_state_nxt <= bvci_states_BVCI_DMA_TXFR;	
// -------------------------------------------------------------------
//  end of dma cycles allow txfr count to load and then count down
//  before allowing another dma operation
// -------------------------------------------------------------------
         end
      end
   bvci_states_BVCI_DMA_TXFR:
      begin
      dma_req_clr_nxt <= 1'b 0;	
      bvci_state_nxt <= bvci_states_BVCI_DMA_DONE;	
      end
   bvci_states_BVCI_DMA_DONE:
      begin
      if (txfr_cntr_r == 3'b 000)
         begin
         bvci_state_nxt <= bvci_states_BVCI_IDLE;	
// -------------------------------------------------------------------
// default state
// -------------------------------------------------------------------
         end
      end
   default:
      begin
      bvci_state_nxt <= bvci_states_BVCI_IDLE;	
      i_addr_nxt <= {32{1'b 0}};	
      i_be_nxt <= {4{1'b 0}};	
      i_cmd_nxt <= CMD_NOP;	
      i_cmdval_nxt <= 1'b 0;	
      i_eop_nxt <= 1'b 0;	
      i_wdata_nxt <= {32{1'b 0}};	
      bdt_rg0_nxt <= {8{1'b 0}};	
      byte_cnt_nxt <= {10{1'b 0}};	
      wrt_bdt_clr_nxt <= 1'b 0;	
      rd_bdt_clr_nxt <= 1'b 0;	
      dma_req_clr_nxt <= 1'b 0;	
      tx_tdata_nxt <= {32{1'b 0}};	
      end
   endcase
   end
//  generate a load signal when the second read data is valid to grab the
//  dma address and load counters
//  drive outputs to defaults
assign bdt_ld = i_rspval == 1'b 1 & (bvci_state_r == bvci_states_RD_BDT_WAIT_CMDACK2 | 
	bvci_state_r == bvci_states_RD_BDT_WAIT_DATA2) ? 1'b 1 : 
	1'b 0; 
// -------------------------------------------------------------------------
//  synchronous part of the state machine
// -------------------------------------------------------------------------
always @(posedge clk or posedge rst_a)
   begin : bvci_state_r_PROC
   if (rst_a == 1'b 1)
      begin
      bvci_state_r <= bvci_states_BVCI_IDLE;	
      i_addr_r <= {32{1'b 0}};	
      i_be_r <= {4{1'b 0}};	
      i_cmd_r <= CMD_NOP;	
      i_cmdval_r <= 1'b 0;	
      i_eop_r <= 1'b 0;	
      i_wdata_r <= {32{1'b 0}};	
      bdt_rg0_r <= {8{1'b 0}};	
      byte_cnt_r <= {10{1'b 0}};	
      wrt_bdt_clr_r <= 1'b 0;	
      rd_bdt_clr_r <= 1'b 0;	
      dma_req_clr_r <= 1'b 0;	
      tx_tdata_r <= {32{1'b 0}};	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         bvci_state_r <= bvci_states_BVCI_IDLE;	
         i_addr_r <= {32{1'b 0}};	
         i_be_r <= {4{1'b 0}};	
         i_cmd_r <= CMD_NOP;	
         i_cmdval_r <= 1'b 0;	
         i_eop_r <= 1'b 0;	
         i_wdata_r <= {32{1'b 0}};	
         bdt_rg0_r <= {8{1'b 0}};	
         byte_cnt_r <= {10{1'b 0}};	
         wrt_bdt_clr_r <= 1'b 0;	
         rd_bdt_clr_r <= 1'b 0;	
         dma_req_clr_r <= 1'b 0;	
         tx_tdata_r <= {32{1'b 0}};	
         end
      else
         begin
         bvci_state_r <= bvci_state_nxt;	
         i_addr_r <= i_addr_nxt;	
         i_be_r <= i_be_nxt;	
         i_cmd_r <= i_cmd_nxt;	
         i_cmdval_r <= i_cmdval_nxt;	
         i_eop_r <= i_eop_nxt;	
         i_wdata_r <= i_wdata_nxt;	
         bdt_rg0_r <= bdt_rg0_nxt;	
         byte_cnt_r <= byte_cnt_nxt;	
         wrt_bdt_clr_r <= wrt_bdt_clr_nxt;	
         rd_bdt_clr_r <= rd_bdt_clr_nxt;	
         dma_req_clr_r <= dma_req_clr_nxt;	
         tx_tdata_r <= tx_tdata_nxt;	
         end
      end
   end

assign i_rspack = 1'b 1; //  tie this high      
//  the bdt register gets loaded from this state machine pick off some of
//  the bits with meaningful names
assign own = bdt_rg0_r[7] & bdt_valid_r & ~stat_full; //  0 = micro
//  1 = sie
assign keep = bdt_rg0_r[5]; //  dma does not update the BDT
assign ninc = bdt_rg0_r[4]; //  dma doesn't increment
//  drive out output signals
assign i_address = i_addr_r; 
assign i_be = i_be_r; 
assign i_cmd = i_cmd_r; 
assign i_cmdval = i_cmdval_r; 
assign i_eop = i_eop_r; 
assign i_wdata = i_wdata_r; 
// -------------------------------------------------------------------------
//  endpoint odd bits -
//  these get toggled when the sie sends a token_dne_set indicating that he
//  is finished with a packet.
// -------------------------------------------------------------------------
always @(posedge clk or posedge rst_a)
   begin : endpt_odd_r_PROC
   if (rst_a == 1'b 1)
      begin
      endpt0_txd_odd_r <= 1'b 0;	
      endpt1_txd_odd_r <= 1'b 0;	
      endpt2_txd_odd_r <= 1'b 0;	
      endpt3_txd_odd_r <= 1'b 0;	
      endpt4_txd_odd_r <= 1'b 0;	
      endpt5_txd_odd_r <= 1'b 0;	
      endpt6_txd_odd_r <= 1'b 0;	
      endpt7_txd_odd_r <= 1'b 0;	
      endpt8_txd_odd_r <= 1'b 0;	
      endpt9_txd_odd_r <= 1'b 0;	
      endpt10_txd_odd_r <= 1'b 0;	
      endpt11_txd_odd_r <= 1'b 0;	
      endpt12_txd_odd_r <= 1'b 0;	
      endpt13_txd_odd_r <= 1'b 0;	
      endpt14_txd_odd_r <= 1'b 0;	
      endpt15_txd_odd_r <= 1'b 0;	
      endpt0_rxd_odd_r <= 1'b 0;	
      endpt1_rxd_odd_r <= 1'b 0;	
      endpt2_rxd_odd_r <= 1'b 0;	
      endpt3_rxd_odd_r <= 1'b 0;	
      endpt4_rxd_odd_r <= 1'b 0;	
      endpt5_rxd_odd_r <= 1'b 0;	
      endpt6_rxd_odd_r <= 1'b 0;	
      endpt7_rxd_odd_r <= 1'b 0;	
      endpt8_rxd_odd_r <= 1'b 0;	
      endpt9_rxd_odd_r <= 1'b 0;	
      endpt10_rxd_odd_r <= 1'b 0;	
      endpt11_rxd_odd_r <= 1'b 0;	
      endpt12_rxd_odd_r <= 1'b 0;	
      endpt13_rxd_odd_r <= 1'b 0;	
      endpt14_rxd_odd_r <= 1'b 0;	
      endpt15_rxd_odd_r <= 1'b 0;	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         endpt0_txd_odd_r <= 1'b 0;	
         endpt1_txd_odd_r <= 1'b 0;	
         endpt2_txd_odd_r <= 1'b 0;	
         endpt3_txd_odd_r <= 1'b 0;	
         endpt4_txd_odd_r <= 1'b 0;	
         endpt5_txd_odd_r <= 1'b 0;	
         endpt6_txd_odd_r <= 1'b 0;	
         endpt7_txd_odd_r <= 1'b 0;	
         endpt8_txd_odd_r <= 1'b 0;	
         endpt9_txd_odd_r <= 1'b 0;	
         endpt10_txd_odd_r <= 1'b 0;	
         endpt11_txd_odd_r <= 1'b 0;	
         endpt12_txd_odd_r <= 1'b 0;	
         endpt13_txd_odd_r <= 1'b 0;	
         endpt14_txd_odd_r <= 1'b 0;	
         endpt15_txd_odd_r <= 1'b 0;	
         endpt0_rxd_odd_r <= 1'b 0;	
         endpt1_rxd_odd_r <= 1'b 0;	
         endpt2_rxd_odd_r <= 1'b 0;	
         endpt3_rxd_odd_r <= 1'b 0;	
         endpt4_rxd_odd_r <= 1'b 0;	
         endpt5_rxd_odd_r <= 1'b 0;	
         endpt6_rxd_odd_r <= 1'b 0;	
         endpt7_rxd_odd_r <= 1'b 0;	
         endpt8_rxd_odd_r <= 1'b 0;	
         endpt9_rxd_odd_r <= 1'b 0;	
         endpt10_rxd_odd_r <= 1'b 0;	
         endpt11_rxd_odd_r <= 1'b 0;	
         endpt12_rxd_odd_r <= 1'b 0;	
         endpt13_rxd_odd_r <= 1'b 0;	
         endpt14_rxd_odd_r <= 1'b 0;	
         endpt15_rxd_odd_r <= 1'b 0;	
//  Implement endpoint odd address enable bits
         end
      else
         begin
         if (odd_rst == 1'b 1)
            begin
            endpt0_txd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 0000 & tx_datpkt_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt0_txd_odd_r <= ~endpt0_txd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt1_txd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 0001 & tx_datpkt_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt1_txd_odd_r <= ~endpt1_txd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt2_txd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 0010 & tx_datpkt_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt2_txd_odd_r <= ~endpt2_txd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt3_txd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 0011 & tx_datpkt_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt3_txd_odd_r <= ~endpt3_txd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt4_txd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 0100 & tx_datpkt_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt4_txd_odd_r <= ~endpt4_txd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt5_txd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 0101 & tx_datpkt_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt5_txd_odd_r <= ~endpt5_txd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt6_txd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 0110 & tx_datpkt_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt6_txd_odd_r <= ~endpt6_txd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt7_txd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 0111 & tx_datpkt_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt7_txd_odd_r <= ~endpt7_txd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt8_txd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 1000 & tx_datpkt_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt8_txd_odd_r <= ~endpt8_txd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt9_txd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 1001 & tx_datpkt_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt9_txd_odd_r <= ~endpt9_txd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt10_txd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 1010 & tx_datpkt_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt10_txd_odd_r <= ~endpt10_txd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt11_txd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 1011 & tx_datpkt_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt11_txd_odd_r <= ~endpt11_txd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt12_txd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 1100 & tx_datpkt_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt12_txd_odd_r <= ~endpt12_txd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt13_txd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 1101 & tx_datpkt_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt13_txd_odd_r <= ~endpt13_txd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt14_txd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 1110 & tx_datpkt_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt14_txd_odd_r <= ~endpt14_txd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt15_txd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 1111 & tx_datpkt_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt15_txd_odd_r <= ~endpt15_txd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt0_rxd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 0000 & out_token_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt0_rxd_odd_r <= ~endpt0_rxd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt1_rxd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 0001 & out_token_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt1_rxd_odd_r <= ~endpt1_rxd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt2_rxd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 0010 & out_token_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt2_rxd_odd_r <= ~endpt2_rxd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt3_rxd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 0011 & out_token_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt3_rxd_odd_r <= ~endpt3_rxd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt4_rxd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 0100 & out_token_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt4_rxd_odd_r <= ~endpt4_rxd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt5_rxd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 0101 & out_token_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt5_rxd_odd_r <= ~endpt5_rxd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt6_rxd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 0110 & out_token_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt6_rxd_odd_r <= ~endpt6_rxd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt7_rxd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 0111 & out_token_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt7_rxd_odd_r <= ~endpt7_rxd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt8_rxd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 1000 & out_token_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt8_rxd_odd_r <= ~endpt8_rxd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt9_rxd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 1001 & out_token_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt9_rxd_odd_r <= ~endpt9_rxd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt10_rxd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 1010 & out_token_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt10_rxd_odd_r <= ~endpt10_rxd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt11_rxd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 1011 & out_token_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt11_rxd_odd_r <= ~endpt11_rxd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt12_rxd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 1100 & out_token_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt12_rxd_odd_r <= ~endpt12_rxd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt13_rxd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 1101 & out_token_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt13_rxd_odd_r <= ~endpt13_rxd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt14_rxd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 1110 & out_token_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt14_rxd_odd_r <= ~endpt14_rxd_odd_r;	//  Toggle 
            end
         if (odd_rst == 1'b 1)
            begin
            endpt15_rxd_odd_r <= 1'b 0;	//  Reset 
            end
         else if (current_endpt_r == 4'b 1111 & out_token_proc == 1'b 1 & 
	tok_dne_set == 1'b 1 )
            begin
            endpt15_rxd_odd_r <= ~endpt15_rxd_odd_r;	//  Toggle 
            end
         end
      end
   end

assign odd_bdt = txd_token == 1'b 1 ? endpt_txd_odd : 
	endpt_rxd_odd; 
// -------------------------------------------------------------------------
//  Target Read Logic
//  Select read data based on address in.
//  then register the output along with the response valid signal
// -------------------------------------------------------------------------
//  USB Peripheral ID
//  USB Peripheral ID Complement
//  USB Revision (defined in vusb_cfg)
//  USB Additional info
//  USB OTG Interrupt status
//  USB OTG Interrupt Control
//  USB OTG Status register
//  USB OTG Control register
//  Interrupt status register
//  Interrupt enable register
//  Error status register
//  Error enable register
//  Status register
//  Control register
//  Address register
//  BDT Page register (bits 15:8)
//  Frame number low register
//  Frame number high register
//  Token register
//  SOF threshold register
//  BDT Page register (bits 23:16)
//  BDT Page register (bits 31:24)
//  Endpoint control register0
//  Endpoint control register1
//  Endpoint control register2
//  Endpoint control register3
//  Endpoint control register4
//  Endpoint control register5
//  Endpoint control register6
//  Endpoint control register7
//  Endpoint control register8
//  Endpoint control register9
//  Endpoint control register10
//  Endpoint control register11
//  Endpoint control register12
//  Endpoint control register13
//  Endpoint control register14
//  Endpoint control register15
assign add_info = IMPLEMENT_EMBEDED_HOST == 1'b 1 ? {IRQ_NUM, ADD_INFO_HST} : 
	{IRQ_NUM, ADD_INFO_DEV}; 
// ----------------------------------------------------------------------------------------------------------
//  otg signal sync and debounce logic
// ----------------------------------------------------------------------------------------------------------
always @(posedge clk or posedge rst_a)
   begin : otg_sync_r_PROC
   if (rst_a == 1'b 1)
      begin
      usb_id_r1 <= 1'b 0;	
      usb_id_r2 <= 1'b 0;	
      usb_sess_vld_r1 <= 1'b 0;	
      usb_sess_vld_r2 <= 1'b 0;	
      usb_b_sess_end_r1 <= 1'b 0;	
      usb_b_sess_end_r2 <= 1'b 0;	
      usb_a_vbus_vld_r1 <= 1'b 0;	
      usb_a_vbus_vld_r2 <= 1'b 0;	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         usb_id_r1 <= 1'b 0;	
         usb_id_r2 <= 1'b 0;	
         usb_sess_vld_r1 <= 1'b 0;	
         usb_sess_vld_r2 <= 1'b 0;	
         usb_b_sess_end_r1 <= 1'b 0;	
         usb_b_sess_end_r2 <= 1'b 0;	
         usb_a_vbus_vld_r1 <= 1'b 0;	
         usb_a_vbus_vld_r2 <= 1'b 0;	
         end
      else
         begin
         usb_id_r2 <= hc_en & usb_id_r1;	
         usb_id_r1 <= hc_en & usb_id;	
         usb_sess_vld_r2 <= hc_en & usb_sess_vld_r1;	
         usb_sess_vld_r1 <= hc_en & usb_sess_vld;	
         usb_b_sess_end_r2 <= hc_en & usb_b_sess_end_r1;	
         usb_b_sess_end_r1 <= hc_en & usb_b_sess_end;	
         usb_a_vbus_vld_r2 <= hc_en & usb_a_vbus_vld_r1;	
         usb_a_vbus_vld_r1 <= hc_en & usb_a_vbus_vld;	
         end
      end
   end

assign hc_usb_id_r2 = hc_en & usb_id_r2; 
assign hc_usb_sess_vld_r2 = hc_en & usb_sess_vld_r2; 
assign hc_usb_b_sess_end_r2 = hc_en & usb_b_sess_end_r2; 
assign hc_usb_a_vbus_vld_r2 = hc_en & usb_a_vbus_vld_r2; 
//  set the stable indicator equal to 1 at the begining of the debounce
//  interval.  If you ever see a change on the signal clear the stable indicator.
always @(posedge clk or posedge rst_a)
   begin : otg_stable_r_PROC
   if (rst_a == 1'b 1)
      begin
      otg_stable_id_r <= 1'b 0;	
      otg_stable_se0_r <= 1'b 0;	
      otg_stable_jstate_r <= 1'b 0;	
      otg_stable_linestate_r <= 1'b 0;	
      otg_stable_sess_vld_r <= 1'b 0;	
      otg_stable_b_sess_end_r <= 1'b 0;	
      otg_stable_a_vbus_vld_r <= 1'b 0;	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         otg_stable_id_r <= 1'b 0;	
         otg_stable_se0_r <= 1'b 0;	
         otg_stable_jstate_r <= 1'b 0;	
         otg_stable_linestate_r <= 1'b 0;	
         otg_stable_sess_vld_r <= 1'b 0;	
         otg_stable_b_sess_end_r <= 1'b 0;	
         otg_stable_a_vbus_vld_r <= 1'b 0;	
         end
      else if (usb_1msec_r == 1'b 1 )
         begin
         otg_stable_id_r <= hc_en & ~(hc_usb_id_r2 ^ hc_usb_id_last);	
         otg_stable_se0_r <= hc_en & ~(se0 ^ hc_usb_se0_last);	
         otg_stable_jstate_r <= hc_en & ~(rcv ^ hc_usb_jstate_last);	
         otg_stable_linestate_r <= hc_en & otg_stable_linestate;	
         otg_stable_sess_vld_r <= hc_en & ~(hc_usb_sess_vld_r2 ^ hc_usb_sess_vld_last);	
         otg_stable_b_sess_end_r <= hc_en & ~(hc_usb_b_sess_end_r2 ^ hc_usb_b_sess_end_last);	
         otg_stable_a_vbus_vld_r <= hc_en & ~(hc_usb_a_vbus_vld_r2 ^ hc_usb_a_vbus_vld_last);	
//  clear the stable bits if a change is detected.
         end
//  set the stable bits at the start of the debounce 
      else
         begin
         otg_stable_id_r <= hc_otg_stable_id & ~(hc_usb_id_r2 ^ hc_usb_id_last);	
         otg_stable_se0_r <= hc_otg_stable_se0 & ~(se0 ^ hc_usb_se0_last);	
         otg_stable_jstate_r <= hc_otg_stable_jstate & ~(rcv ^ hc_usb_jstate_last);	
         otg_stable_sess_vld_r <= hc_otg_stable_sess_vld & ~(hc_usb_sess_vld_r2 ^ hc_usb_sess_vld_last);	
         otg_stable_b_sess_end_r <= hc_otg_stable_b_sess_end & ~(hc_usb_b_sess_end_r2 ^ hc_usb_b_sess_end_last);	
         otg_stable_a_vbus_vld_r <= hc_otg_stable_a_vbus_vld & ~(hc_usb_a_vbus_vld_r2 ^ hc_usb_a_vbus_vld_last);	
         end
      end
   end

assign hc_otg_stable_id = hc_en & otg_stable_id_r; 
assign hc_otg_stable_se0 = hc_en & otg_stable_se0_r; 
assign hc_otg_stable_jstate = hc_en & otg_stable_jstate_r; 
assign hc_otg_stable_linestate = hc_en & otg_stable_linestate_r; 
assign otg_stable_linestate = hc_en & otg_stable_se0_r & (otg_stable_jstate_r | hc_usb_se0_last); 
//  Noise may cause Jstate to change while SE0 is true.
assign hc_otg_stable_sess_vld = hc_en & otg_stable_sess_vld_r; 
assign hc_otg_stable_b_sess_end = hc_en & otg_stable_b_sess_end_r; 
assign hc_otg_stable_a_vbus_vld = hc_en & otg_stable_a_vbus_vld_r; 
//  if the signal has been stable for 1 msec call the last value debounced
always @(posedge clk or posedge rst_a)
   begin : usb_deb_r_PROC
   if (rst_a == 1'b 1)
      begin
      usb_id_deb_r <= 1'b 0;	
      usb_se0_deb_r <= 1'b 0;	
      usb_jstate_deb_r <= 1'b 0;	
      usb_sess_vld_deb_r <= 1'b 0;	
      usb_b_sess_end_deb_r <= 1'b 0;	
      usb_a_vbus_vld_deb_r <= 1'b 0;	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         usb_id_deb_r <= 1'b 0;	
         usb_se0_deb_r <= 1'b 0;	
         usb_jstate_deb_r <= 1'b 0;	
         usb_sess_vld_deb_r <= 1'b 0;	
         usb_b_sess_end_deb_r <= 1'b 0;	
         usb_a_vbus_vld_deb_r <= 1'b 0;	
         end
      else
         begin
         if ((hc_en & usb_1msec_r & hc_otg_stable_id) == 1'b 1)
            begin
            usb_id_deb_r <= hc_usb_id_last;	
            end
         if ((hc_en & usb_1msec_r & hc_otg_stable_se0) == 1'b 1)
            begin
            usb_se0_deb_r <= hc_usb_se0_last;	
            end
         if ((hc_en & usb_1msec_r & hc_otg_stable_jstate) == 1'b 1)
            begin
            usb_jstate_deb_r <= hc_usb_jstate_last;	
            end
         if ((hc_en & usb_1msec_r & hc_otg_stable_sess_vld) == 1'b 1)
            begin
            usb_sess_vld_deb_r <= hc_usb_sess_vld_last;	
            end
         if ((hc_en & usb_1msec_r & hc_otg_stable_b_sess_end) == 1'b 1)
            begin
            usb_b_sess_end_deb_r <= hc_usb_b_sess_end_last;	
            end
         if ((hc_en & usb_1msec_r & hc_otg_stable_a_vbus_vld) == 1'b 1)
            begin
            usb_a_vbus_vld_deb_r <= hc_usb_a_vbus_vld_last;	
            end
         end
      end
   end

assign hc_usb_id_deb = hc_en & usb_id_deb_r; 
assign hc_usb_se0_deb = hc_en & usb_se0_deb_r; 
assign hc_usb_jstate_deb = hc_en & usb_jstate_deb_r; 
assign hc_usb_sess_vld_deb = hc_en & usb_sess_vld_deb_r; 
assign hc_usb_b_sess_end_deb = hc_en & usb_b_sess_end_deb_r; 
assign hc_usb_a_vbus_vld_deb = hc_en & usb_a_vbus_vld_deb_r; 
//  grab a copy of the synchronize inputs and store it.
always @(posedge clk or posedge rst_a)
   begin : usb_last_r_PROC
   if (rst_a == 1'b 1)
      begin
      usb_id_last_r <= 1'b 0;	
      usb_se0_last_r <= 1'b 0;	
      usb_jstate_last_r <= 1'b 0;	
      usb_sess_vld_last_r <= 1'b 0;	
      usb_b_sess_end_last_r <= 1'b 0;	
      usb_a_vbus_vld_last_r <= 1'b 0;	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         usb_id_last_r <= 1'b 0;	
         usb_se0_last_r <= 1'b 0;	
         usb_jstate_last_r <= 1'b 0;	
         usb_sess_vld_last_r <= 1'b 0;	
         usb_b_sess_end_last_r <= 1'b 0;	
         usb_a_vbus_vld_last_r <= 1'b 0;	
         end
      else if (hc_en == 1'b 1 )
         begin
         usb_id_last_r <= hc_usb_id_r2;	
         usb_se0_last_r <= se0;	
         usb_jstate_last_r <= rcv;	
         usb_sess_vld_last_r <= hc_usb_sess_vld_r2;	
         usb_b_sess_end_last_r <= hc_usb_b_sess_end_r2;	
         usb_a_vbus_vld_last_r <= hc_usb_a_vbus_vld_r2;	
         end
      end
   end

assign hc_usb_id_last = hc_en & usb_id_last_r; 
assign hc_usb_se0_last = hc_en & usb_se0_last_r; 
assign hc_usb_jstate_last = hc_en & usb_jstate_last_r; 
assign hc_usb_sess_vld_last = hc_en & usb_sess_vld_last_r; 
assign hc_usb_b_sess_end_last = hc_en & usb_b_sess_end_last_r; 
assign hc_usb_a_vbus_vld_last = hc_en & usb_a_vbus_vld_last_r; 
// ----------------------------------------------------------------------------------------------------------
//  1 msec prescaler counter used for deboucing otg inputs and also used for software heart beat
// ----------------------------------------------------------------------------------------------------------
always @(posedge clk or posedge rst_a)
   begin : usb_1msec_tmr_r_PROC
   if (rst_a == 1'b 1)
      begin
      usb_1msec_tmr_r <= {14{1'b 0}};	
      usb_1msec_r <= 1'b 0;	
      end
   else
      begin
      if (rst == 1'b 1)
         begin
         usb_1msec_tmr_r <= {14{1'b 0}};	
         usb_1msec_r <= 1'b 0;	
         end
      else
         begin
         if (hc_en == 1'b 1 & usb_1msec_tmr_r == 0 & 
	sys_clken12 == 1'b 1)
            begin
	    usb_1msec_tmr_r <= ONE_MS_TMR_LD;	
            end
         else if (hc_en == 1'b 1 & sys_clken12 == 1'b 1 )
            begin
            usb_1msec_tmr_r <= usb_1msec_tmr_r - 1'b 1;	
            end
         if (hc_en == 1'b 1 & usb_1msec_tmr_r == 0 & 
	sys_clken12 == 1'b 1)
            begin
            usb_1msec_r <= 1'b 1;	
            end
         else
            begin
            usb_1msec_r <= 1'b 0;	
            end
         end
      end
   end

assign hc_usb_1msec = hc_en & usb_1msec_r; 
// -------------------------------------------------------------------------
//  Assign control/data bus inputs from sie
// -------------------------------------------------------------------------
//  Control Data Bus Definitions:
// 
//   cdb_in(40)     : out_data01_pid - This bit is represents the DATA PID
//                    received during a SETUP or Rx Data Packet. If 0 we are
//                    receiving a DATA0 PID, if 1 we are receving a DATA1
//                    PID. This value is written back to memory in the BDT
//                    control byte (bit 6).
//   cdb_in(39:36)  : bdt_wrt_pid - These 4 bits represent the current
//                    token pid value. It is valid when a TOK_DNE is
//                    active.
//   cdb_in(35:25)  : frame_num - These 11 bits represent the last frame
//                    number that was received via a SOF packet. It is
//                    valid after SOF_TOK has gone active.
//   cdb_in(24:21)  : current_endpt - These four bits represent the current
//                    endpoint that the USB is using. This value will be
//                    stored by the up_int in the stat_rg when tok_dne_set=1.
//   cdb_in(20)     : tx_datpkt_proc - This bit indicates that the usb_sie is
//                    processing a tx data packet.
//   cdb_in(19)     : out_token_proc - This bit indicates that the usb_sie is
//                    processing a rx data packet.
//   cdb_in(18:17)  : sie_dma_req - These two bits define the type of DMA
//                    request that the SIE is requesting. The bits are
//                    defined as:
// 
//                     17 16 | Type of DMA request
//                    -------+--------------------------------------
//                      0  1 | BDT read DMA request (i.e. 6 bytes)
//                      1  0 | BDT write DMA request (i.e. 6 bytes)
// 
//                    NOTE: The SIE will only activate one of the request
//                    bits at a time.
// 
//   cdb_in(16)     : dma_early_req - This signal is used to have the DMA
//                    request the bus early. No bus cycles are performed
//                    with this request signal on the bus is requested.
//                    This is useful in design when the bus_gnt latency
//                    could exceed xxx ns, (zzz sie clks).
//   cdb_in(15)     : bts_err_set - This signal when active will set the
//                    BTS_ERR interrupt in the error status register
//                    (err_stat_rg).
//   cdb_in(14)     : own_err_set - This signal when active will set the
//                    OWN_ERR interrupt in the error status register
//                    (err_stat_rg).
//   cdb_in(13)     : dma_err_set - This signal when active will set the
//                    DMA_ERR interrupt in the error status register
//                    (err_stat_rg).
//   cdb_in(12)     : bto_err_set - This signal when active will set the
//                    BTO_ERR interrupt in the error status register
//                    (err_stat_rg).
//   cdb_in(11)     : dfn8_err_set - This signal when active will set the
//                    DF8N_ERR interrupt in the error status register
//                    (err_stat_rg).
//   cdb_in(10)     : crc16_err_set - This signal when active will set the
//                    CRC16_ERR interrupt in the error status register
//                    (err_stat_rg).
//   cdb_in(9)      : crc5_err_set - This signal when active will set the
//                    CRC5_ERR interrupt in the error status register
//                    (err_stat_rg).
//   cdb_in(8)      : pid_err_set - This signal when active will set the
//                    PID_ERR interrupt in the error status register
//                    (err_stat_rg).
//   cdb_in(7:6)    : RSVD
//   cdb_in(5)      : resume_set - This signal when active will set the
//                    RESUME interrupt in the interrupt status register
//                    (istat_rg).
//   cdb_in(4)      : sleep_set - This signal when active will set the
//                    SLEEP interrupt in the interrupt status register
//                    (istat_rg).
//   cdb_in(3)      : tok_dne_set - This signal when active will set the
//                    TOK_DNE interrupt in the interrupt status register
//                    (istat_rg).
//   cdb_in(2)      : sof_tok_set - This signal when active will set the
//                    SOF_TOK interrupt in the interrupt status register
//                    (istat_rg).
//   cdb_in(1)      : error_set - This signal when active will set the
//                    ERROR interrupt in the interrupt status register
//                    (istat_rg).
//   cdb_in(0)      : usb_rst_set - This signal when active will set the
//                    USB_RST interrupt in the interrupt status register
//                    (istat_rg).
assign txd_token = cdb_in[45]; //  current tx token
assign endpt_stall_clr = cdb_in[44]; //  clear stall
assign endpt_stall_set = cdb_in[43]; //  set stall
assign txdsuspend_tokbusy_clr = cdb_in[42]; //  clear txd suspend
assign txdsuspend_tokbusy_set = cdb_in[41]; //  set txd suspend
assign out_data01_pid = cdb_in[40]; //  0 = data0 pid
assign bdt_wrt_pid = cdb_in[39:36]; //  current pid
assign frm_numh_rg = {5'b 00000, cdb_in[35:33]}; //  frame #
assign frm_numl_rg = cdb_in[32:25]; 
assign current_endpt = cdb_in[24:21]; //  current endpoint
assign tx_datpkt_proc = cdb_in[20]; //  sie processing a tx packet
assign out_token_proc = cdb_in[19]; //  sie processing a rx packet
assign sie_dma_req[3:2] = cdb_in[18:17]; //  dma requests
//  01 = read
//  10 = write
//  dma_early_req           <= cdb_in(16);  -- early dma bus request
assign bts_err_set = cdb_in[15]; //  sets bts error bit
assign own_err_set = cdb_in[14]; //  sets own error bit
assign dma_err_set = cdb_in[13]; //  sets dma error bit
assign bto_err_set = cdb_in[12]; //  sets bto error bit
assign dfn8_err_set = cdb_in[11]; //  sets df8 error bit
assign crc16_err_set = cdb_in[10]; //  sets crc error bit
assign crc5_err_set = cdb_in[9]; //  sets crc error bit
assign pid_err_set = cdb_in[8]; //  sets pid error bit
assign stall_int_set = cdb_in[7]; //  sets stall interrupt
assign hc_attach_set = cdb_in[6]; //  sets attach interrupt
assign resume_set = cdb_in[5]; //  sets resume interrupt
assign sleep_set = cdb_in[4]; //  sets sleep interrupt
assign tok_dne_set = cdb_in[3]; //  sets tok_dne interupt
assign sof_tok_set = cdb_in[2]; //  sets sof_tok interrupt
//  cdb_in(1);   -- used to be error_set
assign usb_rst_set = cdb_in[0]; //  sets usb_rst interrupt
// -------------------------------------------------------------------------
//  assign host control outputs to sie
// -------------------------------------------------------------------------
//  host only bits
assign cdb_out[43] = hc_retry_disable; //  disable retry
assign cdb_out[42] = resume_req; //  generate resume
assign cdb_out[41] = hc_rst_req; //  generate reset
assign cdb_out[40] = txdsuspend_tokbusy_r; //  suspend tx
assign cdb_out[39:32] = hc_sof_thld_rg; //  sof threshold
assign cdb_out[31:28] = hc_token_pid; //  token pid
assign cdb_out[27:24] = hc_token_endpt; //  endpoint #
// -------------------------------------------------------------------------
//  assign device control outputs to sie
// -------------------------------------------------------------------------
//   cdb_out(23:17) : addr(6:0) - This is the USB address that the usb_sie
//                    will compare with token packets.
//   cdb_out(16)    : byte_count_eq - This bit informs the usb_sie that
//                    the DMA engine has reached a terminal byte count.
//                    Data transmission should terminate when all remaining
//                    data has been read from the Tx FIFO.
//   cdb_out(15)    : odd_rst - reset the PING/PONG odd bits.
//   cdb_out(14:13) : RSVD
//   cdb_out(12:8)  : ep_ctl - Endpoint control bits.
// 
//                 12           11         10         9         8
//           +------------+-----------+----------+----------+---------+
//           | ep_ctl_dis | ep_out_en | ep_in_en | ep_stall | ep_hshk |
//           +------------+-----------+----------+----------+---------+
// 
//   cdb_out(7:2)   : bdt(7:2) - These signals are the first byte of
//                    the BDT. They contain the following control bits:
// 
//                       7       6          5       4      3     2
//                    +-----+---------+----------+------+-----+------+
//                    | own | data0/1 | vusb_own | ninc | dts | rsvd |
//                    +-----+---------+----------+------+-----+------+
// 
//   cdb_out(1)     : bdt_valid - When this bit is active high it indicates
//                    that the BDT control bits are valid.
//   cdb_out(0)     : usb_en - This is the USB enable signal from the control
//                    register.
// 
assign cdb_out[23:17] = usb_addr_r[6:0]; //  usb address
assign cdb_out[16] = byte_count_eq; //  byte count equals
assign cdb_out[15] = 1'b 0; //  use to be odd_rst
assign cdb_out[14:13] = 2'b 00; //  reserved
assign cdb_out[12:8] = endpt_ctl; //  12 en_ctl_dis
//  11 ep_out_en
//  10 ep_in_en
//  9  ep_stall
//  8  ep_hshk
assign cdb_out[7] = own; //  own
assign cdb_out[6:2] = bdt_rg0_r[6:2]; //  6 data0/1
//  5 vusb_own
//  4 ninc
//  3 dts
//  2 stall
assign cdb_out[1] = bdt_valid_r; //  valid bdt bits
assign cdb_out[0] = usb_en_int; //  enable interface  
assign endpt_ctl = current_endpt == 4'b 0000 ? endpt0_r : 
	current_endpt == 4'b 0001 ? endpt1_r : 
	current_endpt == 4'b 0010 ? endpt2_r : 
	current_endpt == 4'b 0011 ? endpt3_r : 
	current_endpt == 4'b 0100 ? endpt4_reg : 
	current_endpt == 4'b 0101 ? endpt5_reg : 
	current_endpt == 4'b 0110 ? endpt6_reg : 
	current_endpt == 4'b 0111 ? endpt7_reg : 
	current_endpt == 4'b 1000 ? endpt8_reg : 
	current_endpt == 4'b 1001 ? endpt9_reg : 
	current_endpt == 4'b 1010 ? endpt10_reg : 
	current_endpt == 4'b 1011 ? endpt11_reg : 
	current_endpt == 4'b 1100 ? endpt12_reg : 
	current_endpt == 4'b 1101 ? endpt13_reg : 
	current_endpt == 4'b 1110 ? endpt14_reg : 
	current_endpt == 4'b 1111 ? endpt15_reg : 
	5'b xxxxx; 
assign endpt_txd_odd = current_endpt == 4'b 0000 ? endpt0_txd_odd_r : 
	current_endpt == 4'b 0001 ? endpt1_txd_odd_r : 
	current_endpt == 4'b 0010 ? endpt2_txd_odd_r : 
	current_endpt == 4'b 0011 ? endpt3_txd_odd_r : 
	current_endpt == 4'b 0100 ? endpt4_txd_odd_r : 
	current_endpt == 4'b 0101 ? endpt5_txd_odd_r : 
	current_endpt == 4'b 0110 ? endpt6_txd_odd_r : 
	current_endpt == 4'b 0111 ? endpt7_txd_odd_r : 
	current_endpt == 4'b 1000 ? endpt8_txd_odd_r : 
	current_endpt == 4'b 1001 ? endpt9_txd_odd_r : 
	current_endpt == 4'b 1010 ? endpt10_txd_odd_r : 
	current_endpt == 4'b 1011 ? endpt11_txd_odd_r : 
	current_endpt == 4'b 1100 ? endpt12_txd_odd_r : 
	current_endpt == 4'b 1101 ? endpt13_txd_odd_r : 
	current_endpt == 4'b 1110 ? endpt14_txd_odd_r : 
	current_endpt == 4'b 1111 ? endpt15_txd_odd_r : 
	1'b X; 
assign endpt_rxd_odd = current_endpt == 4'b 0000 ? endpt0_rxd_odd_r : 
	current_endpt == 4'b 0001 ? endpt1_rxd_odd_r : 
	current_endpt == 4'b 0010 ? endpt2_rxd_odd_r : 
	current_endpt == 4'b 0011 ? endpt3_rxd_odd_r : 
	current_endpt == 4'b 0100 ? endpt4_rxd_odd_r : 
	current_endpt == 4'b 0101 ? endpt5_rxd_odd_r : 
	current_endpt == 4'b 0110 ? endpt6_rxd_odd_r : 
	current_endpt == 4'b 0111 ? endpt7_rxd_odd_r : 
	current_endpt == 4'b 1000 ? endpt8_rxd_odd_r : 
	current_endpt == 4'b 1001 ? endpt9_rxd_odd_r : 
	current_endpt == 4'b 1010 ? endpt10_rxd_odd_r : 
	current_endpt == 4'b 1011 ? endpt11_rxd_odd_r : 
	current_endpt == 4'b 1100 ? endpt12_rxd_odd_r : 
	current_endpt == 4'b 1101 ? endpt13_rxd_odd_r : 
	current_endpt == 4'b 1110 ? endpt14_rxd_odd_r : 
	current_endpt == 4'b 1111 ? endpt15_rxd_odd_r : 
	1'b X; 
assign rd_datao = addr_i == ID_FIELD_ADD ? ID_FIELD : 
	addr_i == ID_COMP_ADD ? COMP_ID : 
	addr_i == REV_ADD ? VUSB32_REV : 
	addr_i == ADD_INFO_ADD ? add_info : 
	addr_i == OTG_ISTAT_ADD ? otg_istat : 
	addr_i == OTG_ICTRL_ADD ? otg_ictrl_r : 
	addr_i == OTG_STAT_ADD ? otg_stat : 
	addr_i == OTG_CTRL_ADD ? otg_ctrl_r : 
	addr_i == INT_STAT_ADD ? int_stat_rg : 
	addr_i == INT_ENBL_ADD ? int_enb_r : 
	addr_i == ERR_STAT_ADD ? err_stat_rg : 
	addr_i == ERR_ENBL_ADD ? err_enb_r : 
	addr_i == USB_STAT_ADD ? stat_rdata : 
	addr_i == USB_CTRL_ADD ? ctl_rg_out : 
	addr_i == USB_ADDR_ADD ? usb_addr_r : 
	addr_i == BDT_PAG1_ADD ? bdt_page1_r : 
	addr_i == FRM_NUML_ADD ? frm_numl_rg : 
	addr_i == FRM_NUMH_ADD ? frm_numh_rg : 
	addr_i == HST_TOKN_ADD ? hc_token_r : 
	addr_i == SOF_THLD_ADD ? hc_sof_thld_rg : 
	addr_i == BDT_PAG2_ADD ? bdt_page2_r : 
	addr_i == BDT_PAG3_ADD ? bdt_page3_r : 
	addr_i == END_CTL0_ADD ? {host_wo_hub_int, hc_retry_disable, 1'b 0, 
	endpt0_r} : 
	addr_i == END_CTL1_ADD ? {3'b 000, endpt1_r} : 
	addr_i == END_CTL2_ADD ? {3'b 000, endpt2_r} : 
	addr_i == END_CTL3_ADD ? {3'b 000, endpt3_r} : 
	addr_i == END_CTL4_ADD ? {3'b 000, endpt4_r} : 
	addr_i == END_CTL5_ADD ? {3'b 000, endpt5_r} : 
	addr_i == END_CTL6_ADD ? {3'b 000, endpt6_r} : 
	addr_i == END_CTL7_ADD ? {3'b 000, endpt7_r} : 
	addr_i == END_CTL8_ADD ? {3'b 000, endpt8_r} : 
	addr_i == END_CTL9_ADD ? {3'b 000, endpt9_r} : 
	addr_i == END_CTLA_ADD ? {3'b 000, endpt10_r} : 
	addr_i == END_CTLB_ADD ? {3'b 000, endpt11_r} : 
	addr_i == END_CTLC_ADD ? {3'b 000, endpt12_r} : 
	addr_i == END_CTLD_ADD ? {3'b 000, endpt13_r} : 
	addr_i == END_CTLE_ADD ? {3'b 000, endpt14_r} : 
	addr_i == END_CTLF_ADD ? {3'b 000, endpt15_r} : 
	8'b 00000000; 
// ---------------------------------------------------------------------------
//  Requires the sync_set/reset attribute to insure no Xes in simulation
//  The following line is used when translating to Verilog...
//  _synopsys sync_set_reset "rst"
// ---------------------------------------------------------------------------
// ---------------------------------------------------------------------------
//  constant definitions for usb registers - not the ID register space
// ---------------------------------------------------------------------------
//  Define address constants Look the lower two bits aren't there!
//  ID/Revision/Add_info

endmodule // module vusb_up_int_bvci