mi_tests.v
69.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
// mi_tests.v v1 Frank Berndt
// mi tests;
// :set tabstop=4
`timescale 1ns/1ns
// definitions for address space support;
`define MI_MEM_X64L // lower x64 space (0x01xxxxxx) is implemented;
`define MI_MEM_X64H // upper x64 space (0x8xxxxxxx) is implemented;
`define MI_NA_BROM 14 // # of addr bits on brom;
`define MI_NA_BRAM 16 // # of addr bits on brom;
`define MI_NA_IRAM 15 // # of addr bits on brom;
`define MI_NA_VMEM0 6 // # of addr bits on v0;
`define MI_NA_VMEM1 6 // # of addr bits on v1;
`define MI_NA_VMEM2 8 // # of addr bits on v2;
`define MI_NA_REGS 20 // # of addr bits in register spaces;
`define MI_NA_RDCFG 24 // # of addr bits in RDRAM cfg space;
`define MI_N_SUBBLK 8 // # of subblock order random tests;
`define MI_N_BLKERR 8 // # of random block error tests;
`define MI_N_MEMRAND 256 // # of random memory tests;
// define MI_ONE_MCFG to run with only one random ddr configuration;
// copy of rom content;
// file is reset every time cpu comes out of reset;
reg [31:0] mi_brom_data [0:4095];
reg [31:0] mi_boot_word;
// pattern seeds for virage cachelines;
reg [31:0] mi_vpat [0:15];
// setup brom_data from initialization file;
initial
$readmemh("tests/brom.dat", mi_brom_data);
// wire hooks into rtl or gate-level;
wire [2:0] bb_v_porst;
`ifdef SIMGATE
assign bb_v_porst = { vsim.bb.v_porst_2_, vsim.bb.v_porst_1_, vsim.bb.v_porst_0_ };
`else // SIMGATE
assign bb_v_porst = vsim.bb.v_porst;
`endif // SIMGATE
// monitor virage charge-pump porst;
reg [2:0] mi_porst;
initial
mi_porst = 0;
always @(negedge bb_v_porst[0])
mi_porst[0] = 1;
always @(negedge bb_v_porst[1])
mi_porst[1] = 1;
always @(negedge bb_v_porst[2])
mi_porst[2] = 1;
// time of button push for button tests;
reg [63:0] mi_but_time;
// setup mi cbus request monitor;
task mi_cbus_mon;
input write; // cbus writes ok;
input read; // cbus reads ok;
input dma; // cbus dma ok;
begin
vsim.cbus_mon.mi_req.write_ok = write;
vsim.cbus_mon.mi_req.read_ok = read;
vsim.cbus_mon.mi_req.dma_ok = dma;
end
endtask
// check state of reset;
task mi_check_rst;
input cold; // expected cold reset;
input warm; // expected warm reset;
input [2:0] div; // expected divide mode;
begin
if(coldrst_l !== cold)
$display("ERROR: %t: %M: coldrst_l %b exp %b", $time, coldrst_l, cold);
if(warmrst_l !== warm)
$display("ERROR: %t: %M: warmrst_l %b exp %b", $time, warmrst_l, warm);
if(divmode !== div)
$display("ERROR: %t: %M: divmode %b exp %b", $time, divmode, div);
end
endtask
// check state of interrupt;
task mi_check_intr;
input [2:0] intr; // which intr bit to check;
input val; // expected interrupt;
reg xintr;
begin
xintr = int_l >> intr;
if(xintr !== val)
$display("ERROR: %t: %M: int_l[%0d] %b exp %b", $time, intr, xintr, val);
end
endtask
// check state of nmi;
task mi_check_nmi;
input val; // expected nmi;
input [2:0] spc; // nmi latency in hardware;
begin
req_spacing(spc);
if(nmi_l !== val)
$display("ERROR: %t: %M: nmi_l %b exp %b", $time, nmi_l, val);
end
endtask
// check state of secure mode;
task mi_check_secure;
input val;
reg secure;
begin
secure = vsim.bb.bcp.mi.secure;
if(secure !== val)
$display("ERROR: %t: %M: secure mode %b exp %b", $time, secure, val);
end
endtask
// check secure timer enable;
task mi_check_sec_timer;
input val;
reg stim_on;
begin
stim_on = vsim.bb.bcp.mi.stim_on;
if(stim_on !== val)
$display("ERROR: %t: %M: secure timer %b exp %b", $time, stim_on, val);
end
endtask
// check status of ai/vi reset;
task mi_avrst_check;
input exp; // expected value;
reg rst; // signal to check;
begin
rst = vsim.bb.bcp.ai.reset_l;
if(rst !== exp)
$display("ERROR: %t: %M: ai.reset_l %b exp %b", $time, rst, exp);
rst = vsim.bb.bcp.ai.reset_l;
if(rst !== exp)
$display("ERROR: %t: %M: vi.reset_l %b exp %b", $time, rst, exp);
end
endtask
// test mi defaults after reset;
task mi_after_reset;
input [2:0] div; // expected divmode;
reg [31:0] wdata; // write data;
reg [31:0] rdata; // read data;
reg [31:0] xdata; // other data;
reg [31:0] exp; // expected data;
begin
// boot word must be from brom after reset;
mi_boot_word = mi_brom_data[0];
// test interrupt lines;
// INTR_ERR may be active;
mi_check_intr(`INTR_RCP, 1);
mi_check_intr(`INTR_DEV, 1);
mi_check_intr(`INTR_BUT, 1);
mi_check_intr(`INTR_RSVD, 1);
// test compatible registers;
$display("test: %M: MI_MODE");
sread(`MI_MODE, `CPU_SIZE_4, rdata);
exp = 32'd0;
rd_check(0, exp, 32'hffff_ffff, 0);
$display("test: %M: MI_VERSION");
sread(`MI_VERSION, `CPU_SIZE_4, rdata);
exp = 32'h02_02_b0_b0;
rd_check(0, exp, 32'hffff_ffff, 0);
$display("test: %M: MI_INTR");
sread(`MI_INTR, `CPU_SIZE_4, rdata);
exp = 32'd0;
rd_check(0, exp, 32'hffff_ffff, 0);
$display("test: %M: MI_MASK");
sread(`MI_MASK, `CPU_SIZE_4, rdata);
exp = 32'd0;
rd_check(0, exp, 32'hffff_ffff, 0);
// test new registers;
$display("test: %M: MI_CTRL");
sread(`MI_CTRL, `CPU_SIZE_4, rdata);
exp = { 12'd0, 7'b0000000, 2'b00, div, 8'd0 };
rd_check(0, exp, 32'hffff_ffff, 0);
// reset armed the secure mode trigger, but secure mode
// is not on yet, nmi must not be asserted;
// single fetch from 1fc0_0000 turns on secure mode;
$display("test: %M: MI_SEC_MODE");
mi_sec_mode_enter(1);
sread(`MI_SEC_MODE, `CPU_SIZE_4, rdata);
exp = { 5'd0, 3'd0, 16'd0, 8'b0000_0011 };
rd_check(0, exp, 32'hffff_ffff, 0);
// leave secure timer off;
// check that timer value and count are the same;
$display("test: %M: MI_SEC_TIMER");
mi_check_sec_timer(0);
wdata[31:16] = 16'd0;
wdata[15:0] = $random;
swrite(`MI_SEC_TIMER, `CPU_SIZE_4, wdata);
sread(`MI_SEC_TIMER, `CPU_SIZE_4, rdata);
exp = { wdata[15:0], wdata[15:0] };
rd_check(0, exp, 32'hffff_ffff, 0);
mi_check_sec_timer(0);
// error info register;
$display("test: %M: MI_ERR_INFO");
sread(`MI_ERR_INFO, `CPU_SIZE_4, rdata);
exp = 32'd0;
rd_check(0, exp, 32'hffff_fff0, 0);
// random bit register;
$display("test: %M: MI_RANDOM");
sread(`MI_RANDOM, `CPU_SIZE_4, rdata);
exp = 32'd0;
rd_check(0, exp, 32'hffff_fffe, 0);
// video control register;
$display("test: %M: MI_AVCTRL");
mi_avrst_check(0);
sread(`MI_AVCTRL, `CPU_SIZE_4, rdata);
exp = { 6'd0, 26'h010_0003 };
rd_check(0, exp, 32'h03ff_ffff, 0);
// test extended intr register;
$display("test: %M: MI_EINTR");
sread(`MI_EINTR, `CPU_SIZE_4, rdata);
exp = 32'd0;
exp[25] = vsim.fl_md;
exp[24] = vsim.button;
rd_check(0, exp, 32'hf8ff_ffff, 0);
// test extended mask register;
$display("test: %M: MI_EMASK");
sread(`MI_EMASK, `CPU_SIZE_4, rdata);
exp = 32'd0;
rd_check(0, exp, 32'hffff_ffff, 0);
// virage time base;
// check that divider decrements;
$display("test: %M: MI_SEC_VTIME");
sread(`MI_SEC_VTIME, `CPU_SIZE_4, rdata);
exp = 32'd62;
rd_check(0, exp, 32'h0000_00ff, 0);
// test virage control registers;
// test virage nms registers;
vx_after_reset(0);
vx_after_reset(1);
vx_after_reset(2);
end
endtask
// test virage time base divider;
// give mi 8 sysclk per read;
// test does not work if divider is smaller than two cpu reads;
task mi_sec_vtime;
input [7:0] div; // expected divider;
reg [31:0] wdata; // write data;
reg [31:0] rdata; // read data;
reg [31:0] xdata; // second read data;
integer n;
begin
// write to timer register;
// this shouls restart the timer clock;
$display("test: %M: MI_SEC_VTIME divide %0d", div);
wdata = { 24'bx, div };
swrite(`MI_SEC_VTIME, `CPU_SIZE_4, wdata);
sread(`MI_SEC_VTIME, `CPU_SIZE_4, rdata);
rd_check(0, wdata, 32'h0000_00ff, 0);
if(rdata[16] !== 1'b0)
$display("ERROR: %t: %M: vtimer clock %b exp 0", $time, rdata[16]);
// wait for timer clock to change to 1;
for(n = div / 8; n > 0; n = n - 1) begin
sread(`MI_SEC_VTIME, `CPU_SIZE_4, xdata);
rd_check(0, wdata, 32'h0000_00ff, 0);
if(rdata[15:8] === xdata[15:8])
$display("ERROR: %t: %M: vtimer not decrementing, 0x%h", $time, xdata);
if(xdata[16] === 1'b1)
n = -1;
end
if(n == 0)
$display("ERROR: %t: %M: vtimer clock %b exp 1", $time, xdata[16]);
end
endtask
// test mi video control register;
task mi_avctrl;
reg [31:0] rdata; // read data;
reg [31:0] exp; // expected data;
begin
// take av out of reset;
$display("test: %M: MI_AVCTRL, rw");
exp = { 6'bx, 26'h2aa_aaaa };
swrite(`MI_AVCTRL, `CPU_SIZE_4, exp);
sread(`MI_AVCTRL, `CPU_SIZE_4, rdata);
rd_check(0, exp, 32'h03ff_ffff, 0);
mi_avrst_check(1);
// put av back into reset;
$display("test: %M: MI_AVCTRL, rw");
exp = { 6'bx, 26'h155_5555 };
swrite(`MI_AVCTRL, `CPU_SIZE_4, exp);
sread(`MI_AVCTRL, `CPU_SIZE_4, rdata);
rd_check(0, exp, 32'h03ff_ffff, 0);
mi_avrst_check(0);
end
endtask
// test mi control register;
task mi_ctrl;
reg [31:0] wdata; // write data;
reg [2:0] div; // new divmode;
begin
// test rw bits;
test_reg(`MI_CTRL, 32'h000f_e000, 32'hffff_e7ff, 32'd0);
div = 3'b010;
// test soft reset;
$display("test: %M: soft reset");
wdata = { 12'd0, 7'b0000000, 2'b10, 3'bxxx, 8'd0 };
swrite(`MI_CTRL, `CPU_SIZE_4, wdata);
swrite(`MI_CTRL, `CPU_SIZE_4, wdata);
mi_check_rst(1, 0, 3'b000);
wait_out_of_reset;
mi_after_reset(3'b000);
// test hard reset;
$display("test: %M: hard reset");
wdata = { 12'd0, 7'b0000000, 2'bx1, div, 8'd0 };
swrite(`MI_CTRL, `CPU_SIZE_4, wdata);
swrite(`MI_CTRL, `CPU_SIZE_4, wdata);
mi_check_rst(0, 0, div);
wait_out_of_reset;
mi_after_reset(div);
end
endtask
// test interrupt mask register;
// word sfor both MI_MASK or MI_EMASK;
task mi_intr_mask;
input [31:0] addr; // register address;
input [4:0] nmask; // # of mask bits to test;
reg [31:0] wdata; // write data;
reg [31:0] mask; // expected intr mask;
reg [31:0] rdata; // read data;
reg [4:0] n;
begin
// clear all bits at once;
$display("test: %M: addr 0x%h", addr);
$display("test: %M: clear all");
wdata = 32'h5555_5555;
swrite(addr, `CPU_SIZE_4, wdata);
sread(addr, `CPU_SIZE_4, rdata);
rd_check(0, 32'd0, 32'hffff_ffff, 0);
// set each bit, one by one;
mask = 0;
for(n = 0; n <= 13; n = n + 1) begin
$display("test: %M: set mask %0d", n);
wdata = 1 << ((n * 2) + 1);
swrite(addr, `CPU_SIZE_4, wdata);
if(n < nmask)
mask = mask | (1 << n);
sread(addr, `CPU_SIZE_4, rdata);
rd_check(0, mask, 32'hffff_ffff, 0);
end
// clear all mask bits, on by one;
for(n = 0; n <= 13; n = n + 1) begin
$display("test: %M: clear mask %0d", n);
wdata = 1 << (n * 2);
swrite(addr, `CPU_SIZE_4, wdata);
if(n < nmask)
mask = mask & ~(1 << n);
sread(addr, `CPU_SIZE_4, rdata);
rd_check(0, mask, 32'hffff_ffff, 0);
end
// set all mask bits at once;
// test that all 0s and all 1s do not change mask;
$display("test: %M: no modification");
wdata = 32'h0aaa_aaaa;
swrite(addr, `CPU_SIZE_4, wdata);
swrite(addr, `CPU_SIZE_4, 32'h0000_0000);
swrite(addr, `CPU_SIZE_4, 32'hffff_ffff);
sread(addr, `CPU_SIZE_4, rdata);
mask = 32'hffff_ffff >> (32 - nmask);
rd_check(0, mask, 32'hffff_ffff, 0);
end
endtask
// check kick of secure mode;
task mi_sec_mode_kick;
input exp_nmi; // expected nmi;
reg [31:0] rdata; // read data;
begin
$display("%t: %M", $time);
mi_check_nmi(exp_nmi, 0);
mi_check_secure(0);
sread(`MI_SEC_MODE, `CPU_SIZE_4, rdata);
rd_check(0, 32'd0, 32'hffff_ffff, 0);
mi_check_nmi(0, 0);
mi_check_secure(0);
end
endtask
// check entering of secure mode;
task mi_sec_mode_enter;
input exp_nmi; // expected nmi;
reg [31:0] rdata; // read data;
begin
// nmi should be as expected, but secure mode not on yet;
// single read from 1fc0_0000 should turn on secure mode;
// read must return first word from boot space;
$display("%t: %M", $time);
mi_check_nmi(exp_nmi, 0);
mi_check_secure(0);
sread(`BASE_BOOT, `CPU_SIZE_4, rdata);
rd_check(0, mi_boot_word, 32'hffff_ffff, 0);
mi_check_nmi(exp_nmi, 0);
mi_check_secure(1);
end
endtask
// set boot word;
task mi_set_boot_word;
input reset;
begin
if(reset)
mi_boot_word = mi_brom_data[0];
else
sread(`MI_BRAM_FLIP, `CPU_SIZE_4, mi_boot_word);
end
endtask
// check leaving of secure mode;
task mi_sec_mode_leave;
reg [31:0] mode; // secure mode data;
begin
// nmi should be deasserted after leaving;
// do not touch IRAM_EN, SBUT_EN and RESET bits;
// update boot word based on RESET bit;
$display("%t: %M", $time);
sread(`MI_SEC_MODE, `CPU_SIZE_4, mode);
mode[7:2] = 6'd0;
mode[0] = 0;
mi_set_boot_word(mode[1]);
swrite(`MI_SEC_MODE, `CPU_SIZE_4, mode);
mi_check_nmi(1, 2);
mi_check_secure(0);
end
endtask
// check software assertion of nmi;
task mi_check_nmi_force;
input [7:2] wdata; // secure mode reg write data;
reg [31:0] rdata; // read data;
reg [31:0] exp; // expected data;
reg exp_nmi; // expect a nmi;
begin
`ifdef SIMGATE
$display("test: %M: Warning: not done on gate-level");
`else // SIMGATE
$display("test: %M: 0x%h", wdata);
exp_nmi = ~|wdata;
vsim.bb.bcp.mi.sec_mode[7:2] = wdata;
swrite(`MI_SEC_MODE, `CPU_SIZE_4, { 5'bx, 3'd0, 16'bx, 6'b111111, 2'b01 });
mi_check_nmi(exp_nmi, 2);
sread(`MI_SEC_MODE, `CPU_SIZE_4, rdata);
exp = { 5'd0, 3'd0, 16'd0, wdata, 2'b01 };
rd_check(0, exp, 32'hffff_ffff, 0);
mi_check_nmi(exp_nmi, 0);
`endif // SIMGATE
end
endtask
// test secure mode functionality;
// returns in secure mode;
task mi_sec_mode;
reg [31:0] wdata; // write data;
reg [31:0] rdata; // read data;
begin
// check that 0ing SFATAL, STIMER and SAPP deassert nmi;
// clear out all state, except secure mode;
$display("test: %M: check nmi re-enable");
wdata = { 5'bx, 3'd0, 16'bx, 8'b0000_0001 };
swrite(`MI_SEC_MODE, `CPU_SIZE_4, wdata);
mi_check_nmi(1, 2);
// check that reading MI_SEC_MODE returns current state
// and that it does not trigger entering of secure mode
// in secure mode;
sread(`MI_SEC_MODE, `CPU_SIZE_4, rdata);
wdata = { 5'd0, 3'd0, 16'd0, 8'b0000_0001 };
rd_check(0, wdata, 32'hffff_ffff, 0);
mi_check_nmi(1, 0);
// check that setting SMD, SBUT, STRAP, SFATAL, STIMER or SAPP assert nmi;
mi_check_nmi_force(6'b100000);
mi_check_nmi_force(6'b000000);
mi_check_nmi_force(6'b010000);
mi_check_nmi_force(6'b000000);
mi_check_nmi_force(6'b001000);
mi_check_nmi_force(6'b000000);
mi_check_nmi_force(6'b000100);
mi_check_nmi_force(6'b000000);
mi_check_nmi_force(6'b000010);
mi_check_nmi_force(6'b000000);
mi_check_nmi_force(6'b000001);
mi_check_nmi_force(6'b000000);
end
endtask
// check button sts/intr in MI_EINTR;
task mi_button_check;
input exp_sts; // expected button status;
input exp_intr; // expected button intr;
reg [31:0] rdata; // read data;
begin
sread(`MI_EINTR, `CPU_SIZE_4, rdata);
if(rdata[24] !== exp_sts) begin
$display("ERROR: %t: %M: MI_EINTR button sts %b exp %b",
$time, rdata[24], exp_sts);
end
if(rdata[12] !== exp_intr) begin
$display("ERROR: %t: %M: MI_EINTR button intr %b exp %b",
$time, rdata[12], exp_intr);
end
end
endtask
// test button interrupt/pre-nmi;
// must be in secure mode to test;
task mi_button_test;
input trap; // test button trap;
reg [31:0] wdata; // write data;
reg [31:0] rdata; // read data;
integer n;
begin
// check button timer;
// release button press that powered on system;
// set si joy channel clock to fastest;
// clear button mask to clear previous interrupts;
$display("test: %M");
vsim.button = 0;
mi_cbus_mon(1, 0, 0);
swrite(`SI_CONFIG, `CPU_SIZE_4, 32'h0);
swrite(`MI_EMASK, `CPU_SIZE_4, 32'h0100_0000);
swrite(`MI_EMASK, `CPU_SIZE_4, 32'h0200_0000);
mi_check_intr(`INTR_BUT, 1);
mi_cbus_mon(0, 0, 0);
// enable secure button trap;
// assumed to be called in non-secure mode;
if(trap) begin
if(vsim.bb.bcp.mi.secure === 0)
mi_sec_mode_enter(0);
sread(`MI_SEC_MODE, `CPU_SIZE_4, rdata);
rdata[25] = 1;
rdata[6] = 0;
swrite(`MI_SEC_MODE, `CPU_SIZE_4, rdata);
sread(`MI_SEC_MODE, `CPU_SIZE_4, rdata);
if(rdata[25] !== 1)
$display("ERROR: %t: %M: MI_SEC_MODE SBUT_EN %b, exp 1", $time, rdata[25]);
if(rdata[6] !== 0)
$display("ERROR: %t: %M: MI_SEC_MODE SBUT %b, exp 0", $time, rdata[6]);
end
// push button;
// check button intr assertion;
// check MI_EINTR button and interrupt status;
$display("test: %M: button push");
vsim.button = 1;
mi_but_time = $time;
repeat(5) @(posedge sysclk);
mi_check_intr(`INTR_BUT, 0);
mi_button_check(1, 1);
// release button;
// check button intr deassertion;
// check MI_EINTR button and interrupt status;
$display("test: %M: button release");
vsim.button = 0;
repeat(5) @(posedge sysclk);
mi_check_intr(`INTR_BUT, 0);
mi_button_check(0, 1);
// test secure trap;
if(trap)
mi_button_finish;
// clear button interrupt status;
// check MI_EINTR button and interrupt status;
// not for button trap testing;
$display("test: %M: button intr clear");
swrite(`MI_EMASK, `CPU_SIZE_4, 32'h0100_0000);
mi_button_check(0, 0);
mi_check_intr(`INTR_BUT, 1);
end
endtask
// finish button test;
// this must be run before the button timer expires;
task mi_button_finish;
reg [31:0] wdata; // write data;
reg [31:0] rdata; // read data;
reg [63:0] dt; // time delta;
integer n;
begin
// leave secure mode;
// wait for timer to trap, nmi is only indication;
// timer must tick for 2^20 clocks;
$display("test: %M: waiting for button trap");
dt = $time - mi_but_time;
dt = ((dt * 1000) / vsim.sysclk_period) >> 10;
if(vsim.bb.bcp.mi.secure === 1)
mi_sec_mode_leave;
for(n = 1025 - dt; n >= 0; n = n - 1) begin
if((nmi_l === 1'b0) & (n > 1))
$display("ERROR: %t: %M: premature button trap, n=%0d", $time, n);
repeat(1024) @(posedge sysclk);
end
// reenter secure mode;
// check that button trap is set;
mi_sec_mode_enter(0);
sread(`MI_SEC_MODE, `CPU_SIZE_4, rdata);
if(rdata[6] !== 1)
$display("ERROR: %t: %M: SBUT %b exp 1", $time, rdata[6]);
// disable button timer;
$display("test: %M: disabling button trap");
rdata[25] = 0;
rdata[6] = 0;
swrite(`MI_SEC_MODE, `CPU_SIZE_4, rdata);
sread(`MI_SEC_MODE, `CPU_SIZE_4, rdata);
mi_check_nmi(1, 0);
if(rdata[25] !== 0)
$display("ERROR: %t: %M: MI_SEC_MODE SBUT_EN %b, exp 0", $time, rdata[25]);
if(rdata[6] !== 0)
$display("ERROR: %t: %M: MI_SEC_MODE SBUT %b, exp 0", $time, rdata[6]);
end
endtask
// test secure mode timer;
// must be called in secure mode;
task mi_sec_timer;
reg [31:0] wdata; // write data;
reg [31:0] rdata; // read data;
reg tdec; // timer decrements;
begin
// initialize secure timer;
// set fastest pre-scaler, x2;
// set timer so that the non-secure tests finish
// before the timer goes off and triggers nmi;
$display("test: %M: secure timer trigger");
wdata[31:16] = 16'd1;
wdata[15:0] = 16'd16;
swrite(`MI_SEC_TIMER, `CPU_SIZE_4, wdata);
// check that timer value is corect;
// check that timer counter decrements;
req_spacing(4);
sread(`MI_SEC_TIMER, `CPU_SIZE_4, rdata);
mi_check_sec_timer(1);
if(rdata[15:0] !== wdata[15:0]) begin
$display("ERROR: %t: %M: secure timer value 0x%h exp 0x%h",
$time, rdata[15:0], wdata[15:0]);
end
tdec = (rdata[31:16] < wdata[15:0]) & (rdata[31:16] >= 16'd0);
if( !tdec) begin
$display("ERROR: %t: %M: secure timer decrement 0x%h from 0x%h",
$time, rdata[31:16], wdata[15:0]);
end
// leave secure mode;
// writes to MI_SEC_TIMER should be dropped;
// reads must return 0;
mi_sec_mode_leave;
swrite(`MI_SEC_TIMER, `CPU_SIZE_4, 32'bx);
sread(`MI_SEC_TIMER, `CPU_SIZE_4, rdata);
rd_check(0, 32'd0, 32'hffff_ffff, 0);
// secure timer should have gone off;
// enter secure mode by doing the boot fetch;
// write in non-secure should have been ignored;
mi_check_sec_timer(1);
mi_check_nmi(1, 0);
repeat(16*2) @(posedge sysclk);
mi_sec_mode_enter(0);
sread(`MI_SEC_TIMER, `CPU_SIZE_4, rdata);
rd_check(0, wdata, 32'h0000_ffff, 0);
// disable secure timer;
wdata[31:16] = 16'd0;
wdata[15:0] = $random;
swrite(`MI_SEC_TIMER, `CPU_SIZE_4, wdata);
sread(`MI_SEC_TIMER, `CPU_SIZE_4, rdata);
mi_check_sec_timer(0);
rd_check(0, wdata, 32'h0000_ffff, 0);
end
endtask
// targeted test for single requests to memory;
task mi_mem_sglwalk;
input [31:0] space; // address space;
input [5:0] nabits; // # of address bits;
input [1:0] size; // data size;
input reqspc; // use random request spacing;
reg [31:0] addr; // address;
reg [31:0] amask; // address mask;
reg [31:0] saddr [2:29]; // single address;
reg [31:0] sdata [2:29]; // single data;
reg [31:0] smask [2:29]; // single data mask;
integer n;
begin
// test writes;
$display("test: %M: space 0x%h, size %0d, spacing %b", space, size + 1, reqspc);
amask = 32'hffff_ffff >> (32 - nabits);
amask[1:0] = 2'b00;
// walk one address bit;
// randomize request spacing and data;
$display("test: %M: write, addr walking 1");
for(n = 2; n < nabits; n = n + 1) begin
addr = space | (1 << n);
addr[1:0] = sgl_addr(size);
saddr[n] = addr;
sdata[n] = $random;
smask[n] = sgl_mask(addr[1:0], size);
if(reqspc)
req_spacing($random);
swrite(addr, size, sdata[n]);
end
$display("test: %M: write, addr walking 0");
for(n = 2; n < nabits; n = n + 1) begin
addr = saddr[n];
addr = addr ^ amask;
if(reqspc)
req_spacing($random);
swrite(addr, size, ~sdata[n]);
end
// read back single data and check;
$display("test: %M: compare, addr walking 1");
for(n = 2; n < nabits; n = n + 1) begin
addr = saddr[n];
if(reqspc)
req_spacing($random);
sread(addr, size, data[0]);
rd_check(0, sdata[n], smask[n], 0);
end
$display("test: %M: compare, addr walking 0");
for(n = 2; n < nabits; n = n + 1) begin
addr = saddr[n];
addr = addr ^ amask;
if(reqspc)
req_spacing($random);
sread(addr, size, data[0]);
rd_check(0, ~sdata[n], smask[n], 0);
end
end
endtask
// targeted test for single requests to memory;
task mi_mem_blkwalk;
input [31:0] space; // address space;
input [5:0] nabits; // # of address bits;
input [1:0] size; // data size;
input reqspc; // use random request spacing;
reg [31:0] addr; // address;
reg [31:0] amask; // address mask;
reg [31:0] baddr [2:29]; // block address;
reg [31:0] bdata [2:29]; // block data;
integer n;
begin
// test writes;
$display("test: %M: space 0x%h, size %0d, spacing %b", space, 8 << size, reqspc);
amask = 32'hffff_ffff >> (32 - nabits);
amask[4:0] = 5'd0;
// walk one address bit;
// randomize request spacing and data;
$display("test: %M: write, addr walking 1");
for(n = 5; n < nabits; n = n + 1) begin
addr = space | (1 << n);
addr[4:2] = blk_addr(size);
baddr[n] = addr;
bdata[n] = $random;
if(reqspc)
req_spacing($random);
blk_data(bdata[n]);
bwrite(addr, size);
end
$display("test: %M: write, addr walking 0");
for(n = 5; n < nabits; n = n + 1) begin
addr = baddr[n];
addr = addr ^ amask;
if(reqspc)
req_spacing($random);
blk_data(~bdata[n]);
bwrite(addr, size);
end
// read back block data and check;
// read through same space it was written into;
$display("test: %M: compare, addr walking 1");
for(n = 5; n < nabits; n = n + 1) begin
addr = baddr[n];
if(reqspc)
req_spacing($random);
bread(addr, size);
blk_check(size, bdata[n], 0, 3'b000);
end
$display("test: %M: compare, addr walking 0");
for(n = 5; n < nabits; n = n + 1) begin
addr = baddr[n];
addr = addr ^ amask;
if(reqspc)
req_spacing($random);
bread(addr, size);
blk_check(size, ~bdata[n], 0, 3'b000);
end
end
endtask
// test sub-block order;
// the r4300 aligns physical addresses on doubleword boundaries;
// address bits [2:0] are always 0;
task mi_mem_subblk;
input [31:0] space; // address space;
input [5:0] nabits; // # of address bits;
input [1:0] size; // data size;
input reqspc; // use random request spacing;
reg [31:0] addr; // block address;
reg [31:0] amask; // address mask;
reg [4:2] waddr; // write word address;
reg [31:0] bdata; // block data;
integer nx; // # of random tests;
integer n, ndw; // double word index;
begin
// only for block reads;
// block writes are always sequential;
// use fixed number of random cachelines;
$display("test: %M: space 0x%h, size %0d, spacing %b", space, 8 << size, reqspc);
amask = 32'hffff_ffff >> (32 - nabits);
amask[4:0] = 5'd0;
// write sequential;
// pick random address and data;
for(nx = 0; nx < `MI_N_SUBBLK; nx = nx + 1) begin
addr = space | ($random & amask);
waddr = blk_addr(size);
addr[4:2] = waddr;
$display("test: %M: write sequential, addr 0x%h", addr);
bdata = $random;
blk_data(bdata);
if(reqspc)
req_spacing($random);
bwrite(addr, size);
// read and compare all subblock orders;
ndw = (1 << size);
for(n = 0; n < ndw; n = n + 1) begin
addr[4:2] = waddr | (n << 1);
$display("test: %M: read subblock %h", addr[4:3]);
if(reqspc)
req_spacing($random);
bread(addr, size);
blk_check(size, bdata, 0, n << 1);
end
end
end
endtask
// check rom with single reads;
task mi_rom_sgl;
input [31:0] space; // address space;
input [5:0] nabits; // # of address bits;
input [1:0] size; // data size;
input reqspc; // use random request spacing;
reg [31:0] addr; // address;
reg [31:0] amask; // address mask;
reg [31:0] smask; // byte mask;
reg [13:2] raddr; // rom address;
integer n;
begin
$display("test: %M: size %0d, spacing %b", size + 1, reqspc);
amask = 32'hffff_ffff >> (32 - nabits);
amask[1:0] = 2'b00;
$display("test: %M: compare, addr walking 1");
for(n = 2; n < nabits; n = n + 1) begin
addr = space | (1 << n);
addr[1:0] = sgl_addr(size);
smask = sgl_mask(addr[1:0], size);
raddr = addr[13:2];
if(reqspc)
req_spacing($random);
sread(addr, size, data[0]);
rd_check(0, mi_brom_data[raddr], smask, 0);
end
$display("test: %M: compare, addr walking 0");
for(n = 2; n < nabits; n = n + 1) begin
addr = space | (1 << n);
addr[1:0] = sgl_addr(size);
addr = addr ^ amask;
smask = sgl_mask(addr[1:0], size);
raddr = addr[13:2];
if(reqspc)
req_spacing($random);
sread(addr, size, data[0]);
rd_check(0, mi_brom_data[raddr], smask, 0);
end
end
endtask
// check rom block response;
task mi_rom_blk_check;
input [1:0] size; // data size;
input [13:2] raddr; // rom address;
input err; // expect error;
integer n;
begin
if(size == `CPU_SIZE_RSVD)
$display("ERROR: %t: %M: blk size %b", $time, size);
rd_check(0, mi_brom_data[raddr ^ 0], 32'hffffffff, err);
rd_check(1, mi_brom_data[raddr ^ 1], 32'hffffffff, err);
if((size == `CPU_SIZE_16) | (size == `CPU_SIZE_32)) begin
rd_check(2, mi_brom_data[raddr ^ 2], 32'hffffffff, err);
rd_check(3, mi_brom_data[raddr ^ 3], 32'hffffffff, err);
end
if(size == `CPU_SIZE_32) begin
rd_check(4, mi_brom_data[raddr ^ 4], 32'hffffffff, err);
rd_check(5, mi_brom_data[raddr ^ 5], 32'hffffffff, err);
rd_check(6, mi_brom_data[raddr ^ 6], 32'hffffffff, err);
rd_check(7, mi_brom_data[raddr ^ 7], 32'hffffffff, err);
end
end
endtask
// check rom with block reads;
task mi_rom_blk;
input [31:0] space; // address space;
input [5:0] nabits; // # of address bits;
input [1:0] size; // data size;
input reqspc; // use random request spacing;
reg [31:0] addr; // address;
reg [31:0] amask; // address mask;
reg [13:2] raddr; // rom address;
integer n;
begin
$display("test: %M: size %0d, spacing %b", size + 1, reqspc);
amask = 32'hffff_ffff >> (32 - nabits);
amask[4:0] = 5'b00;
// read back block data and check;
// read through same space it was written into;
$display("test: %M: compare, addr walking 1");
for(n = 5; n < nabits; n = n + 1) begin
addr = space | (1 << n);
addr[4:2] = blk_addr(size);
if(reqspc)
req_spacing($random);
bread(addr, size);
mi_rom_blk_check(size, addr[13:2], 0);
end
$display("test: %M: compare, addr walking 0");
for(n = 5; n < nabits; n = n + 1) begin
addr = space | (1 << n);
addr[4:2] = blk_addr(size);
addr = addr ^ amask;
if(reqspc)
req_spacing($random);
bread(addr, size);
mi_rom_blk_check(size, addr[13:2], 0);
end
end
endtask
// test rom sub-block order;
task mi_rom_subblk;
input [31:0] space; // address space;
input [5:0] nabits; // # of address bits;
input [1:0] size; // data size;
input reqspc; // use random request spacing;
reg [31:0] addr; // block address;
reg [31:0] amask; // address mask;
reg [4:2] waddr; // write word address;
integer nx; // # of random tests;
integer n, ndw; // double word index;
begin
// only for block reads;
// block writes are always sequential;
// use fixed number of random cachelines;
$display("test: %M: space 0x%h, size %0d, spacing %b", space, 8 << size, reqspc);
amask = 32'hffff_ffff >> (32 - nabits);
amask[4:0] = 5'd0;
// pick random addresses;
// read and compare all subblock orders;
for(nx = 0; nx < `MI_N_SUBBLK; nx = nx + 1) begin
addr = space | ($random & amask);
waddr = blk_addr(size);
ndw = (1 << size);
for(n = 0; n < ndw; n = n + 1) begin
addr[4:2] = waddr | (n << 1);
$display("test: %M: read subblock %h", addr[4:3]);
if(reqspc)
req_spacing($random);
bread(addr, size);
mi_rom_blk_check(size, addr[13:2], 0);
end
end
end
endtask
// fill memory with pattern;
// increasing number of 1s in address;
// fill with d-cache writes (sequential);
// used for touch test;
task mi_mem_fill_pat;
input [31:0] addr; // address space;
input [5:0] nabits; // # of address bits;
input [31:0] pxor; // patterrn xor;
integer n;
begin
$display("test: %M: space 0x%h", addr);
addr = addr & (32'hffff_ffff << nabits);
for(n = 4; n <= nabits; n = n + 1) begin
req_spacing($random);
blk_data(addr ^ pxor);
bwrite(addr, `CPU_SIZE_16);
addr = addr | (1 << n);
pxor = { pxor[30:0], pxor[31] };
end
end
endtask
// compare memory with pattern;
// increasing number of 1s in address;
// read d-cache size with random sub-block order;
// used for touch test;
task mi_mem_cmp_pat;
input [31:0] addr; // address space;
input [5:0] nabits; // # of address bits;
input [31:0] pxor; // patterrn xor;
reg [2:0] sbo; // subblock order;
integer n;
begin
$display("test: %M: space 0x%h", addr);
addr = addr & (32'hffff_ffff << nabits);
sbo[2] = 0;
for(n = 4; n <= nabits; n = n + 1) begin
sbo[1:0] = $random;
req_spacing($random);
addr[3:2] = sbo[1:0];
bread(addr, `CPU_SIZE_16);
addr[3:2] = 2'b00;
blk_check(`CPU_SIZE_16, addr ^ pxor, 0, sbo);
addr = addr | (1 << n);
pxor = { pxor[30:0], pxor[31] };
end
end
endtask
// check that memory pattern is 0;
// increasing number of 1s in address;
// block reads with random size and sub-block order;
// randomize lower address bits for cover more space;
// used for touch test;
task mi_mem_cmp_zero;
input [31:0] addr; // address space;
input [5:0] nabits; // # of address bits;
reg [1:0] size; // request size;
integer n, w;
begin
$display("test: %M: space 0x%h", addr);
addr = addr & (32'hffff_ffff << nabits);
for(n = 5; n <= nabits; n = n + 1) begin
size = $random;
while(size == 2'b11)
size = $random;
addr = addr ^ ($random & (32'hffff_ffff >> (32 - n)));
addr[2:0] = 3'd0;
req_spacing($random);
bread(addr, size);
addr[4:3] = 2'b00;
for(w = 0; w < (2 << size); w = w + 1)
rd_check(0, 32'd0, 32'hffffffff, 0);
addr = addr | (1 << n);
end
end
endtask
// check access rights of memory region;
// must be called in secure mode;
task mi_mem_access;
input [31:0] addr; // address space;
input [5:0] nabits; // # of address bits;
input nsena; // device enabled in non-secure mode;
input [31:0] pxor; // patterrn xor;
reg [31:0] rdata; // read data;
begin
// setup test pattern;
// leave secure mode;
$display("test: %M: space 0x%h, nsena %b", addr, nsena);
mi_mem_fill_pat(addr, nabits, pxor);
mi_sec_mode_leave;
// if device is enabled in non-secure mode;
// then pattern should match;
if(nsena)
mi_mem_cmp_pat(addr, nabits, pxor);
// if device is disabled in non-secure mode;
// writes with new test pattern should be ignored;
// reads from region should return 0;
else begin
mi_mem_fill_pat(addr, nabits, $random);
mi_mem_cmp_zero(addr, nabits);
end
// enter secure mode by application;
// check that original pattern is unmodified;
mi_sec_mode_kick(1);
mi_sec_mode_enter(0);
mi_mem_cmp_pat(addr, nabits, pxor);
end
endtask
// check access rights of rom region;
// must be called in secure mode;
task mi_rom_access;
input [31:0] addr; // address space;
input [5:0] nabits; // # of address bits;
input [31:0] pxor; // patterrn xor;
reg [31:0] rdata; // read data;
begin
// leave secure mode;
$display("test: %M: space 0x%h", addr);
mi_sec_mode_leave;
// writes should be dropped in secure mode;
// reads from region should return 0;
mi_mem_cmp_zero(addr, nabits);
// enter secure mode by application;
// check that original pattern is unmodified;
mi_sec_mode_kick(1);
mi_sec_mode_enter(0);
end
endtask
// test brom;
// must be in secure mode;
task mi_brom;
reg [31:0] wdata; // write data;
integer sz; // request size;
begin
// set RESET bit in MI_SEC_MODE register;
// test bram in reset space;
wdata = { 5'bx, 3'd0, 16'bx, 8'b0000_0011 };
swrite(`MI_SEC_MODE, `CPU_SIZE_4, wdata);
$display("test: %M: reset space, single reads");
for(sz = 0; sz < 4; sz = sz + 1) begin
mi_rom_sgl(`MI_BROM_RST, `MI_NA_BROM, sz, 0);
mi_rom_sgl(`MI_BROM_RST, `MI_NA_BROM, sz, 1);
end
$display("test: %M: reset space, block reads");
for(sz = 0; sz < 3; sz = sz + 1) begin
mi_rom_blk(`MI_BROM_RST, `MI_NA_BROM, sz, 0);
mi_rom_blk(`MI_BROM_RST, `MI_NA_BROM, sz, 1);
end
$display("test: %M: reset space, subblock order");
for(sz = 0; sz < 3; sz = sz + 1) begin
mi_rom_subblk(`MI_BROM_RST, `MI_NA_BROM, sz, 0);
mi_rom_subblk(`MI_BROM_RST, `MI_NA_BROM, sz, 1);
end
// check access restrictions;
mi_rom_access(`MI_BROM_RST, `MI_NA_BROM, $random);
// clear RESET bit to flip address spaces;
// test bram in flip space;
wdata = { 5'bx, 3'd0, 16'bx, 8'b0000_0001 };
swrite(`MI_SEC_MODE, `CPU_SIZE_4, wdata);
$display("test: %M: flip space, single requests");
for(sz = 0; sz < 4; sz = sz + 1) begin
mi_rom_sgl(`MI_BROM_FLIP, `MI_NA_BROM, sz, 0);
mi_rom_sgl(`MI_BROM_FLIP, `MI_NA_BROM, sz, 1);
end
$display("test: %M: flip space, block requests");
for(sz = 0; sz < 3; sz = sz + 1) begin
mi_rom_blk(`MI_BROM_FLIP, `MI_NA_BROM, sz, 0);
mi_rom_blk(`MI_BROM_FLIP, `MI_NA_BROM, sz, 1);
end
$display("test: %M: flip space, subblock order");
for(sz = 0; sz < 3; sz = sz + 1) begin
mi_rom_subblk(`MI_BROM_FLIP, `MI_NA_BROM, sz, 0);
mi_rom_subblk(`MI_BROM_FLIP, `MI_NA_BROM, sz, 1);
end
// check access restrictions;
mi_rom_access(`MI_BROM_FLIP, `MI_NA_BROM, $random);
end
endtask
// test bram;
// must be in secure mode;
task mi_bram;
reg [31:0] wdata; // write data;
integer sz; // request size;
begin
// set RESET bit in MI_SEC_MODE register;
// test bram in reset space;
wdata = { 5'bx, 3'd0, 16'bx, 8'b0000_0011 };
swrite(`MI_SEC_MODE, `CPU_SIZE_4, wdata);
$display("test: %M: reset space, single requests");
for(sz = 0; sz < 4; sz = sz + 1) begin
mi_mem_sglwalk(`MI_BRAM_RST, `MI_NA_BRAM, sz, 0);
mi_mem_sglwalk(`MI_BRAM_RST, `MI_NA_BRAM, sz, 1);
end
$display("test: %M: reset space, block requests");
for(sz = 0; sz < 3; sz = sz + 1) begin
mi_mem_blkwalk(`MI_BRAM_RST, `MI_NA_BRAM, sz, 0);
mi_mem_blkwalk(`MI_BRAM_RST, `MI_NA_BRAM, sz, 1);
end
$display("test: %M: reset space, subblock order");
for(sz = 0; sz < 3; sz = sz + 1) begin
mi_mem_subblk(`MI_BRAM_RST, `MI_NA_BRAM, sz, 0);
mi_mem_subblk(`MI_BRAM_RST, `MI_NA_BRAM, sz, 1);
end
// check access restrictions;
mi_mem_access(`MI_BRAM_RST, `MI_NA_BRAM, 0, $random);
// clear RESET bit to flip address spaces;
// test bram in flip space;
wdata = { 5'bx, 3'd0, 16'bx, 8'b0000_0001 };
swrite(`MI_SEC_MODE, `CPU_SIZE_4, wdata);
$display("test: %M: flip space, single requests");
for(sz = 0; sz < 4; sz = sz + 1) begin
mi_mem_sglwalk(`MI_BRAM_FLIP, `MI_NA_BRAM, sz, 0);
mi_mem_sglwalk(`MI_BRAM_FLIP, `MI_NA_BRAM, sz, 1);
end
$display("test: %M: flip space, block requests");
for(sz = 0; sz < 3; sz = sz + 1) begin
mi_mem_blkwalk(`MI_BRAM_FLIP, `MI_NA_BRAM, sz, 0);
mi_mem_blkwalk(`MI_BRAM_FLIP, `MI_NA_BRAM, sz, 1);
end
$display("test: %M: flip space, subblock order");
for(sz = 0; sz < 3; sz = sz + 1) begin
mi_mem_subblk(`MI_BRAM_FLIP, `MI_NA_BRAM, sz, 0);
mi_mem_subblk(`MI_BRAM_FLIP, `MI_NA_BRAM, sz, 1);
end
// check access restrictions;
mi_mem_access(`MI_BRAM_FLIP, `MI_NA_BRAM, 0, $random);
end
endtask
// test iram;
task mi_iram;
integer sz; // request size;
reg [31:0] val; // read/write value;
begin
// check access types;
$display("test: %M: single requests");
for(sz = 0; sz < 4; sz = sz + 1) begin
mi_mem_sglwalk(`MI_IRAM, `MI_NA_IRAM, sz, 0);
mi_mem_sglwalk(`MI_IRAM, `MI_NA_IRAM, sz, 1);
end
$display("test: %M: block requests");
for(sz = 0; sz < 3; sz = sz + 1) begin
mi_mem_blkwalk(`MI_IRAM, `MI_NA_IRAM, sz, 0);
mi_mem_blkwalk(`MI_IRAM, `MI_NA_IRAM, sz, 1);
end
$display("test: %M: subblock order");
for(sz = 0; sz < 3; sz = sz + 1) begin
mi_mem_subblk(`MI_IRAM, `MI_NA_IRAM, sz, 0);
mi_mem_subblk(`MI_IRAM, `MI_NA_IRAM, sz, 1);
end
// check access restrictions;
// based on IRAM_EN bit in MI_SEC_MODE;
sread(`MI_SEC_MODE, `CPU_SIZE_4, val);
val[24] = 0;
swrite(`MI_SEC_MODE, `CPU_SIZE_4, val);
mi_mem_access(`MI_IRAM, `MI_NA_IRAM, 0, $random);
val[24] = 1;
swrite(`MI_SEC_MODE, `CPU_SIZE_4, val);
mi_mem_access(`MI_IRAM, `MI_NA_IRAM, 1, $random);
end
endtask
// test virage registers after reset;
task vx_after_reset;
input [1:0] vspc; // virage space;
reg [31:0] addr; // address;
reg [31:0] exp; // expected data;
reg [31:0] rdata; // read data;
begin
// test control register default;
// charge-pump porst has gone inactive before here;
// nms reset to charge-pump must be 1;
$display("test: %M: MI_VCTRL%0d", vspc);
if(mi_porst[vspc] !== 1)
$display("ERROR: %t: %M: v_porst[%0d] did not pulse", $time, vspc);
addr = `MI_VCTRL0;
addr[17:16] = vspc;
sread(addr, `CPU_SIZE_4, rdata);
if(vspc == 2) begin
exp = 32'b10x0_0000_xx10_x000_0001_10xx_xxxx_0000;
rd_check(0, exp, 32'hdf37_fc0f, 0);
end else begin
exp = 32'b00x0_0000_xx00_x000_0001_10xx_xxxx_0000;
rd_check(0, exp, 32'hdf37_fc0f, 0);
end
// clear v2 bypass mode;
if(vspc == 2)
swrite(addr, `CPU_SIZE_4, 32'd0);
// test nms register defaults;
// this works independent of nms bypass;
addr = `MI_VREG0;
addr[17:16] = vspc;
$display("test: %M: MI_VREG%0d CRSTO_0", vspc);
addr[4:2] = 0;
sread(addr, `CPU_SIZE_4, rdata);
rd_check(0, 32'b0000_0001, 32'h0000_00ff, 0);
$display("test: %M: MI_VREG%0d CRSTO_1", vspc);
addr[4:2] = 1;
sread(addr, `CPU_SIZE_4, rdata);
rd_check(0, 32'b0001_0010, 32'h0000_00ff, 0);
$display("test: %M: MI_VREG%0d CRM_0", vspc);
addr[4:2] = 2;
sread(addr, `CPU_SIZE_4, rdata);
rd_check(0, 32'b1001_0000, 32'h0000_00ff, 0);
$display("test: %M: MI_VREG%0d CRM_1", vspc);
addr[4:2] = 3;
sread(addr, `CPU_SIZE_4, rdata);
rd_check(0, 32'b1001_0110, 32'h0000_00ff, 0);
$display("test: %M: MI_VREG%0d CRM_2", vspc);
addr[4:2] = 4;
sread(addr, `CPU_SIZE_4, rdata);
rd_check(0, 32'b0101_1001, 32'h0000_00ff, 0);
$display("test: %M: MI_VREG%0d CRM_3", vspc);
addr[4:2] = 5;
sread(addr, `CPU_SIZE_4, rdata);
rd_check(0, 32'b0001_0101, 32'h0000_00ff, 0);
end
endtask
// test virage memories;
task mi_vmem;
input [1:0] vspc; // virage space;
input [5:0] nabits; // # of address bits;
reg [31:0] addr; // address;
integer sz; // request size;
begin
// only 32-bit single requests are supported;
$display("test: %M: v%0d, single requests", vspc);
addr = `MI_VMEM0;
addr[17:16] = vspc;
mi_mem_sglwalk(addr, nabits, 3, 0);
mi_mem_sglwalk(addr, nabits, 3, 1);
$display("test: %M: block requests");
for(sz = 0; sz < 3; sz = sz + 1) begin
mi_mem_blkwalk(addr, nabits, sz, 0);
mi_mem_blkwalk(addr, nabits, sz, 1);
end
$display("test: %M: subblock order");
for(sz = 0; sz < 3; sz = sz + 1) begin
mi_mem_subblk(addr, nabits, sz, 0);
mi_mem_subblk(addr, nabits, sz, 1);
end
// check access restrictions;
mi_mem_access(addr, nabits, 0, $random);
end
endtask
// fill virage sram with randoms;
task mi_fill_vmem;
input [31:0] addr; // virage address;
input save_pat; // save pattern seeds;
reg [1:0] vspc; // virage space;
integer ndc; // # of data cachelines;
integer n;
begin
vspc = addr[17:16];
$display("%t: %M: v%0d", $time, vspc);
ndc = vspc[1]? 16 : 4;
addr[15:0] = `MI_VMEM;
for(n = 0; n < ndc; n = n + 1) begin
mi_vpat[n] = $random;
if(save_pat)
blk_data(mi_vpat[n]);
bwrite(addr, `CPU_SIZE_16);
addr = addr + 16;
end
end
endtask
// compare virage sram with pattern;
task mi_cmp_vmem;
input [31:0] addr; // virage address;
reg [1:0] vspc; // virage space;
integer ndc; // # of data cachelines;
integer n;
begin
vspc = addr[17:16];
$display("%t: %M: v%0d", $time, vspc);
ndc = vspc[1]? 16 : 4;
addr[15:0] = `MI_VMEM;
for(n = 0; n < ndc; n = n + 1) begin
bread(addr, `CPU_SIZE_16);
blk_check(`CPU_SIZE_16, mi_vpat[n], 0, 3'b000);
addr = addr + 16;
end
end
endtask
// wait for nms ready;
task mi_nms_wait;
input [1:0] vspc; // virage space;
input [31:0] to; // timeout in time base ticks;
reg [31:0] addr; // address;
reg [31:0] rdata; // read data;
integer n;
begin
$display("%t: %M: v%0d, to %0d ticks", $time, vspc, to);
addr = `MI_VCTRL0;
addr[17:16] = vspc;
for(n = to; n > 0; n = n - 1) begin
sread(addr, `CPU_SIZE_4, rdata);
if(rdata[30] === 1) begin
$display("%t: %M: nms ready", $time);
n = 0;
end else begin
@(posedge vsim.bb.v_time);
end
end
if(rdata[30] !== 1)
$display("ERROR: %t: %M: nms ready timeout", $time);
end
endtask
// test one nms command;
task mi_nms_cmd;
input [1:0] vspc; // virage space;
input [2:0] cmd; // command to test;
input [31:0] to; // ready timeout, us;
input pass; // expected pass status;
reg [31:0] addr; // address of ctrl reg;
reg [31:0] wdata; // write data;
reg [31:0] rdata; // read data;
reg keep; // keep mode expected;
integer n;
begin
// check nms status;
$display("test: %M: v%0d, cmd %0d", vspc, cmd);
addr = `MI_VCTRL0;
addr[17:16] = vspc;
sread(addr, `CPU_SIZE_4, rdata);
if(rdata[31] !== 0)
$display("ERROR: %t: %M: nms bypass %b", $time, rdata[31]);
if(rdata[30] !== 1)
$display("ERROR: %t: %M: nms ready %b exp 1", $time, rdata[30]);
// issue command;
// check controller busy;
wdata[31:24] = { 5'd0, cmd };
wdata[23:0] = $random;
addr[13] = 1;
swrite(addr, `CPU_SIZE_4, wdata);
sread(addr, `CPU_SIZE_4, rdata);
if(rdata[30] !== 0)
$display("ERROR: %t: %M: nms ready %b exp 0", $time, rdata[30]);
// wait for nms ready;
// check status;
mi_nms_wait(vspc, to);
sread(addr, `CPU_SIZE_4, rdata);
if(rdata[29] !== pass)
$display("ERROR: %t: %M: nms pass %b exp %b", $time, rdata[29], pass);
keep = (cmd == `VCMD_KEEP);
if(rdata[28] !== keep)
$display("ERROR: %t: %M: nms keep %b exp %b", $time, rdata[28], keep);
end
endtask
// test virage controllers;
task mi_vx_ctrl;
input [1:0] vspc; // virage space;
input [5:0] nabits; // # of address bits;
reg [31:0] addr; // address;
reg [31:0] wdata; // write data;
reg [31:0] rdata; // read data;
reg [31:0] cmd; // nms command;
integer n;
begin
// set virage time base;
$display("test: %M: v%0d", vspc);
wdata = 1000000 / vsim.sysclk_period;
$display("%t: %M: setting vtime divider %0d", $time, wdata);
swrite(`MI_SEC_VTIME, `CPU_SIZE_4, wdata);
// wait for charge-pump power-on reset to drop;
// wait up to 1msec according to virage spec;
addr = `MI_VCTRL0;
addr[17:16] = vspc;
for(n = 1000; n > 0; n = n - 1) begin
sread(addr, `CPU_SIZE_4, rdata);
if(rdata[0] === 0) begin
$display("%t: %M: v%0d charge-pump out of reset", $time, vspc);
n = 0;
end else begin
@(posedge vsim.bb.v_time);
end
end
if(rdata[0] !== 0)
$display("ERROR: %M: v%0d charge-pump porst %b", $time, vspc, rdata[0]);
// wait for nms ready;
// delay is 8 time base clocks according to virage spec;
mi_nms_wait(vspc, 50);
// test nms idle command;
// check that sram stays unmodified;
$display("test: %M: v%0d: nms idle cmd", vspc);
addr = `MI_VCTRL0;
addr[17:16] = vspc;
mi_fill_vmem(addr, 1);
mi_nms_cmd(vspc, `VCMD_IDLE, 10, 1);
mi_cmp_vmem(addr);
// keep mode should not modify sram;
// writes to sram should be dropped in keep mode;
$display("test: %M: v%0d: nms keep mode on", vspc);
mi_nms_cmd(vspc, `VCMD_KEEP, 40, 1);
mi_cmp_vmem(addr);
mi_fill_vmem(addr, 0);
mi_cmp_vmem(addr);
$display("test: %M: v%0d: nms keep mode off", vspc);
mi_nms_cmd(vspc, `VCMD_IDLE, 10, 1);
mi_cmp_vmem(addr);
// store to novea;
// check that sram stays unmodified;
$display("test: %M: v%0d: nms full store", vspc);
mi_nms_cmd(vspc, `VCMD_FSTORE, 8000, 1);
mi_cmp_vmem(addr);
// compare novea with sram;
// check that sram stays unmodified;
$display("test: %M: v%0d: nms normal compare", vspc);
mi_nms_cmd(vspc, `VCMD_NCOMP, 10, 1);
mi_cmp_vmem(addr);
// fill sram with new pattern, then recall;
// original data pattern should be restored;
$display("test: %M: v%0d: nms normal recall", vspc);
mi_fill_vmem(addr, 0);
mi_nms_cmd(vspc, `VCMD_NRECALL, 10, 1);
mi_cmp_vmem(addr);
end
endtask
// test dram single requests;
// in all address spaces, all sizes;
// witout and with random request spacing;
task mi_dram_sgl;
input [5:0] nabits; // # of address bits in x64 space;
integer sz; // current size;
begin
// test all sizes through all spaces;
for(sz = 0; sz < 4; sz = sz + 1) begin
mi_mem_sglwalk(`BASE_DRAM36, nabits - 1, sz, 0);
mi_mem_sglwalk(`BASE_DRAM36, nabits - 1, sz, 1);
`ifdef MI_MEM_X64L
mi_mem_sglwalk(`BASE_DRAM64L, nabits, sz, 0);
mi_mem_sglwalk(`BASE_DRAM64L, nabits, sz, 1);
`endif // MI_MEM_X64L
`ifdef MI_MEM_X64H
mi_mem_sglwalk(`BASE_DRAM64H, nabits, sz, 0);
mi_mem_sglwalk(`BASE_DRAM64H, nabits, sz, 1);
`endif // MI_MEM_X64L
end
end
endtask
// test dram block requests;
// in all address spaces, all sizes;
// witout and with random request spacing;
task mi_dram_blk;
input [5:0] nabits; // # of address bits in x64 space;
integer sz; // current size;
begin
// test all sizes through all spaces;
for(sz = 0; sz < 3; sz = sz + 1) begin
mi_mem_blkwalk(`BASE_DRAM36, nabits - 1, sz, 0);
mi_mem_blkwalk(`BASE_DRAM36, nabits - 1, sz, 1);
`ifdef MI_MEM_X64L
mi_mem_blkwalk(`BASE_DRAM64L, nabits, sz, 0);
mi_mem_blkwalk(`BASE_DRAM64L, nabits, sz, 1);
`endif // MI_MEM_X64L
`ifdef MI_MEM_X64H
mi_mem_blkwalk(`BASE_DRAM64H, nabits, sz, 0);
mi_mem_blkwalk(`BASE_DRAM64H, nabits, sz, 1);
`endif // MI_MEM_X64H
end
end
endtask
// test dram subblock order;
// in all address spaces, all sizes;
// witout and with random request spacing;
task mi_dram_subblk;
input [5:0] nabits; // # of address bits in x64 space;
integer sz; // current size;
begin
// test all sizes through all spaces;
for(sz = 0; sz < 3; sz = sz + 1) begin
mi_mem_subblk(`BASE_DRAM36, nabits - 1, sz, 0);
mi_mem_subblk(`BASE_DRAM36, nabits - 1, sz, 1);
`ifdef MI_MEM_X64L
mi_mem_subblk(`BASE_DRAM64L, nabits, sz, 0);
mi_mem_subblk(`BASE_DRAM64L, nabits, sz, 1);
`endif // MI_MEM_X64L
`ifdef MI_MEM_X64H
mi_mem_subblk(`BASE_DRAM64H, nabits, sz, 0);
mi_mem_subblk(`BASE_DRAM64H, nabits, sz, 1);
`endif // MI_MEM_X64H
end
end
endtask
// measure cacheline read/write bandwidth;
// write pattern is address;
// read pattern is checked, so do write before read;
task mi_rwbw;
input [3:0] mcfg; // memory configuration;
input [31:0] addr; // address space;
input write; // measure write bandwidth;
input [1:0] size; // block size;
integer nb; // # of byte in cacheline;
integer t0, t; // time stamps;
integer n; // loop count;
reg [31:0] addr; // cacheline address;
begin
nb = 8 << size;
$display("test: %M: mcfg %0d, addr 0x%h, size %0d, %s bw",
mcfg, addr, nb, write? "write" : "read");
t0 = $time;
for(n = 0; n < 64; n = n + 1) begin
if(write) begin
blk_data(addr);
bwrite(addr, size);
end else begin
bread(addr, size);
blk_check(size, addr, 0, 3'b000);
end
addr = addr + nb;
end
t = $time - t0;
$display("test: %M: addr 0x%h, size %0d, %s bw %0dMB/sec",
addr, nb, write? "write" : "read", (64 * nb * 1000) / t);
end
endtask
// setup for error testing;
task mi_err_setup;
input [5:0] ena; // error enables;
input exitsec; // exit secure mode;
reg [31:0] rdata; // read data;
begin
$display("%t: %M: pif %b, bnm %b", $time, ena[5:3], ena[2:0]);
sread(`MI_CTRL, `CPU_SIZE_4, rdata);
rdata[18:13] = ena;
swrite(`MI_CTRL, `CPU_SIZE_4, rdata);
// read MI_ERR_INFO to enable capture;
// clear any pending secure mode triggers;
sread(`MI_ERR_INFO, `CPU_SIZE_4, rdata);
sread(`MI_SEC_MODE, `CPU_SIZE_4, rdata);
rdata[7:2] = 6'd0;
if(exitsec)
rdata[0] = 0;
mi_set_boot_word(rdata[1]);
swrite(`MI_SEC_MODE, `CPU_SIZE_4, rdata);
mi_check_nmi(1, 2);
mi_check_secure(~exitsec);
end
endtask
// read test for bus errors;
task mi_bus_err;
input [31:0] space; // address space;
input [5:0] nabits; // # of address bits;
input exp_berr; // expect bus error;
input wen; // writeable space;
input [1:0] size; // block size;
reg [31:0] addr; // address;
reg [31:0] amask; // address mask;
reg [31:0] bdata; // block data pattern;
reg [2:0] sbo; // subblock order;
integer n;
begin
// use random addresses within space;
// fill and compare data if writeable space;
// else, just check the error bit;
$display("test: %M: space 0x%h, nabits %0d, size %0d, berr %b",
space, nabits, 8 << size, exp_berr);
amask = 32'hffff_ffff >> (32 - nabits);
amask[4:0] = 5'd0;
for(n = 0; n < `MI_N_BLKERR; n = n + 1) begin
addr = space | ($random & amask);
addr[4:2] = blk_addr(size);
if(wen) begin
bdata = $random;
blk_data(bdata);
bwrite(addr, size);
end
sbo = sbo_addr(size);
addr[4:2] = addr[4:2] ^ sbo;
req_spacing($random);
bread(addr, size);
if(wen)
blk_check(size, bdata, 0, sbo);
else
berr_check(exp_berr);
end
end
endtask
// test block reads of all request sizes;
task mi_blk_rdacc;
input [31:0] addr; // address space;
input [5:0] nabits; // # of address bits;
input exp_berr; // expect bus error;
input wen; // writeable space;
integer sz;
begin
for(sz = 0; sz < 3; sz = sz + 1)
mi_bus_err(addr, nabits, exp_berr, wen, sz);
end
endtask
// test legality of block reads;
task mi_blk_reads;
input exp_berr; // expect bus error;
input [5:0] nadram; // # of memory address bits, x64 space;
begin
// setup mi control register;
$display("test: %M: berr %b", exp_berr);
mi_cbus_mon(0, 0, 0);
mi_err_setup({ 3'b000, 2'b00, exp_berr }, 0);
// cacheable memory spaces should never return an erorr;
// only dma request should be on cbus;
mi_cbus_mon(0, 0, 1);
mi_blk_rdacc(`BASE_DRAM36, nadram - 1, 0, 1);
`ifdef MI_MEM_X64L
mi_blk_rdacc(`BASE_DRAM64L, nadram, 0, 1);
`endif // MI_MEM_X64L
`ifdef MI_MEM_X64H
mi_blk_rdacc(`BASE_DRAM64H, nadram, 0, 1);
`endif // MI_MEM_X64L
mi_cbus_mon(0, 0, 0);
mi_blk_rdacc(`MI_BROM_FLIP, `MI_NA_BROM, 0, 0);
mi_blk_rdacc(`MI_BRAM_FLIP, `MI_NA_BRAM, 0, 1);
mi_blk_rdacc(`MI_IRAM, `MI_NA_IRAM, 0, 1);
mi_blk_rdacc(`MI_VMEM0, `MI_NA_VMEM0, 0, 1);
mi_blk_rdacc(`MI_VMEM1, `MI_NA_VMEM1, 0, 1);
mi_blk_rdacc(`MI_VMEM2, `MI_NA_VMEM2, 0, 1);
// test old rdram config space and register spaces;
mi_blk_rdacc(`BASE_RDCFG, `MI_NA_RDCFG, exp_berr, 0);
mi_blk_rdacc(`BASE_SP, `MI_NA_REGS, exp_berr, 0);
mi_blk_rdacc(`BASE_CMD, `MI_NA_REGS, exp_berr, 0);
mi_blk_rdacc(`BASE_SPAN, `MI_NA_REGS, exp_berr, 0);
mi_blk_rdacc(`BASE_MI, `MI_NA_REGS, exp_berr, 0);
mi_blk_rdacc(`BASE_VI, `MI_NA_REGS, exp_berr, 0);
mi_blk_rdacc(`BASE_AI, `MI_NA_REGS, exp_berr, 0);
mi_blk_rdacc(`BASE_PI, `MI_NA_REGS, exp_berr, 0);
mi_blk_rdacc(`BASE_RI, `MI_NA_REGS, exp_berr, 0);
mi_blk_rdacc(`BASE_SI, `MI_NA_REGS, exp_berr, 0);
mi_blk_rdacc(`BASE_USB0, `MI_NA_REGS, exp_berr, 0);
mi_blk_rdacc(`BASE_USB1, `MI_NA_REGS, exp_berr, 0);
// test io spaces;
mi_blk_rdacc(`BASE_IO05, 24, exp_berr, 0);
mi_blk_rdacc(`BASE_IO06, 25, exp_berr, 0);
mi_blk_rdacc(`BASE_IO08, 27, exp_berr, 0);
mi_blk_rdacc(`BASE_IO10, 27, exp_berr, 0);
// none of the above should have triggered a write error;
mi_check_nmi(1, 2);
mi_check_intr(`INTR_ERR, 1);
end
endtask
// write test for write errors;
task mi_write_err;
input [31:0] space; // address space;
input [5:0] nabits; // # of address bits;
input exp_wei; // expect write error interrupt;
input exp_ski; // expect secure kernel trap;
input wen; // writeable space;
input [1:0] size; // block size;
reg [31:0] addr; // address;
reg [31:0] amask; // address mask;
reg mult; // force multiple error;
reg [31:0] bdata; // block data;
reg [31:0] rdata; // read data;
reg [31:0] info; // error info;
reg [2:0] sbo; // subblock order;
integer n;
begin
// use random addresses within space;
$display("test: %M: space 0x%h, nabits %0d, size %0d, wei %b, ski %b",
space, nabits, 8 << size, exp_wei, exp_ski);
amask = 32'hffff_ffff >> (32 - nabits);
amask[4:0] = 5'd0;
// run write tests;
for(n = 0; n < `MI_N_BLKERR; n = n + 1) begin
addr = space | ($random & amask);
addr[4:2] = blk_addr(size);
bdata = $random;
blk_data(bdata);
bwrite(addr, size);
mult = $random;
if(mult)
bwrite(addr, size);
// if writeable space then check read data;
if(wen) begin
sbo = sbo_addr(size);
addr[4:2] = addr[4:2] ^ sbo;
bread(addr, size);
blk_check(size, bdata, 0, sbo);
end
// check write error interrupt and secure trap;
// error registers must be updated for either;
mi_check_nmi(~exp_ski, 2);
mi_check_intr(`INTR_ERR, ~exp_wei);
if(exp_wei | exp_ski) begin
sread(`MI_ERR_ADDR, `CPU_SIZE_4, rdata);
rd_check(0, addr, 32'hffff_ffff, 0);
sread(`MI_ERR_INFO, `CPU_SIZE_4, rdata);
info = { 27'd0, 1'b1, mult, 1'b1, size };
rd_check(0, info, 32'hffff_ffff, 0);
end
// check write error intr clearance;
// reading MI_ERR_INFO above should have cleared write error intr;
// reading it again should have the WEVAL bit cleared;
if(exp_wei) begin
mi_check_intr(`INTR_ERR, 1);
sread(`MI_ERR_INFO, `CPU_SIZE_4, rdata);
info = { 27'd0, 1'b0, 1'bx, 1'bx, 2'bx };
rd_check(0, info, 32'hffff_fff0, 0);
end
// check secure trap bit;
// clear secure triggers to re-enable nmi;
if(exp_ski) begin
sread(`MI_SEC_MODE, `CPU_SIZE_4, rdata);
if(rdata[5] !== 1)
$display("ERROR: %t: %M: STRAP %b exp 1", $time, rdata[5]);
rdata[7:2] = 6'd0;
swrite(`MI_SEC_MODE, `CPU_SIZE_4, rdata);
mi_check_nmi(1, 2);
end
end
end
endtask
// test block writes of all request sizes;
task mi_blk_wracc;
input [31:0] addr; // address space;
input [5:0] nabits; // # of address bits;
input exp_wei; // expect write error interrupt;
input exp_ski; // expect secure kernel trap;
input wen; // writeable space;
integer sz;
begin
for(sz = 0; sz < 3; sz = sz + 1)
mi_write_err(addr, nabits, exp_wei, exp_ski, wen, sz);
end
endtask
// test legality of block writes;
task mi_blk_writes;
input exp_wei; // expect write error intr;
input exp_ski; // expect secure kernel trap;
input [5:0] nadram; // # of memory address bits, x64 space;
reg [31:0] rdata; // read data;
begin
// setup mi control register;
$display("test: %M: wei %b, ski %b", exp_wei, exp_ski);
mi_cbus_mon(0, 0, 0);
mi_err_setup({ 3'b000, exp_ski, exp_wei, 1'b0 }, 0);
// cacheable memory spaces should never cause an erorr;
// only dma request should be on cbus;
mi_cbus_mon(0, 0, 1);
mi_blk_wracc(`BASE_DRAM36, nadram - 1, 0, 0, 1);
`ifdef MI_MEM_X64L
mi_blk_wracc(`BASE_DRAM64L, nadram, 0, 0, 1);
`endif // MI_MEM_X64L
`ifdef MI_MEM_X64H
mi_blk_wracc(`BASE_DRAM64H, nadram, 0, 0, 1);
`endif // MI_MEM_X64L
mi_cbus_mon(0, 0, 0);
mi_blk_wracc(`MI_BROM_FLIP, `MI_NA_BROM, 0, 0, 0);
mi_blk_wracc(`MI_BRAM_FLIP, `MI_NA_BRAM, 0, 0, 1);
mi_blk_wracc(`MI_IRAM, `MI_NA_IRAM, 0, 0, 1);
mi_blk_wracc(`MI_VMEM0, `MI_NA_VMEM0, 0, 0, 1);
mi_blk_wracc(`MI_VMEM1, `MI_NA_VMEM1, 0, 0, 1);
mi_blk_wracc(`MI_VMEM2, `MI_NA_VMEM2, 0, 0, 1);
// test old rdram config space and register spaces;
mi_blk_wracc(`BASE_RDCFG, `MI_NA_RDCFG, exp_wei, exp_ski, 0);
mi_blk_wracc(`BASE_SP, `MI_NA_REGS, exp_wei, exp_ski, 0);
mi_blk_wracc(`BASE_CMD, `MI_NA_REGS, exp_wei, exp_ski, 0);
mi_blk_wracc(`BASE_SPAN, `MI_NA_REGS, exp_wei, exp_ski, 0);
mi_blk_wracc(`BASE_MI, `MI_NA_REGS, exp_wei, exp_ski, 0);
mi_blk_wracc(`BASE_VI, `MI_NA_REGS, exp_wei, exp_ski, 0);
mi_blk_wracc(`BASE_AI, `MI_NA_REGS, exp_wei, exp_ski, 0);
mi_blk_wracc(`BASE_PI, `MI_NA_REGS, exp_wei, exp_ski, 0);
mi_blk_wracc(`BASE_RI, `MI_NA_REGS, exp_wei, exp_ski, 0);
mi_blk_wracc(`BASE_SI, `MI_NA_REGS, exp_wei, exp_ski, 0);
mi_blk_wracc(`BASE_USB0, `MI_NA_REGS, exp_wei, exp_ski, 0);
mi_blk_wracc(`BASE_USB1, `MI_NA_REGS, exp_wei, exp_ski, 0);
// test io spaces;
mi_blk_wracc(`BASE_IO05, 24, exp_wei, exp_ski, 0);
mi_blk_wracc(`BASE_IO06, 25, exp_wei, exp_ski, 0);
mi_blk_wracc(`BASE_IO08, 27, exp_wei, exp_ski, 0);
mi_blk_wracc(`BASE_IO10, 27, exp_wei, exp_ski, 0);
end
endtask
// pif read access test;
task mi_pif_rdacc;
input exp_berr; // expect bus error;
input blkreq; // block request;
input [1:0] size; // block size;
reg [31:0] addr; // address;
reg [31:0] rdata; // block data pattern;
integer n;
begin
// use random addresses within space;
// just check the error bit;
$display("test: %M: size %0d, berr %b",
blkreq? (8 << size) : (size + 1), exp_berr);
addr = `BASE_PIF;
addr[5:2] = $random;
addr[1:0] = 2'b00;
if(blkreq) begin
addr[2] = 0;
bread(addr, size);
end else
sread(addr, size, rdata);
berr_check(exp_berr);
end
endtask
// test pif read trapping;
task mi_pif_reads;
input exp_berr; // expect bus error;
begin
// non of below requests should go on cbus;
mi_cbus_mon(0, 0, 0);
// check no trapping in secure mode;
mi_err_setup({ 2'b00, exp_berr, 3'b000 }, 0);
mi_pif_rdacc(0, 0, `CPU_SIZE_1);
mi_pif_rdacc(0, 0, `CPU_SIZE_2);
mi_pif_rdacc(0, 0, `CPU_SIZE_3);
mi_pif_rdacc(0, 0, `CPU_SIZE_4);
mi_pif_rdacc(0, 1, `CPU_SIZE_8);
mi_pif_rdacc(0, 1, `CPU_SIZE_16);
mi_pif_rdacc(0, 1, `CPU_SIZE_32);
// check trapping in non-secure mode;
mi_err_setup({ 2'b00, exp_berr, 3'b000 }, 1);
mi_pif_rdacc(exp_berr, 0, `CPU_SIZE_1);
mi_pif_rdacc(exp_berr, 0, `CPU_SIZE_2);
mi_pif_rdacc(exp_berr, 0, `CPU_SIZE_3);
mi_pif_rdacc(exp_berr, 0, `CPU_SIZE_4);
mi_pif_rdacc(exp_berr, 1, `CPU_SIZE_8);
mi_pif_rdacc(exp_berr, 1, `CPU_SIZE_16);
mi_pif_rdacc(exp_berr, 1, `CPU_SIZE_32);
// re-enter secure mode;
mi_sec_mode_kick(1);
mi_sec_mode_enter(0);
end
endtask
// pif write access test;
task mi_pif_wracc;
input exp_ski; // expect secure kernel trap;
input exp_wei; // expect write error interrupt;
input blkreq; // block request;
input [1:0] size; // block size;
input exitsec; // exit secure mode;
reg [31:0] addr; // address;
reg [31:0] maddr; // multiple address;
reg mult; // force multiple error;
reg [31:0] wdata; // write data;
reg [31:0] rdata; // read data;
reg [31:0] info; // error info;
integer n;
begin
// leave secure mode is required;
$display("test: %M: size %0d, ski %b, wei %b",
blkreq? (8 << size) : (size + 1), exp_ski, exp_wei);
if(exitsec)
mi_sec_mode_leave;
// use random addresses within space;
// issue different write type for multiple test;
addr = `BASE_PIF;
addr[5:2] = $random;
mult = $random;
wdata = $random;
if(blkreq) begin
addr[4:3] = blk_addr(size);
addr[2:0] = 0;
blk_data(wdata);
bwrite(addr, size);
if(mult) begin
maddr = addr;
maddr[5] = ~maddr[5];
swrite(maddr, ~size, $random);
end
end else begin
addr[1:0] = sgl_addr(size);
swrite(addr, size, wdata);
if(mult) begin
maddr = addr;
maddr[5] = ~maddr[5];
maddr[4:3] = blk_addr(`CPU_SIZE_16);
maddr[2:0] = 0;
blk_data($random);
bwrite(maddr, `CPU_SIZE_16);
end
end
// check write error interrupt and secure trap;
// error registers must be updated for either;
mi_check_nmi(~exp_ski, 2);
mi_check_intr(`INTR_ERR, ~exp_wei);
if(exp_wei | exp_ski) begin
sread(`MI_ERR_ADDR, `CPU_SIZE_4, rdata);
rd_check(0, addr, 32'hffff_ffff, 0);
sread(`MI_ERR_INFO, `CPU_SIZE_4, rdata);
info = { 27'd0, 1'b1, mult, blkreq, size };
rd_check(0, info, 32'hffff_ffff, 0);
if( ~blkreq) begin
sread(`MI_ERR_DATA, `CPU_SIZE_4, rdata);
rd_check(0, wdata, 32'hffff_ffff, 0);
end
end
// check secure trap bit;
// re-enter secure mode;
// clear secure triggers to re-enable nmi;
if(exitsec) begin
mi_sec_mode_kick(~exp_ski);
mi_sec_mode_enter(0);
end
if(exp_ski) begin
sread(`MI_SEC_MODE, `CPU_SIZE_4, rdata);
if(rdata[5] !== 1)
$display("ERROR: %t: %M: STRAP %b exp 1", $time, rdata[5]);
if(rdata[2] !== 1)
$display("ERROR: %t: %M: SAPP %b exp 1", $time, rdata[2]);
rdata[7:2] = 6'd0;
swrite(`MI_SEC_MODE, `CPU_SIZE_4, rdata);
mi_check_nmi(1, 2);
end
end
endtask
// test pif write trapping;
task mi_pif_writes;
input exp_ski; // expect secure kernel trap;
input exp_wei; // expect write error interrupt;
integer n;
begin
// setup error handling;
// non of below requests should go on cbus;
mi_cbus_mon(0, 0, 0);
mi_err_setup({ exp_ski, exp_wei, 1'b0, 3'b000 }, 0);
// check no trapping in secure mode;
mi_pif_wracc(0, 0, 0, `CPU_SIZE_1, 0);
mi_pif_wracc(0, 0, 0, `CPU_SIZE_2, 0);
mi_pif_wracc(0, 0, 0, `CPU_SIZE_3, 0);
mi_pif_wracc(0, 0, 0, `CPU_SIZE_4, 0);
mi_pif_wracc(0, 0, 1, `CPU_SIZE_8, 0);
mi_pif_wracc(0, 0, 1, `CPU_SIZE_16, 0);
mi_pif_wracc(0, 0, 1, `CPU_SIZE_32, 0);
// check trapping in non-secure mode;
mi_pif_wracc(exp_ski, exp_wei, 0, `CPU_SIZE_1, 1);
mi_pif_wracc(exp_ski, exp_wei, 0, `CPU_SIZE_2, 1);
mi_pif_wracc(exp_ski, exp_wei, 0, `CPU_SIZE_3, 1);
mi_pif_wracc(exp_ski, exp_wei, 0, `CPU_SIZE_4, 1);
mi_pif_wracc(exp_ski, exp_wei, 1, `CPU_SIZE_8, 1);
mi_pif_wracc(exp_ski, exp_wei, 1, `CPU_SIZE_16, 1);
mi_pif_wracc(exp_ski, exp_wei, 1, `CPU_SIZE_32, 1);
end
endtask
// random memory test;
// for all r/w memories that support single and block requests;
task mi_mem_random;
input [3:0] mcfg; // memory configuration;
input [5:0] nadram; // # of dram address bits, x64 space;
reg [2:0] spc; // address space;
reg [31:0] addr; // address;
reg [31:0] amask; // address mask;
reg [5:0] nabits; // # of address bits;
reg blkreq; // block request;
reg wrreq; // write to fill data;
reg [1:0] size; // request size;
reg [31:0] wdata; // write data;
reg [2:0] sbo; // subblock order;
reg [31:0] smask; // single compare mask;
integer n;
begin
// run over the following memory spaces;
// x36, x64l, x64h, bram, iram, v0, v1, v2;
$display("test: %M: mcfg %0d, nadram %0d", mcfg, nadram);
for(n = 0; n < `MI_N_MEMRAND; n = n + 1) begin
// pick random space;
// make random address within that space;
spc = $random;
case(spc)
0: { addr, nabits } = { `BASE_DRAM36, nadram - 1 };
1: { addr, nabits } = { `BASE_DRAM64L, nadram };
2: { addr, nabits } = { `BASE_DRAM64H, nadram };
3: { addr, nabits } = { `MI_BRAM_FLIP, `MI_NA_BRAM };
4: { addr, nabits } = { `MI_IRAM, `MI_NA_IRAM };
5: { addr, nabits } = { `MI_VMEM0, `MI_NA_VMEM0 };
6: { addr, nabits } = { `MI_VMEM1, `MI_NA_VMEM1 };
7: { addr, nabits } = { `MI_VMEM2, `MI_NA_VMEM2 };
endcase
amask = 32'hffff_ffff >> (32 - nabits);
amask[1:0] = 2'b00;
addr = addr | ($random & amask);
// pick random request type;
{ size, blkreq, wrreq } = $random;
while(blkreq & (size == 2'b11))
size = $random;
// write random data for wrreq;
if(wrreq) begin
wdata = $random;
if(blkreq) begin
addr[4:2] = blk_addr(size);
blk_data(wdata);
bwrite(addr, size);
end else
swrite(addr, size, wdata);
end
// read back data;
// if block request, the use random subblock order;
// check only if write had been issued;
if(blkreq) begin
sbo = sbo_addr(size);
addr[4:2] = addr[4:2] ^ sbo;
bread(addr, size);
if(wrreq)
blk_check(size, wdata, 0, sbo);
end else begin
sread(addr, size, data[0]);
if(wrreq) begin
smask = sgl_mask(addr[1:0], size);
rd_check(0, wdata, smask, 0);
end
end
end
end
endtask
// test mi debug interface;
task mi_debug;
begin
$display("test: %M: XXX");
end
endtask
// run all mi tests;
task test_mi;
reg [31:0] pxor; // test pattern xor;
reg [5:0] nadram; // # of dram address bits, x64 space;
integer mcfg; // current ddr configuration id;
begin
// run register related tests;
// no cbus requests should be issued;
mi_cbus_mon(0, 0, 0);
mi_after_reset(3'b000); // test mi defaults after reset;
mi_avctrl; // test audio/video control register;
mi_ctrl; // test control register;
mi_intr_mask(`MI_MASK, 6); // test interrupt mask register;
mi_intr_mask(`MI_EMASK, 14); // test extended mask register;
mi_sec_mode; // test secure mode functionality;
mi_sec_timer; // test secure timer;
mi_sec_vtime(62); // test virage timer;
mi_sec_vtime(100); // test virage timer;
mi_button_test(0); // test button intr;
// test mi internal memories;
// test single and block requests, subblock order;
// no cbus requests should be issued;
mi_cbus_mon(0, 0, 0);
mi_brom; // test brom;
mi_bram; // test bram;
mi_iram; // test iram;
mi_vmem(0, 6); // test virage 0, 512bits;
mi_vmem(1, 6); // test virage 1, 512bits;
mi_vmem(2, 8); // test virage 2, 2kbits;
// fill all mi internal memories with address pattern;
// then read all back and compare;
// this tests read/write interference among those memories;
pxor = $random;
mi_mem_fill_pat(`MI_BRAM_FLIP, `MI_NA_BRAM, pxor);
mi_mem_fill_pat(`MI_IRAM, `MI_NA_IRAM, pxor);
mi_mem_fill_pat(`MI_VMEM0, `MI_NA_VMEM0, pxor);
mi_mem_fill_pat(`MI_VMEM1, `MI_NA_VMEM1, pxor);
mi_mem_fill_pat(`MI_VMEM2, `MI_NA_VMEM2, pxor);
mi_mem_cmp_pat(`MI_BRAM_FLIP, `MI_NA_BRAM, pxor);
mi_mem_cmp_pat(`MI_IRAM, `MI_NA_IRAM, pxor);
mi_mem_cmp_pat(`MI_VMEM0, `MI_NA_VMEM0, pxor);
mi_mem_cmp_pat(`MI_VMEM1, `MI_NA_VMEM1, pxor);
mi_mem_cmp_pat(`MI_VMEM2, `MI_NA_VMEM2, pxor);
// mi internal performance tests;
// measure write bandwidth first, which fills patterns;
// then read and measure read bandwidth;
mi_rwbw(0, `MI_IRAM, 1, `CPU_SIZE_16);
mi_rwbw(0, `MI_IRAM, 0, `CPU_SIZE_16);
mi_rwbw(0, `MI_IRAM, 1, `CPU_SIZE_32);
mi_rwbw(0, `MI_IRAM, 0, `CPU_SIZE_32);
// test main memory of all configurations;
// block read tests needs main memory;
nadram = vsim.MEM_NADDR;
for(mcfg = 0; mcfg < 16; mcfg = mcfg + 1) begin
`ifdef MI_ONE_MCFG
mcfg = $random;
`endif // MI_ONE_MCFG
mi_cbus_mon(1, 1, 1);
ri_config_ddr(mcfg, $random);
// test request error detection;
mi_blk_reads(0, nadram); // block reads without bus error;
mi_blk_reads(1, nadram); // block reads with bus error;
mi_blk_writes(0, 0, nadram); // block writes dropped;
mi_blk_writes(0, 1, nadram); // block writes with write error intr;
mi_blk_writes(1, 0, nadram); // block writes with secure kernel trap;
// test pif emulation trapping;
mi_pif_reads(0); // reads without bus error;
mi_pif_reads(1); // reads with bus error;
mi_pif_writes(0, 0); // writes dropped;
mi_pif_writes(0, 1); // writes with write error intr;
mi_pif_writes(1, 0); // writes with secure kernel trap;
// test mi access to main memory (ri);
mi_cbus_mon(0, 0, 1);
mi_dram_sgl(nadram); // targeted single requests;
mi_dram_blk(nadram); // targeted block requests;
mi_dram_subblk(nadram); // targeted sub-block orders;
//XXX targeted test through x64 mirror spaces;
// write one space, read from another;
// random memory tests;
// random address and request types;
mi_mem_random(mcfg, nadram);
// mi dram performance tests;
// measure write bandwidth first, which fills patterns;
// then measure read bandwidth;
mi_rwbw(mcfg, `BASE_DRAM36, 1, `CPU_SIZE_16);
mi_rwbw(mcfg, `BASE_DRAM36, 0, `CPU_SIZE_16);
mi_rwbw(mcfg, `BASE_DRAM36, 1, `CPU_SIZE_32);
mi_rwbw(mcfg, `BASE_DRAM36, 0, `CPU_SIZE_32);
mi_rwbw(mcfg, `BASE_DRAM64L, 1, `CPU_SIZE_16);
mi_rwbw(mcfg, `BASE_DRAM64L, 0, `CPU_SIZE_16);
mi_rwbw(mcfg, `BASE_DRAM64L, 1, `CPU_SIZE_32);
mi_rwbw(mcfg, `BASE_DRAM64L, 0, `CPU_SIZE_32);
`ifdef MI_ONE_MCFG
mcfg = 100;
`endif // MI_ONE_MCFG
end
// button trap test;
mi_button_test(1); // launch button timer trap;
// test virage store controllers and bypass;
// run as late as possible for charge-pump to
// finish 1msec power-on reset;
`ifdef XXX
mi_vx_ctrl(0, 6); // test virage 0, 512bits;
mi_vx_ctrl(1, 6); // test virage 1, 512bits;
mi_vx_ctrl(2, 8); // test virage 2, 2kbits;
// test rcp interrupts; XXX
// test new device interrupts; XXX
// test debug interface;
mi_debug;
`endif
end
endtask
// run only the memory random stress test;
// mainly to help debug the ri;
task test_mem_rand;
reg [5:0] nadram; // # of dram address bits, x64 space;
integer mcfg; // current ddr configuration id;
begin
// test main memory of all configurations;
// block read tests needs main memory;
nadram = vsim.MEM_NADDR;
for(mcfg = 0; mcfg < 16; mcfg = mcfg + 1) begin
mi_cbus_mon(1, 1, 1);
ri_config_ddr(mcfg, $random);
mi_mem_random(mcfg, nadram);
end
end
endtask