RAMB4_S8.v
5.52 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
// $Header: /root/leakn64/depot/rf/hw/debug/xilinx/RAMB4_S8.v,v 1.1 2003/04/01 21:47:36 berndt Exp $
/*
FUNCTION : 4x8 Block RAM with synchronous write capability
*/
`timescale 100 ps / 10 ps
module RAMB4_S8 (DO, ADDR, CLK, DI, EN, RST, WE);
parameter INIT_00 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_01 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_02 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_03 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_04 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_05 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_06 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_07 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_08 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_09 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_0A = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_0B = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_0C = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_0D = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_0E = 256'h0000000000000000000000000000000000000000000000000000000000000000;
parameter INIT_0F = 256'h0000000000000000000000000000000000000000000000000000000000000000;
output [7:0] DO;
reg d0_out, d1_out, d2_out, d3_out, d4_out, d5_out, d6_out, d7_out;
input [8:0] ADDR;
input [7:0] DI;
input EN, CLK, WE, RST;
reg [4095:0] mem;
reg [8:0] count;
wire [8:0] addr_int;
wire [7:0] di_int;
wire en_int, clk_int, we_int, rst_int;
tri0 GSR = glbl.GSR;
always @(GSR)
if (GSR)
begin
assign d0_out = 0;
assign d1_out = 0;
assign d2_out = 0;
assign d3_out = 0;
assign d4_out = 0;
assign d5_out = 0;
assign d6_out = 0;
assign d7_out = 0;
end
else
begin
deassign d0_out;
deassign d1_out;
deassign d2_out;
deassign d3_out;
deassign d4_out;
deassign d5_out;
deassign d6_out;
deassign d7_out;
end
buf b_do_out0 (DO[0], d0_out);
buf b_do_out1 (DO[1], d1_out);
buf b_do_out2 (DO[2], d2_out);
buf b_do_out3 (DO[3], d3_out);
buf b_do_out4 (DO[4], d4_out);
buf b_do_out5 (DO[5], d5_out);
buf b_do_out6 (DO[6], d6_out);
buf b_do_out7 (DO[7], d7_out);
buf b_addr_0 (addr_int[0], ADDR[0]);
buf b_addr_1 (addr_int[1], ADDR[1]);
buf b_addr_2 (addr_int[2], ADDR[2]);
buf b_addr_3 (addr_int[3], ADDR[3]);
buf b_addr_4 (addr_int[4], ADDR[4]);
buf b_addr_5 (addr_int[5], ADDR[5]);
buf b_addr_6 (addr_int[6], ADDR[6]);
buf b_addr_7 (addr_int[7], ADDR[7]);
buf b_addr_8 (addr_int[8], ADDR[8]);
buf b_di_0 (di_int[0], DI[0]);
buf b_di_1 (di_int[1], DI[1]);
buf b_di_2 (di_int[2], DI[2]);
buf b_di_3 (di_int[3], DI[3]);
buf b_di_4 (di_int[4], DI[4]);
buf b_di_5 (di_int[5], DI[5]);
buf b_di_6 (di_int[6], DI[6]);
buf b_di_7 (di_int[7], DI[7]);
buf b_en (en_int, EN);
buf b_clk (clk_int, CLK);
buf b_we (we_int, WE);
buf b_rst (rst_int, RST);
initial
begin
for (count = 0; count < 256; count = count + 1)
begin
mem[count] <= INIT_00[count];
mem[256 * 1 + count] <= INIT_01[count];
mem[256 * 2 + count] <= INIT_02[count];
mem[256 * 3 + count] <= INIT_03[count];
mem[256 * 4 + count] <= INIT_04[count];
mem[256 * 5 + count] <= INIT_05[count];
mem[256 * 6 + count] <= INIT_06[count];
mem[256 * 7 + count] <= INIT_07[count];
mem[256 * 8 + count] <= INIT_08[count];
mem[256 * 9 + count] <= INIT_09[count];
mem[256 * 10 + count] <= INIT_0A[count];
mem[256 * 11 + count] <= INIT_0B[count];
mem[256 * 12 + count] <= INIT_0C[count];
mem[256 * 13 + count] <= INIT_0D[count];
mem[256 * 14 + count] <= INIT_0E[count];
mem[256 * 15 + count] <= INIT_0F[count];
end
end
always @(posedge clk_int)
begin
if (en_int == 1'b1)
if (rst_int == 1'b1)
begin
d0_out <= 0;
d1_out <= 0;
d2_out <= 0;
d3_out <= 0;
d4_out <= 0;
d5_out <= 0;
d6_out <= 0;
d7_out <= 0;
end
else
if (we_int == 1'b1)
begin
d0_out <= di_int[0];
d1_out <= di_int[1];
d2_out <= di_int[2];
d3_out <= di_int[3];
d4_out <= di_int[4];
d5_out <= di_int[5];
d6_out <= di_int[6];
d7_out <= di_int[7];
end
else
begin
d0_out <= mem[addr_int * 8];
d1_out <= mem[addr_int * 8 + 1];
d2_out <= mem[addr_int * 8 + 2];
d3_out <= mem[addr_int * 8 + 3];
d4_out <= mem[addr_int * 8 + 4];
d5_out <= mem[addr_int * 8 + 5];
d6_out <= mem[addr_int * 8 + 6];
d7_out <= mem[addr_int * 8 + 7];
end
end
always @(posedge clk_int)
begin
if (en_int == 1'b1 && we_int == 1'b1)
begin
mem[addr_int * 8] <= di_int[0];
mem[addr_int * 8 + 1] <= di_int[1];
mem[addr_int * 8 + 2] <= di_int[2];
mem[addr_int * 8 + 3] <= di_int[3];
mem[addr_int * 8 + 4] <= di_int[4];
mem[addr_int * 8 + 5] <= di_int[5];
mem[addr_int * 8 + 6] <= di_int[6];
mem[addr_int * 8 + 7] <= di_int[7];
end
end
specify
(CLK *> DO) = (1, 1);
endspecify
endmodule