RAMB4_S8_S8.v 15.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
// $Header: /root/leakn64/depot/rf/hw/flif/xilinx/RAMB4_S8_S8.v,v 1.1 2003/08/20 23:46:56 berndt Exp $

/*

FUNCTION	: 4x8x8 Block RAM with synchronous write capability

*/

`timescale  1 ps / 1 ps

module RAMB4_S8_S8 (DOA, DOB, ADDRA, ADDRB, CLKA, CLKB, DIA, DIB, ENA, ENB, RSTA, RSTB, WEA, WEB);

    parameter SETUP_ALL = 100;

    parameter INIT_00 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
    parameter INIT_01 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
    parameter INIT_02 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
    parameter INIT_03 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
    parameter INIT_04 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
    parameter INIT_05 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
    parameter INIT_06 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
    parameter INIT_07 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
    parameter INIT_08 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
    parameter INIT_09 = 256'h0000000000000000000000000000000000000000000000000000000000000000;
    parameter INIT_0A = 256'h0000000000000000000000000000000000000000000000000000000000000000;
    parameter INIT_0B = 256'h0000000000000000000000000000000000000000000000000000000000000000;
    parameter INIT_0C = 256'h0000000000000000000000000000000000000000000000000000000000000000;
    parameter INIT_0D = 256'h0000000000000000000000000000000000000000000000000000000000000000;
    parameter INIT_0E = 256'h0000000000000000000000000000000000000000000000000000000000000000;
    parameter INIT_0F = 256'h0000000000000000000000000000000000000000000000000000000000000000;

    output [7:0] DOA;
    reg [7:0] doa_out;
    wire doa_out0, doa_out1, doa_out2, doa_out3, doa_out4, doa_out5, doa_out6, doa_out7;

    input [8:0] ADDRA;
    input [7:0] DIA;
    input ENA, CLKA, WEA, RSTA;

    output [7:0] DOB;
    reg [7:0] dob_out;
    wire dob_out0, dob_out1, dob_out2, dob_out3, dob_out4, dob_out5, dob_out6, dob_out7;

    input [8:0] ADDRB;
    input [7:0] DIB;
    input ENB, CLKB, WEB, RSTB;

    reg [4095:0] mem;
    reg [8:0] count;

    reg [5:0] mi, mj, ai, aj, bi, bj, ci, cj, di, dj, ei, ej, fi, fj;

    wire [8:0] addra_int;
    reg [8:0] addra_reg;
    wire [7:0] dia_int;
    wire ena_int, clka_int, wea_int, rsta_int;
    reg ena_reg, wea_reg, rsta_reg;
    wire [8:0] addrb_int;
    reg [8:0] addrb_reg;
    wire [7:0] dib_int;
    wire enb_int, clkb_int, web_int, rstb_int;
    reg enb_reg, web_reg, rstb_reg;

    time time_clka, time_clkb;
    time time_clka_clkb;
    time time_clkb_clka;

    reg setup_all_a_b;
    reg setup_all_b_a;
    reg setup_zero;
    reg [1:0] data_collision, data_collision_a_b, data_collision_b_a;
    reg memory_collision, memory_collision_a_b, memory_collision_b_a;
    reg address_collision, address_collision_a_b, address_collision_b_a;
    reg change_clka;
    reg change_clkb;

    wire [11:0] mem_addra_int;
    wire [11:0] mem_addra_reg;
    wire [11:0] mem_addrb_int;
    wire [11:0] mem_addrb_reg;

    tri0 GSR = glbl.GSR;

    always @(GSR)
	if (GSR) begin
	    assign doa_out = 0;
	end
	else begin
	    deassign doa_out;
	end

    always @(GSR)
	if (GSR) begin
	    assign dob_out = 0;
	end
	else begin
	    deassign dob_out;
	end

    buf b_doa_out0 (doa_out0, doa_out[0]);
    buf b_doa_out1 (doa_out1, doa_out[1]);
    buf b_doa_out2 (doa_out2, doa_out[2]);
    buf b_doa_out3 (doa_out3, doa_out[3]);
    buf b_doa_out4 (doa_out4, doa_out[4]);
    buf b_doa_out5 (doa_out5, doa_out[5]);
    buf b_doa_out6 (doa_out6, doa_out[6]);
    buf b_doa_out7 (doa_out7, doa_out[7]);
    buf b_dob_out0 (dob_out0, dob_out[0]);
    buf b_dob_out1 (dob_out1, dob_out[1]);
    buf b_dob_out2 (dob_out2, dob_out[2]);
    buf b_dob_out3 (dob_out3, dob_out[3]);
    buf b_dob_out4 (dob_out4, dob_out[4]);
    buf b_dob_out5 (dob_out5, dob_out[5]);
    buf b_dob_out6 (dob_out6, dob_out[6]);
    buf b_dob_out7 (dob_out7, dob_out[7]);
    buf b_doa0 (DOA[0], doa_out0);
    buf b_doa1 (DOA[1], doa_out1);
    buf b_doa2 (DOA[2], doa_out2);
    buf b_doa3 (DOA[3], doa_out3);
    buf b_doa4 (DOA[4], doa_out4);
    buf b_doa5 (DOA[5], doa_out5);
    buf b_doa6 (DOA[6], doa_out6);
    buf b_doa7 (DOA[7], doa_out7);
    buf b_dob0 (DOB[0], dob_out0);
    buf b_dob1 (DOB[1], dob_out1);
    buf b_dob2 (DOB[2], dob_out2);
    buf b_dob3 (DOB[3], dob_out3);
    buf b_dob4 (DOB[4], dob_out4);
    buf b_dob5 (DOB[5], dob_out5);
    buf b_dob6 (DOB[6], dob_out6);
    buf b_dob7 (DOB[7], dob_out7);
    buf b_addra_0 (addra_int[0], ADDRA[0]);
    buf b_addra_1 (addra_int[1], ADDRA[1]);
    buf b_addra_2 (addra_int[2], ADDRA[2]);
    buf b_addra_3 (addra_int[3], ADDRA[3]);
    buf b_addra_4 (addra_int[4], ADDRA[4]);
    buf b_addra_5 (addra_int[5], ADDRA[5]);
    buf b_addra_6 (addra_int[6], ADDRA[6]);
    buf b_addra_7 (addra_int[7], ADDRA[7]);
    buf b_addra_8 (addra_int[8], ADDRA[8]);
    buf b_dia_0 (dia_int[0], DIA[0]);
    buf b_dia_1 (dia_int[1], DIA[1]);
    buf b_dia_2 (dia_int[2], DIA[2]);
    buf b_dia_3 (dia_int[3], DIA[3]);
    buf b_dia_4 (dia_int[4], DIA[4]);
    buf b_dia_5 (dia_int[5], DIA[5]);
    buf b_dia_6 (dia_int[6], DIA[6]);
    buf b_dia_7 (dia_int[7], DIA[7]);
    buf b_clka (clka_int, CLKA);
    buf b_ena (ena_int, ENA);
    buf b_rsta (rsta_int, RSTA);
    buf b_wea (wea_int, WEA);
    buf b_addrb_0 (addrb_int[0], ADDRB[0]);
    buf b_addrb_1 (addrb_int[1], ADDRB[1]);
    buf b_addrb_2 (addrb_int[2], ADDRB[2]);
    buf b_addrb_3 (addrb_int[3], ADDRB[3]);
    buf b_addrb_4 (addrb_int[4], ADDRB[4]);
    buf b_addrb_5 (addrb_int[5], ADDRB[5]);
    buf b_addrb_6 (addrb_int[6], ADDRB[6]);
    buf b_addrb_7 (addrb_int[7], ADDRB[7]);
    buf b_addrb_8 (addrb_int[8], ADDRB[8]);
    buf b_dib_0 (dib_int[0], DIB[0]);
    buf b_dib_1 (dib_int[1], DIB[1]);
    buf b_dib_2 (dib_int[2], DIB[2]);
    buf b_dib_3 (dib_int[3], DIB[3]);
    buf b_dib_4 (dib_int[4], DIB[4]);
    buf b_dib_5 (dib_int[5], DIB[5]);
    buf b_dib_6 (dib_int[6], DIB[6]);
    buf b_dib_7 (dib_int[7], DIB[7]);
    buf b_clkb (clkb_int, CLKB);
    buf b_enb (enb_int, ENB);
    buf b_rstb (rstb_int, RSTB);
    buf b_web (web_int, WEB);

    initial begin
	for (count = 0; count < 256; count = count + 1) begin
	    mem[count]		  <= INIT_00[count];
	    mem[256 * 1 + count]  <= INIT_01[count];
	    mem[256 * 2 + count]  <= INIT_02[count];
	    mem[256 * 3 + count]  <= INIT_03[count];
	    mem[256 * 4 + count]  <= INIT_04[count];
	    mem[256 * 5 + count]  <= INIT_05[count];
	    mem[256 * 6 + count]  <= INIT_06[count];
	    mem[256 * 7 + count]  <= INIT_07[count];
	    mem[256 * 8 + count]  <= INIT_08[count];
	    mem[256 * 9 + count]  <= INIT_09[count];
	    mem[256 * 10 + count] <= INIT_0A[count];
	    mem[256 * 11 + count] <= INIT_0B[count];
	    mem[256 * 12 + count] <= INIT_0C[count];
	    mem[256 * 13 + count] <= INIT_0D[count];
	    mem[256 * 14 + count] <= INIT_0E[count];
	    mem[256 * 15 + count] <= INIT_0F[count];
	end
	address_collision <= 0;
	address_collision_a_b <= 0;
	address_collision_b_a <= 0;
	change_clka <= 0;
	change_clkb <= 0;
	data_collision <= 0;
	data_collision_a_b <= 0;
	data_collision_b_a <= 0;
	memory_collision <= 0;
	memory_collision_a_b <= 0;
	memory_collision_b_a <= 0;
	setup_all_a_b <= 0;
	setup_all_b_a <= 0;
	setup_zero <= 0;
    end

    assign mem_addra_int = addra_int * 8;
    assign mem_addra_reg = addra_reg * 8;
    assign mem_addrb_int = addrb_int * 8;
    assign mem_addrb_reg = addrb_reg * 8;

    always @(posedge clka_int) begin
	time_clka = $time;
	#0 time_clkb_clka = time_clka - time_clkb;
	change_clka = ~change_clka;
    end

    always @(posedge clkb_int) begin
	time_clkb = $time;
	#0 time_clka_clkb = time_clkb - time_clka;
	change_clkb = ~change_clkb;
    end

    always @(change_clkb) begin
	if ((0 < time_clka_clkb) && (time_clka_clkb < SETUP_ALL))
	    setup_all_a_b <= 1;
    end

    always @(change_clka) begin
	if ((0 < time_clkb_clka) && (time_clkb_clka < SETUP_ALL))
	    setup_all_b_a <= 1;
    end

    always @(change_clkb or change_clka) begin
	if ((time_clkb_clka == 0) && (time_clka_clkb == 0))
	    setup_zero <= 1;
    end

    always @(posedge setup_zero) begin
	if ((ena_int == 1) && (wea_int == 1) &&
	    (enb_int == 1) && (web_int == 1))
	    memory_collision <= 1;
    end

    always @(posedge setup_all_a_b) begin
	if ((ena_reg == 1) && (enb_int == 1)) begin
	    case ({wea_reg, web_int})
		6'b11 : begin data_collision_a_b <= 2'b11; display_all_a_b; end
		6'b01 : begin data_collision_a_b <= 2'b10; display_all_a_b; end
		6'b10 : begin data_collision_a_b <= 2'b01; display_all_a_b; end
	    endcase
	end
	setup_all_a_b <= 0;
    end

    task display_all_a_b;
    begin
	address_collision_a_b <= 1'b0;
	for (ci = 0; ci < 8; ci = ci + 8) begin
	    if ((mem_addra_reg) == (mem_addrb_int + ci)) begin
		address_collision_a_b <= 1'b1;
	    end
	end
	if (address_collision_a_b == 1'b1)
	    $display("Timing Violation Error : Setup time %d violated on RAMB4_S8_S8 instance %m on CLKA port at simulation time %d ns with respect to CLKB port at simulation time %d.  Expected setup time is %d", time_clka_clkb, time_clka, time_clkb, SETUP_ALL);
    end
    endtask

    always @(posedge setup_all_b_a) begin
	if ((ena_int == 1) && (enb_reg == 1)) begin
	    case ({wea_int, web_reg})
		6'b11 : begin data_collision_b_a <= 2'b11; display_all_b_a; end
		6'b01 : begin data_collision_b_a <= 2'b10; display_all_b_a; end
		6'b10 : begin data_collision_b_a <= 2'b01; display_all_b_a; end
	    endcase
	end
	setup_all_b_a <= 0;
    end

    task display_all_b_a;
    begin
	address_collision_b_a <= 1'b0;
	for (ci = 0; ci < 8; ci = ci + 8) begin
	    if ((mem_addra_int) == (mem_addrb_reg + ci)) begin
		address_collision_b_a <= 1'b1;
	    end
	end
	if (address_collision_b_a == 1'b1)
	    $display("Timing Violation Error : Setup time %d violated on RAMB4_S8_S8 instance %m on CLKB port at simulation time %d ns with respect to CLKA port at simulation time %d.  Expected setup time is %d", time_clkb_clka, time_clkb, time_clka, SETUP_ALL);
    end
    endtask

    always @(posedge setup_zero) begin
	if ((ena_int == 1) && (enb_int == 1)) begin
	    case ({wea_int, web_int})
		6'b11 : begin data_collision <= 2'b11; display_zero; end
		6'b01 : begin data_collision <= 2'b10; display_zero; end
		6'b10 : begin data_collision <= 2'b01; display_zero; end
	    endcase
	end
	setup_zero <= 0;
    end

    task display_zero;
    begin
	address_collision <= 1'b0;
	for (ci = 0; ci < 8; ci = ci + 8) begin
	    if ((mem_addra_int) == (mem_addrb_int + ci)) begin
		address_collision <= 1'b1;
	    end
	end
	if (address_collision == 1'b1)
	    $display("Timing Violation Error : Setup time %d violated on RAMB4_S8_S8 instance %m on CLKA port at simulation time %d ns with respect to CLKB port at simulation time %d.  Expected setup time is %d", time_clka_clkb, time_clka, time_clkb, SETUP_ALL);
    end
    endtask

    always @(posedge clka_int) begin
	addra_reg <= addra_int;
	ena_reg <= ena_int;
	rsta_reg <= rsta_int;
	wea_reg <= wea_int;
    end

    always @(posedge clkb_int) begin
	addrb_reg <= addrb_int;
	enb_reg <= enb_int;
	rstb_reg <= rstb_int;
	web_reg <= web_int;
    end

    // Data
    always @(posedge memory_collision) begin
	for (mi = 0; mi < 8; mi = mi + 8) begin
	    if ((mem_addra_int) == (mem_addrb_int + mi)) begin
		for (mj = 0; mj < 8; mj = mj + 1) begin
		    mem[mem_addrb_int + mi + mj] <= 1'bX;
		end
	    end
	end
	memory_collision <= 0;
    end

    always @(posedge memory_collision_a_b) begin
	for (mi = 0; mi < 8; mi = mi + 8) begin
	    if ((mem_addra_reg) == (mem_addrb_int + mi)) begin
		for (mj = 0; mj < 8; mj = mj + 1) begin
		    mem[mem_addrb_int + mi + mj] <= 1'bX;
		end
	    end
	end
	memory_collision_a_b <= 0;
    end

    always @(posedge memory_collision_b_a) begin
	for (mi = 0; mi < 8; mi = mi + 8) begin
	    if ((mem_addra_int) == (mem_addrb_reg + mi)) begin
		for (mj = 0; mj < 8; mj = mj + 1) begin
		    mem[mem_addrb_reg + mi + mj] <= 1'bX;
		end
	    end
	end
	memory_collision_b_a <= 0;
    end

    always @(posedge data_collision[1]) begin
	if (rsta_int == 0) begin
	    for (ai = 0; ai < 8; ai = ai + 8) begin
		if ((mem_addra_int) == (mem_addrb_int + ai)) begin
		    doa_out <= 8'bX;
		end
	    end
	end
	data_collision[1] <= 0;
    end

    always @(posedge data_collision[0]) begin
	if (rstb_int == 0) begin
	    for (bi = 0; bi < 8; bi = bi + 8) begin
		if ((mem_addra_int) == (mem_addrb_int + bi)) begin
		    for (bj = 0; bj < 8; bj = bj + 1) begin
			dob_out[bi + bj] <= 1'bX;
		    end
		end
	    end
	end
	data_collision[0] <= 0;
    end

    always @(posedge data_collision_a_b[1]) begin
	if (rsta_reg == 0) begin
	    for (ai = 0; ai < 8; ai = ai + 8) begin
		if ((mem_addra_reg) == (mem_addrb_int + ai)) begin
		    doa_out <= 8'bX;
		end
	    end
	end
	data_collision_a_b[1] <= 0;
    end

    always @(posedge data_collision_a_b[0]) begin
	if (rstb_int == 0) begin
	    for (bi = 0; bi < 8; bi = bi + 8) begin
		if ((mem_addra_reg) == (mem_addrb_int + bi)) begin
		    for (bj = 0; bj < 8; bj = bj + 1) begin
			dob_out[bi + bj] <= 1'bX;
		    end
		end
	    end
	end
	data_collision_a_b[0] <= 0;
    end

    always @(posedge data_collision_b_a[1]) begin
	if (rsta_int == 0) begin
	    for (ai = 0; ai < 8; ai = ai + 8) begin
		if ((mem_addra_int) == (mem_addrb_reg + ai)) begin
		    doa_out <= 8'bX;
		end
	    end
	end
	data_collision_b_a[1] <= 0;
    end

    always @(posedge data_collision_b_a[0]) begin
	if (rstb_reg == 0) begin
	    for (bi = 0; bi < 8; bi = bi + 8) begin
		if ((mem_addra_int) == (mem_addrb_reg + bi)) begin
		    for (bj = 0; bj < 8; bj = bj + 1) begin
			dob_out[bi + bj] <= 1'bX;
		    end
		end
	    end
	end
	data_collision_b_a[0] <= 0;
    end

    always @(posedge clka_int) begin
	if (ena_int == 1'b1) begin
	    if (rsta_int == 1'b1) begin
		doa_out <= 8'b0;
	    end
	    else if (wea_int == 0) begin
		doa_out[0] <= mem[mem_addra_int + 0];
		doa_out[1] <= mem[mem_addra_int + 1];
		doa_out[2] <= mem[mem_addra_int + 2];
		doa_out[3] <= mem[mem_addra_int + 3];
		doa_out[4] <= mem[mem_addra_int + 4];
		doa_out[5] <= mem[mem_addra_int + 5];
		doa_out[6] <= mem[mem_addra_int + 6];
		doa_out[7] <= mem[mem_addra_int + 7];
	    end
	    else begin
		doa_out <= dia_int;
	    end
	end
    end

    always @(posedge clka_int) begin
	if (ena_int == 1'b1 && wea_int == 1'b1) begin
	    mem[mem_addra_int + 0] <= dia_int[0];
	    mem[mem_addra_int + 1] <= dia_int[1];
	    mem[mem_addra_int + 2] <= dia_int[2];
	    mem[mem_addra_int + 3] <= dia_int[3];
	    mem[mem_addra_int + 4] <= dia_int[4];
	    mem[mem_addra_int + 5] <= dia_int[5];
	    mem[mem_addra_int + 6] <= dia_int[6];
	    mem[mem_addra_int + 7] <= dia_int[7];
	end
    end

    always @(posedge clkb_int) begin
	if (enb_int == 1'b1) begin
	    if (rstb_int == 1'b1) begin
		dob_out <= 8'b0;
	    end
	    else if (web_int == 0) begin
		dob_out[0] <= mem[mem_addrb_int + 0];
		dob_out[1] <= mem[mem_addrb_int + 1];
		dob_out[2] <= mem[mem_addrb_int + 2];
		dob_out[3] <= mem[mem_addrb_int + 3];
		dob_out[4] <= mem[mem_addrb_int + 4];
		dob_out[5] <= mem[mem_addrb_int + 5];
		dob_out[6] <= mem[mem_addrb_int + 6];
		dob_out[7] <= mem[mem_addrb_int + 7];
	    end
	    else begin
		dob_out <= dib_int;
	    end
	end
    end

    always @(posedge clkb_int) begin
	if (enb_int == 1'b1 && web_int == 1'b1) begin
	    mem[mem_addrb_int + 0] <= dib_int[0];
	    mem[mem_addrb_int + 1] <= dib_int[1];
	    mem[mem_addrb_int + 2] <= dib_int[2];
	    mem[mem_addrb_int + 3] <= dib_int[3];
	    mem[mem_addrb_int + 4] <= dib_int[4];
	    mem[mem_addrb_int + 5] <= dib_int[5];
	    mem[mem_addrb_int + 6] <= dib_int[6];
	    mem[mem_addrb_int + 7] <= dib_int[7];
	end
    end

    specify
	(CLKA *> DOA) = (1, 1);
	(CLKB *> DOB) = (1, 1);
    endspecify

endmodule