bl.c 20.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
/**************************************************************************
 *                                                                        *
 *               Copyright (C) 1994, Silicon Graphics, Inc.               *
 *                                                                        *
 *  These coded instructions, statements, and computer programs  contain  *
 *  unpublished  proprietary  information of Silicon Graphics, Inc., and  *
 *  are protected by Federal copyright law.  They  may  not be disclosed  *
 *  to  third  parties  or copied or duplicated in any form, in whole or  *
 *  in part, without the prior written consent of Silicon Graphics, Inc.  *
 *                                                                        *
 **************************************************************************/

/*
 *  Blend Unit - also contains depth buffer and write enable generation
 *               logic.
 *
 *
 *  8/15/94  RJM
 */

#include <stdio.h>
#include <stdlib.h>

#include "bl.h"

static int bl_dump = 0;

/*
 *  D e f i n e s
 */
#define ONE_POINT_OH		0xff
#define ZERO			0x0

#define POSEDGE         	(save_clk && !save_clk_old)
#define NEGEDGE         	(!save_clk && save_clk_old)

#define MAX(a, b)		(((a) > (b)) ? (a) : (b))
#define MIN(a, b)		(((a) > (b)) ? (b) : (a))
#define CLAMP(x, min, max)	(MAX(MIN(x,max),min))

/***************************************************************************
 * four_to_one(), 4:1 mux
 ***************************************************************************
 */
static int
  four_to_one( int sel, int a, int b, int c, int d )
{
  switch(sel & 3)
  {
    case 0:
      return(a);
    case 1:
      return(b);
    case 2:
      return(c);
    case 3:
      return(d);
  }
}


/***************************************************************************
 * normalize_a():
 *
 *  input precision: 0.5
 ***************************************************************************/
static int
  normalize_a(int value, int shift)
{
  if(shift > 4) shift = 4;
  return(value >> shift) & 0x3C;
}


/***************************************************************************
 * normalize_b():
 *
 *  input precision: 1.5
 ***************************************************************************/
static int
  normalize_b(int value, int shift)
{
  if(shift > 4) shift = 4;
  return(value >> shift) & 0x1C;
}


/***************************************************************************
 * numerator_calc():
 *
 *  assumed input precision:
 *    p 0.8
 *    a 1.5
 *    m 0.8
 *    b 0.5
 *
 *  output precision: 0.11
 *
 ***************************************************************************/
static int
  numerator_calc(int p, int a, int m, int b, int b_sel)
{
  int mul1, mul2, res, mtimes1;

  mul1 = p * a; /* 1.13 */
  mul2 = m * b; /* 0.13 */
  mtimes1 = (b_sel==1) ? (m<<2) : m;
  res  = mul1 + mul2 + mtimes1; /* 0.13, msb can't be one */
  return(res >> 2); /* 0.11 */
}



/***************************************************************************
 * denominator_calc(): 
 *  inputs are a: 0.5
 *             b: 1.5
 *
 *  does (0.3 + 1.3 + lsb), returns 1.3 result.
 *
 *  Hi Norm!
 ***************************************************************************/
static int
  denominator_calc(int norm_a, int norm_b)
{
  return(((norm_a >> 2) + (norm_b >> 2) + 1) & 0xf);
}

/***************************************************************************
 * quantize_2n(): 
 ***************************************************************************/
static int
  quantize_2n(int n)
{
  int i;

  if((n & 0x8000) || (n & 0x4000))
    return(0x8000);
  else
  {
    for(i = 0x2000; i > 0; i >>= 1)
    {
      if(i & n)
        return(i << 1);
    }
  }
  /* no bits set */
  return(1);
}

/***************************************************************************
 * priority_encode(): 
 ***************************************************************************/
static int
  priority_encode(int x)
{
  int res;

  for(res = 0; x > 1; x >>= 1, res++)
    ;

  return(res);
}


/***************************************************************************
 * decode_float(): mem_z format is:
 *  [17:15] exponent shift
 *  [14:4] mantissa
 *  [3:0] delta_z (not used in this function)
 ***************************************************************************/
static int
  decode_float(int mem_z)
{
  int shift = (mem_z >> 15) & 7;  /* 3 bits */
  int mant = (mem_z >> 4) & 0x7ff; /* 11 bits */
  int mask = 0x7f;

  if(shift > 6) /* clamp shift */
  {
    mask <<= 11;
  }
  else
  {
    mant <<= (6 - shift);
    mask <<= 18 - shift;
  }

  return((mask | mant) & 0x3ffff); /* 18 bits */
}

/***************************************************************************
 * fix_to_float(): mem_z format is:
 *  [17:15] exponent shift
 *  [14:4] mantissa
 *  [3:0] delta_z (not used in this function)
 *
 *  This function take a 15.3 number and converts it to the 
 *  floating point format shown above.
 ***************************************************************************/
static int
  fix_to_float( int x )
{
  int exp;
  int mant;

  for( exp = 0; exp < 8; exp++)
    if(!((0x20000 >> exp) & x)) /* find first zero */
      break;
  mant = (x >> (6 - CLAMP(exp, 0, 6))) & 0x7ff;
  return((CLAMP(exp, 0, 7) << 11) | mant);
}


/***************************************************************************
 * four_to_sixteen(): four to sixteen decode
 ***************************************************************************/
static int
    four_to_sixteen(int x)
{
  return(1 << x);
}


/***************************************************************************
 * bl() -  main blend unit interface function
 ***************************************************************************/

void
  bl(bl_t **pp0, bl_t **pp1)
{
  bl_t *p0, *p1;
  int save_clk;
  int save_clk_old;

  /* temporary sigs */
  /* page 1 */
  int mux_zero_r;
  int mux_zero_g;
  int mux_zero_b;

  int p_mux_r;
  int p_mux_g;
  int p_mux_b;
  int m_mux_r;
  int m_mux_g;
  int m_mux_b;
  int a_mux_a;
  int b_mux_a;

  int pixel_alpha;

  int norm_a;
  int norm_b;

  int span_r;
  int span_g;
  int span_b;

  /* page 2 */
  int sx;
  int pre_cvg_wrap;
  int we_cvg;
  int pcvg;
  int mcvg;
  int cvgsum;

  /* page 3 */
  int new_z;
  int new_delta_z;
  int memory_delta_z;
  int dzdx_t;
  int dzdy_t;
  int max_delta_z;
  int span_z;
  int span_delta_z;
  int trans;
  int decal;
  int opaque_inter;
  int force_nearfar;
  static int memz_d1=7;


  /*
   *  Get Pointers, clocks
   */
  p0 = *pp0;
  p1 = *pp1;
  save_clk = p0->gclk;
  save_clk_old = p1->gclk_old;


  if(POSEDGE)
  {
    /* transfer all next-clock register values to register outputs. */
    *pp0 = p1; /* swap */
    *pp1 = p0;
    p0 = *pp0; /* fix pointers */
    p1 = *pp1;
  
    /* Update all next-clock register values */

    /*
     *  Blend Unit Page 1
     *
     *  This section contains input muxes, lerps, divide, and
     *  blend masking/bypass stuff.
     *
     */

    /* generate cycle signal */
    p0->cycle = !((p1->cycle || p1->st_span) || !p1->ncyc);

    /* delay cycle */
    p0->cycle_d1 = p1->cycle;

    /* choose and delay modeword */
    p0->mode_p_r = p1->cycle ? p1->bl_p_sel_1_r : p1->bl_p_sel_0_r;
    p0->mode_m_r = p1->cycle ? p1->bl_m_sel_1_r : p1->bl_m_sel_0_r;
    p0->mode_a_r = p1->cycle ? p1->bl_a_sel_1_r : p1->bl_a_sel_0_r;
    p0->mode_b_r = p1->cycle ? p1->bl_b_sel_1_r : p1->bl_b_sel_0_r;
   
    /*  choose between feedback path and CC pixel */
    if(p1->cycle_d1)
    {
      mux_zero_r = (p1->blended_r >> 3) & 0xff; /* 0.11 -> .8 */
      mux_zero_g = (p1->blended_g >> 3) & 0xff; /* 0.11 -> .8 */
      mux_zero_b = (p1->blended_b >> 3) & 0xff; /* 0.11 -> .8 */
      pixel_alpha = p1->pixel_a_d1;
    }
    else
    {
      mux_zero_r = p1->pixel_r;
      mux_zero_g = p1->pixel_g;
      mux_zero_b = p1->pixel_b;
      pixel_alpha = p1->pixel_a;
    }
    p0->pixel_a_d1 = p1->pixel_a;

    /* get mux P output */
    p_mux_r = four_to_one(p1->mode_p_r, mux_zero_r, p1->mem_r, p1->blend_r, p1->fog_r);
    p_mux_g = four_to_one(p1->mode_p_r, mux_zero_g, p1->mem_g, p1->blend_g, p1->fog_g);
    p_mux_b = four_to_one(p1->mode_p_r, mux_zero_b, p1->mem_b, p1->blend_b, p1->fog_b);

    m_mux_r = four_to_one(p1->mode_m_r, mux_zero_r, p1->mem_r, p1->blend_r, p1->fog_r);
    m_mux_g = four_to_one(p1->mode_m_r, mux_zero_g, p1->mem_g, p1->blend_g, p1->fog_g);
    m_mux_b = four_to_one(p1->mode_m_r, mux_zero_b, p1->mem_b, p1->blend_b, p1->fog_b);

    a_mux_a = four_to_one(p1->mode_a_r, pixel_alpha>>3, p1->fog_a>>3, p1->shade_a>>3, ZERO);

    b_mux_a = four_to_one(p1->mode_b_r, ~a_mux_a & 0x1f, p1->mem_a<<2, ONE_POINT_OH & 0x1f, ZERO);

    if((p1->mode_a_r == 0) && (p1->mode_b_r == 0) && (pixel_alpha >= 0xff))
      p0->bypass_bl = 1;
    else
      p0->bypass_bl = 0;

    /* delay bypass signal */
    p0->bypass_bl_d1 = p1->bypass_bl;

    if(p1->mode_b_r != 1)
    {
      /* don't molest a, b */
      norm_a = a_mux_a;
      norm_b = b_mux_a;
    }
    else
    {
      /* jam 2 lsbs of a, b to be zero and normalize */
      norm_a = normalize_a(a_mux_a, p1->norm_a);
      norm_b = normalize_b(b_mux_a, p1->norm_b);
    }

    /* do numerator calc per component */
    p0->blended_r = numerator_calc(p_mux_r, norm_a, m_mux_r, norm_b, p1->mode_b_r);
    p0->blended_g = numerator_calc(p_mux_g, norm_a, m_mux_g, norm_b, p1->mode_b_r);
    p0->blended_b = numerator_calc(p_mux_b, norm_a, m_mux_b, norm_b, p1->mode_b_r);

    /* do denominator calc */
    p0->denom = denominator_calc(norm_a, norm_b);

    /* latch mux outputs */
    p0->p_r = p_mux_r;
    p0->p_g = p_mux_g;
    p0->p_b = p_mux_b;
    p0->m_r = m_mux_r;
    p0->m_g = m_mux_g;
    p0->m_b = m_mux_b;

    /* do divide */
    if(p1->denom)
    {
      p0->dividend_r = p1->blended_r / p1->denom;
      p0->dividend_g = p1->blended_g / p1->denom;
      p0->dividend_b = p1->blended_b / p1->denom;
    }
    else
    {
      p0->dividend_r = 0xff;
      p0->dividend_g = 0xff;
      p0->dividend_b = 0xff;
    }

    /* delay mux outputs while doing divide */
    p0->p_r_d1 = p1->p_r;
    p0->p_g_d1 = p1->p_g;
    p0->p_b_d1 = p1->p_b;
    p0->m_r_d1 = p1->m_r;
    p0->m_g_d1 = p1->m_g;
    p0->m_b_d1 = p1->m_b;

    p0->blended_r_d1 = p1->blended_r >> 3;
    p0->blended_g_d1 = p1->blended_g >> 3;
    p0->blended_b_d1 = p1->blended_b >> 3;

    p0->force_blend_d1 = p1->force_blend;

    /* output muxes, blend masking */
    if(p1->force_blend_d1)
    {
      span_r = p1->blended_r_d1;
      span_g = p1->blended_g_d1;
      span_b = p1->blended_b_d1;
    }
    else
    {
      span_r = p1->dividend_r;
      span_g = p1->dividend_g;
      span_b = p1->dividend_b;
    }


    if(p1->blend_en && !p1->bypass_bl_d1)
    {
      span_r = span_r;
      span_g = span_g;
      span_b = span_b;
    }
    else
    {
      span_r = p1->p_r_d1;
      span_g = p1->p_g_d1;
      span_b = p1->p_b_d1;
    }


    if(p1->color_on_cvg && !p1->cvg_wrap)
    {
      span_r = p1->m_r_d1;
      span_g = p1->m_g_d1;
      span_b = p1->m_b_d1;
    }

    /* output result */
    p0->span_r = span_r;
    p0->span_g = span_g;
    p0->span_b = span_b;

    /*
     *  Blend Unit Page 2
     *
     *  This section contains pixel coverage mangelization logic
     *  Main outputs are pre_cvg_wrap, cvg_wrap, we_cvg, and the
     *  all important span_alpha.
     *  
     *
     */
    
    /* delay pixel coverage and memory alpha */
    p0->pixel_cvg_d2 = p1->pixel_cvg;

    if(p1->cycle_d1)
        p0->pixel_cvg_d1 = p1->pixel_cvg_d2 & 0xf;
    else
        p0->pixel_cvg_d1 = p1->pixel_cvg & 0xf;

    p0->mem_a_d1 = p1->mem_a;
    p0->mem_a_d2 = p1->mem_a_d1;

    /* generate coverage wrap bit */
    pre_cvg_wrap = ((p1->pixel_cvg_d1 + p1->mem_a_d1) & 0x8)>0;
    p0->cvg_wrap = pre_cvg_wrap;

    if(pre_cvg_wrap && p1->z_mode == 1 && p1->in_front && p1->farther)
    {
      /* do interpenetration calc */
      sx = (((p1->old_z>>p1->delta_z)) - ((p1->new_z>>p1->delta_z)))&0xF;
      p0->zcvg = ((sx * p1->pixel_cvg_d1) >> 3) & 0xf; 
    }
    else
    {
      p0->zcvg = p1->pixel_cvg_d1;
      sx = 0xf;
    }

    /* generate coverage write enable */
    we_cvg = p0->zcvg > 0;

    /* calc span alpha */
    pcvg = p1->cvg_dest & 2  ? 0 : p1->zcvg;
    mcvg = !(p1->blend_en || (p1->cvg_dest & 1)) ? -1 : p1->mem_a_d2;
    cvgsum = pcvg + mcvg;
    
    if(p1->cvg_dest == 2)
      p0->span_a = 0x7;
    else if((cvgsum & 0x8) && !(p1->cvg_dest & 1))
      p0->span_a = 0x7;
    else
      p0->span_a = cvgsum & 0x7;

    /*
     *  Blend Unit Page 3
     *
     *  This section contains depth buffering, blend enable generation,
     *  and write enable generation for depth and color.
     *  
     *  NOTE:  This section is very order dependent so be careful
     *         when rearranging code.
     */

    /* select source Z, dZ */
    p0->z_source_d1 = p1->z_source_select;
    new_z = p1->z_source_d1 ? (p1->prim_z << 3) & 0x3ffff : p1->st_z;
    p0->new_z = new_z;

    if(p1->z_source_select)
      new_delta_z = p1->prim_delta_z;
    else
    {
      /* do pixel delta z calc */
      dzdx_t = (p1->dzdx & 0x8000) ? ~p1->dzdx & 0x7fff : p1->dzdx;
      dzdy_t = (p1->dzdy & 0x8000) ? ~p1->dzdy & 0x7fff : p1->dzdy;
      new_delta_z = quantize_2n(dzdx_t + dzdy_t);
    }

    p0->new_dz_d1 = new_delta_z;  /* order important here */
    p0->new_dz_d2 = p1->new_dz_d1;
    new_delta_z = priority_encode(new_delta_z);

    /* convert mem Z from float to fix */
    p0->mem_z_d1 = decode_float(p1->mem_z);

    /* unencode memory dZ */
    p0->mem_dz_d1 = four_to_sixteen(p1->mem_z & 0xf); 

    /* make deltaz bigger if precision lost in floating point z neccessitates */
    force_nearfar=0;
    switch((memz_d1>>15) & 0xF) {
        case 0:
            if (p1->mem_dz_d1==0x8000) force_nearfar=1;
            p1->mem_dz_d1 = MAX(p1->mem_dz_d1,four_to_sixteen(3))<<1;
            if (p1->mem_dz_d1==0) p1->mem_dz_d1=0xFFFF;
            break;
        case 1:
            if (p1->mem_dz_d1==0x8000) force_nearfar=1;
            p1->mem_dz_d1 = MAX(p1->mem_dz_d1,four_to_sixteen(2))<<1;
            if (p1->mem_dz_d1==0) p1->mem_dz_d1=0xFFFF;
            break;
        case 2:
            if (p1->mem_dz_d1==0x8000) force_nearfar=1;
            p1->mem_dz_d1 = MAX(p1->mem_dz_d1,four_to_sixteen(1))<<1;
            if (p1->mem_dz_d1==0) p1->mem_dz_d1=0xFFFF;
            break;
        default:
            break;
    }

    if (p0->mem_dz_d1>0x8000) 
      p0->mem_dz_d1=0xFFFF;

    memz_d1 = p1->mem_z;

    /* find norm a,b */
    memory_delta_z = p1->mem_z & 0xf;
    p0->norm_a = CLAMP(new_delta_z - memory_delta_z, 0, 4);
    p0->norm_b = CLAMP(memory_delta_z - new_delta_z, 0, 4);

    /* find span z */
    span_z = fix_to_float(p1->new_z);
    span_delta_z = priority_encode(p1->new_dz_d2); 
    p0->span_z = (span_z << 4) | span_delta_z; 

    /* find delta z, old z */
    max_delta_z = MAX(p1->mem_dz_d1, p1->new_dz_d1);
    p0->delta_z = priority_encode(max_delta_z);
   /* p0->old_z = p1->mem_dz_d1 >> 3;*/
    p0->old_z = p1->mem_z_d1;
   
    /* Generate Flags */
    p0->max_z = p1->mem_z_d1 == 0x3ffff;
    p0->farther = ((int) new_z + ((int) max_delta_z << 3)) >= (int) p1->mem_z_d1;
    p0->nearer = ((int) new_z - ((int) max_delta_z << 3)) <= (int) p1->mem_z_d1;
    p0->in_front = new_z < p1->mem_z_d1;
    if (force_nearfar) {
        p0->farther = 1;
        p0->nearer = 1;
    }

    /* Generate blend enable */
    trans = (p1->z_mode == 2) && (p1->max_z || p1->in_front);
    decal = (p1->z_mode == 3) && p1->nearer && p1->farther && !p1->max_z;
    opaque_inter = ((pre_cvg_wrap ? p1->in_front : p1->nearer) || p1->max_z) 
		&& !(p1->z_mode & 2);
    p0->blend_en = (!pre_cvg_wrap && p1->antialias_enable && p1->farther) || p1->force_blend;

    /* write enables */
    if(p1->antialias_enable)
    {
      p0->span_color_we_m1 = we_cvg && (trans || decal || opaque_inter || !p1->z_compare_enable);
      p0->span_depth_we = p0->span_color_we_m1 && p1->z_update_enable;
    }
    else
    {
      p0->span_color_we_m1 = p1->mask15b && (trans || decal || opaque_inter || !p1->z_compare_enable);
      p0->span_depth_we = p0->span_color_we_m1 && p1->z_update_enable;
    }

    p0->span_color_we = p1->span_color_we_m1;



  } /* exec module */

  /*
   *  Save clock
   */
  p0->gclk_old = p1->gclk_old = save_clk;
}


/***************************************************************************
 * bl_init() -  required init function for blend unit
 ***************************************************************************/
void
  bl_init(bl_t *p0, bl_t *p1)
{
    p1->gclk = p0->gclk = 0;
    p1->gclk_old = p0->gclk_old = 0;
}





#ifdef DUMP_ON
    {
      char *bl_dump_str;
      if (bl_dump_str=getenv("BLENDER_DUMP")) {
        if (!(sscanf(bl_dump_str,"%i",&bl_dump)))
          bl_dump=0;
      } else
        bl_dump=0;
      }

	int verb,verb2;
#define VERBNUM 50
	static int va[VERBNUM],vb[VERBNUM],vc[VERBNUM],vd[VERBNUM],ve[VERBNUM],vf[VERBNUM];
	static int *v0=va,*v1=vb,*v2=vc,*v3=vd,*v4=ve,*v5=vf,*vt;
	int i;
	static int verbcount=-1;
	verb=(bl_dump&1);
	verb2=(bl_dump&2);
	if (verb || verb2) {
		if (!verbcount) for(i=0;i<VERBNUM;i++){v0[i]=0;v1[i]=0;v2[i]=0;v3[i]=0;v4[i]=0;v5[i]=0;}
		v0[0]=verbcount++;
		if (verb)
			printf("#! {%d} ",v5[0]);
	}

	if (verb) {
		v3[7]=p1->blended_r;
		v3[8]=p1->blended_g;
		v3[9]=p1->blended_b;
		printf("mp_rgb\\.11=0x%03X, 0x%03X, 0x%03X  ",v5[7],v5[8],v5[9]);

		v3[10]=p1->denom;
		printf("mp_c\\1.3=0x%01X  ",v5[10]);

		v3[4]=p0->dividend_r;
		v3[5]=p0->dividend_g;
		v3[6]=p0->dividend_b;
		printf("dv\\.8=0x%02X, 0x%02X, 0x%02X  ",v5[4],v5[5],v5[6]);

		v4[1]=p0->span_r;
		v4[2]=p0->span_g;
		v4[3]=p0->span_b;
		printf("span_rgb=0x%02X, 0x%02X, 0x%02X ",v5[1],v5[2],v5[3]);

		v4[11]=p1->cvg_wrap;
		printf("cvg_wrap=%d  ",v5[11]);

		v4[14]=(p1->color_on_cvg && !p1->cvg_wrap);
		printf("coc=%d  ",v5[14]);

		v4[15]=p1->blend_en;
		printf("bl_en=%d  ",v5[15]);

		v3[12]=opaque_inter;
		printf("op_int=%d  ",v5[12]);

		v3[13]=p0->span_color_we_m1;
		printf("clr_we=%d  ",v5[13]);

		v3[16]=we_cvg;
		printf("we_cvg=%d  ",v5[16]);

		v4[17]=p1->zcvg;
		printf("pcvgafter\\1.3=0x%01X  ",v5[17]);

		printf("\n");
		printf("#! {%d} ",v5[0]);

		v3[18]=p1->old_z;
		v3[19]=p1->new_z;
		v3[20]=p1->delta_z;
                v2[34]=(max_delta_z << 3);
                v2[35]=((int) p1->new_z) - ((int)(max_delta_z << 3));
                v2[36]=((int) p1->new_z) + ((int)(max_delta_z << 3));
		printf("oldz=0x%05X  newz=0x%05X  maxdz=0x%X maxdz\\16.3=0x%05X new-dz=0x%05X new+dz=0x%05X    ",v5[18],v5[19],v5[20],v5[34],v5[35],v5[36]);

		v3[21]=sx;
		printf("sx\\1.3=0x%01X  ",v5[21]);

		v2[22]=p0->farther;
		printf("farther=%d  ",v5[22]);

		v2[23]=p_mux_r;
		v2[24]=m_mux_r;
		v2[25]=norm_a;
		v2[26]=norm_b;
		printf("p_r\\0.8=0x%02X  m_r\\0.8=0x%02X  norm_a\\1.5=0x%02X  norm_b\\0.5=0x%02X  ",v5[23],v5[24],v5[25],v5[26]);

		v2[27]=p1->norm_a;
		v2[28]=p1->norm_b;
		printf("norm_A(0-4)=%d norm_Bi(0-4)=%d  ",v5[27],v5[28]);

		v2[29]=a_mux_a;
		v2[30]=b_mux_a;
		printf("mux_a\\1.5=0x%02X mux_b\\.5=0x%02X  ",v5[29],v5[30]);

		printf("\n");
		printf("#! {%d} ",v5[0]);

		v4[33]=p1->cycle_d1;
		printf("cycle=%d  ",v5[33]);


		vt=v5;v5=v4;v4=v3;v3=v2;v2=v1;v1=v0;v0=vt;
		printf("\n");
	}
	if (verb2) {
		static int pc2,pc3,pc4,pc5;
		static int mc2,mc3,mc4,mc5;
		static int wz5,wz4,wc5;
		static int wv3,wv4,wv5;
		static int at3,at4,at5;
		static int au1,au2,au3,au4,au5;
		static int as3,as4,as5;
		static int c01,c02,c03,c04,c05;
		static int c11,c12,c13,c14,c15;
		static int pr4,pr5,pg4,pg5,pb4,pb5;
		static int pxr5,pxr4,pxr3,pxr2;
		static int pxg5,pxg4,pxg3,pxg2;
		static int pxb5,pxb4,pxb3,pxb2;

		printf("bl[%d]:  ",verbcount);
		pc5=pc4;pc4=pc3;pc3=pc2;pc2=p1->pixel_cvg_d1;
		printf("p_cvg=%X  ",pc5);
		mc5=mc4;mc4=mc3;mc3=mc2;mc2=p1->mem_a;
		printf("m_cvg=%X  ",mc5);
		printf("sp_a=%X  ",p1->span_a);
		printf("sp_b:g:r=%02X%02X%02X  ",
					p1->span_b,p1->span_g,p1->span_r);
		wz5=wz4;wz4=p1->span_depth_we;
		wc5=p1->span_color_we;
		printf("we_c:z=%d%d  ",wc5,wz5);
		wv5=wv4;wv4=wv3;wv3=we_cvg;
		printf("we_cvg=%d  ",wv5);

		au5=au4;
		au4=au3;
		au3=au2;
		au2=au1;
		au1= p1->z_source_select << (0);

		as5=as4;
		as4=as3;
		as3=	  (p1->z_mode << (0)) 
			| (p1->z_update_enable << (4*1))
			| (p1->z_compare_enable << (4*2)) 
			| (p1->antialias_enable << (4*3));

		at5=at4;
		at4=at3 | (p1->color_on_cvg << (4*2)) 
			| (p1->cvg_dest << (4*3));
		at3=      (p1->mask15b )
			| (p1->force_blend << (4*1));

		printf("Zss::M15=%01X%04X%04X  ",au5,as5,at5);

		c05=c04;c04=c03;c03=c02=c02=c01;
		c15=c14;c14=c13;c13=c12=c12=c11;
		c01= 	  (p1->bl_p_sel_0_r << 12)
			| (p1->bl_m_sel_0_r << 8)
			| (p1->bl_a_sel_0_r << 4)
			| (p1->bl_b_sel_0_r << 0);
		c11= 	  (p1->bl_p_sel_1_r << 12)
			| (p1->bl_m_sel_1_r << 8)
			| (p1->bl_a_sel_1_r << 4)
			| (p1->bl_b_sel_1_r << 0);
		printf("pmab=%04X%04X  ",c05,c15);

		pr5=pr4;pr4=p1->p_r_d1;
		pg5=pg4;pg4=p1->p_g_d1;
		pb5=pb4;pb4=p1->p_b_d1;
		printf("pmux=%x,%x,%x  ",pr5,pg5,pb5);

		pxr5=pxr4;pxr4=pxr3;pxr3=pxr2;pxr2=p1->pixel_r;
		pxg5=pxg4;pxg4=pxg3;pxg3=pxg2;pxg2=p1->pixel_g;
		pxb5=pxb4;pxb4=pxb3;pxb3=pxb2;pxb2=p1->pixel_b;
		printf("pix=%x,%x,%x  ",pxr5,pxg5,pxb5);

		printf("\n");
	}
#endif /* DUMP_ON */