flash_interface.c
65.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
/*
* Copyright (C) 1996-1998 by the Board of Trustees
* of Leland Stanford Junior University.
*
* This file is part of the SimOS distribution.
* See LICENSE file for terms of the license.
*
*/
/* -*-mode:c-*- DO NOT MOVE THIS COMMENT */
/* $Id: flash_interface.c,v 1.1.1.1 2002/05/29 01:09:11 blythe Exp $ */
/*****************************************************************
* flash_interface.c
*
*****************************************************************/
#include <stdio.h>
#include <time.h>
#include <assert.h>
#include <stdlib.h>
#include "cpu_interface.h"
#include "mipsy.h"
#include "pcache.h"
#include "scache.h"
#include "memstat.h"
#include "memsys.h"
#include "eventcallback.h"
#include "cpu_interface.h"
#include "cpu_state.h"
#include "cp0.h"
#include "memory.h"
#include "string.h"
#include "simutil.h"
#include "tcl_init.h"
#include "registry.h"
#include "machine_defs.h"
#include "params.h"
#ifdef USE_FLASHLITE
#define ERROR FLASHLITE_ERROR
#define BIG_ENDIAN
#include "simosinterface.h"
#include "flash_interface.h"
#include "mipsy_interface.h"
#include "datafind.h"
#ifdef SOLO
#include "solo.h"
#include "solo_page.h"
#else
#include "firewallhack.h"
#include "simmagic.h"
#include "firewall.h"
#endif
#endif
#ifdef HWBCOPY
#include "hw_bcopy.h"
#endif
/* for now just putting these here until there's a better place */
#define OSPC_LOADDR_SIMOS (__MAGIC_OSPC_BASE + MAGIC_OSPC_LO_OFFS - K0BASE)
#define OSPC_HIADDR_SIMOS (__MAGIC_OSPC_BASE + MAGIC_OSPC_HI_OFFS - K0BASE)
#define OSPC_VEC_REQ_ADDR_SIMOS (__MAGIC_OSPC_BASE + MAGIC_OSPC_VEC_REQ_OFFS - K0BASE)
#define OSPC_VEC_REP_ADDR_SIMOS (__MAGIC_OSPC_BASE + MAGIC_OSPC_VEC_REP_OFFS - K0BASE)
#define OSPC_RANGE_OFFSET(_offset_field_bits) \
((0x1LL << (_offset_field_bits)) - 0x4000)
#define SWS_ZONENUM_BITS 4
#define SWS_ZONENUM_OFFSET 24
#define SWS_ZONE_FRAMALIAS (0<<SWS_ZONENUM_OFFSET)
#define SWS_ZONE_FIREWALL (3<<SWS_ZONENUM_OFFSET)
#define SWS_ZONE_FPROMALIAS (15<<SWS_ZONENUM_OFFSET)
#define SW_SERVICES_FLAVOR PI_UNC_FLAVOR_A
#define PIO_FLAVOR PI_UNC_FLAVOR_C
typedef enum {PIO_BYTE, PIO_HALF, PIO_WORD, PIO_DWORD} PIOAccessSize;
typedef enum {HIVE, FIRST_TOUCH, ROUND_ROBIN, HIVE_ROUND_ROBIN} AddrMapType;
#ifdef USE_FLASHLITE
static AddrMapType addrMap;
#ifndef SOLO
/* directMapLimit must be >= remap size AND must include any special
addresses, which would normally include OSPC addrs, but they are handled
separately because they need to be translated to non-coherent get space.
Addresses that are less than directMapLimit don't go through Address Map conversion.*/
static int directMapLimit;
#define IS_DIRECT_MAP(addr) (((addr) & nodeOffsetMask) < directMapLimit)
#endif
#endif
/*
* Struct to hold information about a pending memory request --
* this is necessary because FlashAdvanceTime might change the state
* of the cache, forcing the outgoing memory request to change.
*/
struct FlashPending {
int active;
int fcmd;
int flavor;
int cpuNum;
PA addr;
} flashPending;
/*
* Unlike the other memory systems we have, the flashlite memory system
* is currently a compile time option triggered by the USE_FLASHLITE
* define. If this is not defined we provide stubs so simulator can
* link without it.
*/
#ifndef USE_FLASHLITE
/*****************************************************************
* FlashliteInit
*****************************************************************/
void
FlashliteInit(void)
{
{ extern int LinkSymbolToRetrieveFlashFaultInit;
LinkSymbolToRetrieveFlashFaultInit = 1;
}
CPUError("FlashliteCmd called when compile with !USE_FLASHLITE\n");
return;
}
void
FlashliteInstallTimer(int cpuNum, unsigned int interval, unsigned int timeLeft)
{
}
void
FlashliteConfigDefaults(void)
{
}
void
FlashliteRaiseSlot(int cpu, int slot)
{
CPUError("FlashliteRaisedIBit called and USE_FLASHLITE not defined\n");
}
void
FlashliteClearSlot(int cpu, int slot)
{
CPUError("FlashliteClearIBit called and USE_FLASHLITE not defined\n");
}
extern void
InitMagicPromalias(char* addr, unsigned nbytes)
{
CPUError("InitMagicPromalias called and USE_FLASHLITE not defined\n");
}
extern int
FlashliteWQFull(int cpu)
{
return 0;
}
#else /* is defined(USE_FLASHLITE) */
/*
* Since flashlite uses a thread model while SimOS uses a
* calback back model we need to keep the two simulated clocks
* in synch. This is done by registering a callback when
* the next thread wakeup will occur in flashlite.
*/
static LL callbackTime = 0; /* Time of next flashlite event to fire. */
static EventCallbackHdr callback;
extern bool mipsySyncWhenDone;
static void RunFlashlite(int cpuNum, EventCallbackHdr *hdr, void *v);
static Result FlashliteCmd(int cpuNum, int cmd, PA addr, int transId,
PA replacedPaddr, int writeback, byte *wbData);
static void FlashliteStatus(void);
static void FlashliteDone(void);
static void FlashliteDumpStats(void);
static void RetryUncachedOp(int cpuNum, EventCallbackHdr *hdr, void *arg);
static void ConvertNormalToCritWordFirst(LL *subBuffer, LL *alignedBuffer,
unsigned startAddr);
static void ConvertCritWordFirstToNormal(LL *subBuffer, LL *alignedBuffer,
unsigned startAddr);
static void GetUncachedAddr(int cpuNum, PA vAddr, unsigned long long *p_addr,
int *p_flavor);
static void SetConsistencyType(int cpuNum, enum ConsistencyType ctype);
static void FlashliteDrain(void);
#ifndef SOLO
static void DownloadProtocolState(void);
static void DownloadMiscbusState(void);
static void DMADone(int nodeNum, void *token, int status);
static void InitMagicPromalias(void);
extern void MipsyTakeBusError(int cpunum, int isIRef, LL addr);
static uint Uncached64To32Bit(unsigned long long addr64);
extern void MipsyErrUncachedOp(int cpuNum, uint addr);
extern void MipsyNakUncachedOp(int cpuNum);
#else
void
MipsyCacheError(int cpuNum, bool isAsync)
{
CPUError("Wow! How'd we get a MipsyCacheError with SoloMipsy?. (cpuNum %d, isAsync %u)\n", cpuNum, isAsync);
}
#endif
bool flashliteRunning = FALSE;
FILE *mipsy_cpulogF;
LL cpu_start_mem[SIM_MAXCPUS];
LL cpu_finish_mem[SIM_MAXCPUS];
LL *cpu_start = cpu_start_mem;
LL *cpu_finish = cpu_finish_mem;
static int bytesPerNode_shift; /* supports backmap from FLASH
* address to simos address in the
* hive layout
*/
static int nodeOffsetMask;
/*
* State kept on behalf of a flashlite node.
*/
static struct nodeState {
/*
* In order to correctly handle uncached reads we maintain
* the state of outstanding uncached reads in the following
* buffer. Note this assumes we have only one outstanding
* uncached read per node.
*/
struct {
bool active; /* State structure is inuse */
PA addr; /* Address of uncached read */
int size; /* Size of uncached read */
bool done; /* Flashlite has returned data */
int status; /* 0 if no error, data valid. */
char data[8]; /* Data if returned */
} uncachedReadState;
/*
* Because of flow control problems we might have to stall an
* uncached op. The following callback will unstall us
* for a retry.
*/
EventCallbackHdr retryCallback;
/*
* Some stats for the node.
*/
struct FlashStats {
long long numGETs;
long long numGETXs;
long long numUPGRADEs;
long long numWBs;
long long numNAKs;
} stats;
} nodeState[SIM_MAXCPUS];
/*
* In order to run SIMOS requires that all its addresses be remapped into
* phyiscal addresses that are valid for flash. The SOLO V_to_P already
* handles this remapping for solo.
*/
#ifndef SOLO
/*
* Do the mappings between Simos and Flash addresses
* This mapping currently assumes fewer than 128 CPUs
*/
static signed char *simosPageToNode;
#define SimosAddrToMemnum(_addr) \
(simosPageToNode[(_addr)/FLASH_PAGE_SIZE])
static int nodeaddrMask;
static void InitSimosMemoryMap(void);
static unsigned int FlashAddrToSimosAddr(unsigned long long faddr);
#define FlashAddrFromAddr(_a,_b) FlashAddrFromSimosAddr((_a),(_b))
#define FlashAddrToAddr(_a) FlashAddrToSimosAddr((_a))
#endif
#ifdef SOLO
#define FlashAddrFromAddr(_a,_b) FlashAddrFromSoloAddr((_a),(_b))
#define FlashAddrToAddr(_a) FlashAddrToSoloAddr((_a))
#endif
unsigned FlashAddrCompress(unsigned long long flashAddr)
{
return((unsigned)(FlashAddrToAddr(flashAddr)));
}
/*****************************************************************
* MemsysInit
*****************************************************************/
void
FlashliteInit(void)
{
int i;
/*
* You wouldn't get very far without upgrades or the wrong
* cache line size but the error messages generated by
* flashlite make it difficult to figure this out so we
* explictly check here.
*/
if (NUM_MACHINES > 1) {
CPUError("Flashlite won't run with multiple machines.\n");
}
if ((NUM_CPUS(0) == 1) && !UPGRADES_ON_UP) {
CPUError("Flashlite won't run without upgrades.\n");
}
if (SCACHE_LINE_SIZE != (WORDS_IN_CACHELINE*8)) {
CPUError("Flashlite requires SCacheLineSize of 128.\n");
}
memsysVec.type = FLASHLITE;
memsysVec.NoMemoryDelay = 0;
memsysVec.MemsysCmd = FlashliteCmd;
memsysVec.MemsysDumpStats = FlashliteDumpStats;
memsysVec.MemsysDone = FlashliteDone;
memsysVec.MemsysStatus = FlashliteStatus;
memsysVec.MemsysDrain = FlashliteDrain;
bzero((char *)nodeState, sizeof(nodeState));
callbackTime = 0;
mipsy_cpulogF = cpulogF;
FlashInitSim();
flashliteRunning = TRUE;
mipsySyncWhenDone = TRUE;
#ifndef SOLO
InitMagicPromalias();
/* run flash forward a bunch of cycles in order to get past its
* protocol initialization. This is important so we don't give it
* cache misses while it is booting, plus it allows us to update
* the firewall, NI registers, etc. from a checkpoint without
* worrying about that state being smashed by protocol initialization.
*/
#ifdef notdef
{
int cycleoffset;
ParamLookup(&cycleoffset, "MEMSYS.FLASH.FlashSimosCycleOffset", PARAM_INT);
if (cycleoffset == 0) {
CPUWarning("\rWARNING: No value specified for FlashSimosCycleOffset\n");
CPUWarning("\rWARNING: Data restored from checkpoint may be overwritten by protocol boot\n");
} else {
CPUWarning("\rRunning flashlite forward by %d simos cycles to exec protocol boot\n",
cycleoffset);
FlashSimosCycleOffset(cycleoffset);
FlashAdvanceTime(0);
CPUWarning("\rProtocol boot timeout complete, starting SimOS\n");
}
}
#endif
{
int cycleoffset;
CPUWarning("\rRunning flashlite forward to exec protocol boot\n");
cycleoffset = FlashAdvanceThroughMAGICBoot();
FlashSimosCycleOffset(cycleoffset);
CPUWarning("\rProtocol boot complete at cycle %d, starting SimOS\n",
cycleoffset);
}
/* Initialize the address remap and fake firewall
* support for flashlite.
*/
/* Order is important -- JKB */
DownloadMiscbusState();
DownloadProtocolState();
InitSimosMemoryMap();
FlashFlushChangesToVerilogMem();
for (i = 0; i < NUM_CPUS(0); i++) {
cpu_start[i] = MipsyReadTime(cpuNum);
}
#endif
{ extern int LinkSymbolToRetrieveFlashFaultInit;
LinkSymbolToRetrieveFlashFaultInit = 1;
}
}
#ifndef SOLO
static void
DownloadMiscbusState(void)
{
/* initialize workermask and workermatch for each cpu
* This is a bit of a hack since the OS doesn't set these up
* yet -- when we add that functionality we'll have mask/match
* values in the checkpoint directly.
*
* xxx Also: set firewall shift. This is a hack, since we don't
* checkpoint this value and the OS cannot be expected to set it
* when resuming from a checkpoint. The firewall shift is the number
* of positions the node number must be shifted right to get the cell
* number, i.e. log2(CPUs/cell).
*/
{
int cpuspercell, i;
int numcells = NUM_CELLS(0);
int wmask;
if (numcells == 0) numcells = 1;
cpuspercell = NUM_CPUS(0) / numcells;
wmask = ~(cpuspercell - 1);
for (i=0; i<NUM_CPUS(0); i++) {
FlashSetWorker(i, wmask, i & wmask);
FlashSetFWShift(i, GetLog2(cpuspercell));
}
}
}
void FlashliteInstallTimer(int cpuNum, unsigned int interval, unsigned int timeLeft)
{
FlashInstallTimer(cpuNum, interval, timeLeft);
}
static void
DownloadProtocolState(void)
{
int cpu, iec;
/* XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*
* NOTE:
* More state needs to be downloaded here -- for now, we
* only do the ibit table and the enable mask.
*
* XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
*/
for (cpu = 0; cpu < NUM_CPUS(0); cpu++) {
for (iec = 0; iec < 64; iec++) {
FlashSetIbitTableEntry(cpu, iec, SimMagic_GetIbitTableEntry(cpu, iec));
}
FlashSetInterruptState(cpu,
SimMagic_GetIECPending(cpu),
SimMagic_GetIECTrans(cpu),
SimMagic_GetIECEnable(cpu));
}
}
static void
DMADone(int nodeNum, void *token, int status)
{
ASSERT(status == 0);
CacheCmdDone(nodeNum, (int)token, 0,0,status, NULL);
}
unsigned long long
FlashAddrFromSimosAddr(unsigned int space, unsigned int addr)
{
static int totalMemPerProc = 0;
FLASHAddress faddr;
faddr.ll = 0;
if (totalMemPerProc == 0)
ParamLookup(&totalMemPerProc, "MEMSYS.FLASH.TotalMemPerProc", PARAM_INT);
if (IS_DIRECT_MAP(addr)) {
faddr.fa.node = addr >> bytesPerNode_shift;
faddr.fa.space = space;
faddr.fa.offset = addr & nodeOffsetMask;
} else {
faddr.fa.node = SimosAddrToMemnum(addr);
faddr.fa.space = space;
switch (addrMap) {
case FIRST_TOUCH:
case ROUND_ROBIN:
faddr.fa.offset = addr;
break;
case HIVE:
faddr.fa.offset = addr & nodeOffsetMask;
break;
case HIVE_ROUND_ROBIN:
faddr.fa.offset = addr & nodeOffsetMask;
break;
default:
CPUError("AddrMap %d not supported.\n", addrMap);
}
ASSERT(faddr.fa.offset >= directMapLimit);
}
/* CPUPrint("FFS: %d, 0x%08x => 0x%llx\n", space, addr, faddr.ll);*/
ASSERT(faddr.fa.offset < totalMemPerProc);
return faddr.ll;
}
static unsigned int
FlashAddrToSimosAddr(unsigned long long addr64)
{
FLASHAddress faddr;
uint addr;
int flashNodeForSimNode0, simNode, ncpusPerCell, cell, cpu;
faddr.ll = addr64;
if (IS_DIRECT_MAP(faddr.fa.offset)) {
addr = (faddr.fa.node << bytesPerNode_shift)
| faddr.fa.offset;
} else if (faddr.fa.offset >= OSPC_RANGE_OFFSET(OFFSET_FIELD_SIZE)) {
/* ASSUME that there's nothing useful above OSPC_RANGE_OFFSET */
addr = faddr.fa.offset - OSPC_RANGE_OFFSET(OFFSET_FIELD_SIZE) + OSPC_LOADDR_SIMOS;
} else {
switch (addrMap) {
case FIRST_TOUCH:
case ROUND_ROBIN:
addr = faddr.fa.offset;
break;
case HIVE:
addr = (faddr.fa.node << bytesPerNode_shift)
| faddr.fa.offset;
break;
case HIVE_ROUND_ROBIN:
ncpusPerCell = NUM_CPUS(0)/NUM_CELLS(0);
cell = faddr.fa.node/ncpusPerCell;
cpu = faddr.fa.node % ncpusPerCell;
flashNodeForSimNode0 = (faddr.fa.offset/FLASH_PAGE_SIZE) % ncpusPerCell;
simNode = cell * ncpusPerCell
+ (ncpusPerCell + cpu - flashNodeForSimNode0) % ncpusPerCell;
addr = (simNode << bytesPerNode_shift)
| faddr.fa.offset;
break;
default:
CPUError("AddrMap %d not supported.\n", addrMap);
addr = 0; /* Get rid of compiler warning */
}
}
/* CPUPrint("FTS: 0x%llx => 0x%08x\n", faddr, addr);*/
ASSERT(addr < MEM_SIZE(0));
return addr;
}
#endif
/*****************************************************************
* FlashliteCmd
*****************************************************************/
static Result
FlashliteCmd(int cpuNum, int cmd, PA addr, int transId,
PA replacedPaddr, int writeback, byte *wbData)
{
int fcmd, flavor, len, way = 0;
int former;
int elimcmd, elimflavor;
LL elimAddr, flashAddr;
LL nextEvent;
uint errorVec = 0;
bool stall = TRUE;
#ifndef SOLO
if (cmd & MEMSYS_DMAFLAVOR) {
int isRead = ((cmd & MEMSYS_CMDMASK) == MEMSYS_GET);
uint pciAddress;
int node, deviceId, hit;
FLASHAddress faddr;
deviceId = TRANSID2DMACHANNEL(transId);
ASSERT(deviceId < 4);
if (simosPageToNode[addr/FLASH_PAGE_SIZE] < 0) {
simosPageToNode[addr/FLASH_PAGE_SIZE] = cpuNum; /* First touch */
}
/*
* Current we map flash address to node and office address and have
* the DMA go through the PCI bus local to that node. We need to setup
* the DMA mapping tables if we want to do this diffently.
*/
faddr.ll = FlashAddrFromAddr(0,addr);
node = faddr.fa.node;
pciAddress = 0x80000000 | faddr.fa.offset;
/*
* Push flashlite notion of time forward to that of the DMA.
*/
(void) FlashAdvanceTime(MipsyReadTime(cpuNum));
hit = FlashDMAReq(node, deviceId, isRead, pciAddress, wbData, writeback,
(void *)transId, DMADone);
nextEvent = FlashAdvanceTime(MipsyReadTime(cpuNum));
if (nextEvent != (LL)-1) {
nextEvent += 1;
if (callbackTime) {
if (nextEvent < callbackTime) {
EventCallbackUpdate(&callback, (SimTime) nextEvent);
callbackTime = nextEvent;
}
} else {
EventDoCallback(cpuNum,RunFlashlite, &callback, 0,
nextEvent - MipsyReadTime(cpuNum));
callbackTime = nextEvent;
}
}
return (hit ? SUCCESS : STALL);
}
#endif
len = 0;
switch (cmd & MEMSYS_CMDMASK) {
case MEMSYS_GET:
fcmd = PI_PROC_GET_REQ;
if (cmd & MEMSYS_IFFLAVOR) {
flavor = PI_GET_INSTRUCTION;
} else if (cmd & MEMSYS_LLFLAVOR) {
flavor = PI_GET_DATA_LL;
} else {
flavor = PI_GET_DATA;
if (cmd & MEMSYS_PREFETCH) {
flavor = PI_GET_DATA_PREFETCH;
}
}
nodeState[cpuNum].stats.numGETs++;
break;
case MEMSYS_GETX:
fcmd = PI_PROC_GETX_REQ;
flavor = PI_GET_DATA;
nodeState[cpuNum].stats.numGETXs++;
if (cmd & MEMSYS_PREFETCH) {
flavor = PI_GET_DATA_PREFETCH;
}
break;
case MEMSYS_UPGRADE:
fcmd = PI_PROC_UPGRADE_REQ;
if (cmd & MEMSYS_SCFLAVOR) {
flavor = PI_UPGRADE_SC;
} else if (cmd & MEMSYS_PREFETCH) {
flavor = PI_UPGRADE_PREFETCH;
} else {
flavor = PI_UPGRADE_NORMAL;
}
nodeState[cpuNum].stats.numUPGRADEs++;
break;
case MEMSYS_UNCWRITE:
if (FlashUncachedWriteQueueFull(cpuNum)) {
/* If flashlite can not accept this uncached write we
* setup a callback to try again later. We will eventually
* force the write into flashlite.
*/
if (!nodeState[cpuNum].retryCallback.active) {
EventDoCallback(cpuNum,RetryUncachedOp, &nodeState[cpuNum].retryCallback, (void *)0, 1);
}
return STALL;
}
stall = FALSE;
fcmd = PI_PROC_UNC_WRITE_REQ;
flavor = SW_SERVICES_FLAVOR;
len = writeback;
break;
case MEMSYS_UNCWRITE_ACCELERATED:
if (FlashUncachedWriteQueueFull(cpuNum)) {
/* If flashlite can not accept this uncached write we
* setup a callback to try again later. We will eventually
* force the write into flashlite.
*/
if (!nodeState[cpuNum].retryCallback.active) {
EventDoCallback(cpuNum,RetryUncachedOp, &nodeState[cpuNum].retryCallback, (void *)0, 1);
}
return STALL;
}
stall = FALSE;
fcmd = PI_PROC_UNC_PUT_SEQ_REQ;
/* We don't actually know it's a _sequential_
accelerated, just that it's accelerated. */
flavor = SW_SERVICES_FLAVOR;
len = writeback;
break;
case MEMSYS_UNCREAD:
if (!nodeState[cpuNum].uncachedReadState.active) {
FlashBreakGatherIfNecessary(cpuNum);
/* DT:
* Old test was !FlashGloballyPerformed(cpuNum), WRONG! There
* was a window between the moment the fence count hits 0 and
* the moment the last entry is removed from the SMHT. We were
* falling off that window.
*/
if (!EmptySMHT(cpuNum) || !FlashGloballyPerformed(cpuNum)) {
if (!nodeState[cpuNum].retryCallback.active) {
EventDoCallback(cpuNum,RetryUncachedOp, &nodeState[cpuNum].retryCallback, (void *)1, 1);
}
return STALL;
}
if (!FlashUncachedWriteQueueEmpty(cpuNum)) {
if (!nodeState[cpuNum].retryCallback.active) {
EventDoCallback(cpuNum,RetryUncachedOp, &nodeState[cpuNum].retryCallback, (void *)1, 1);
}
return STALL;
}
}
else {
int size = writeback;
if ((nodeState[cpuNum].uncachedReadState.addr == addr) &&
(nodeState[cpuNum].uncachedReadState.size == size)) {
if (nodeState[cpuNum].uncachedReadState.done) {
/* An uncached read has finished. Return it to the caller.
*/
bcopy(nodeState[cpuNum].uncachedReadState.data, wbData, size);
nodeState[cpuNum].uncachedReadState.active = FALSE;
return SUCCESS;
}
else {
/* Still outstanding. Wakeup must have been spurious. */
return STALL;
}
}
else {
FlashBreakGatherIfNecessary(cpuNum);
/* NOTE (DT) see comment above */
if (!EmptySMHT(cpuNum) || !FlashGloballyPerformed(cpuNum)) {
if (!nodeState[cpuNum].retryCallback.active) {
EventDoCallback(cpuNum,RetryUncachedOp, &nodeState[cpuNum].retryCallback, (void *)1, 1);
}
return STALL;
}
if (!FlashUncachedWriteQueueEmpty(cpuNum)) {
if (!nodeState[cpuNum].retryCallback.active) {
EventDoCallback(cpuNum,RetryUncachedOp, &nodeState[cpuNum].retryCallback, (void *)1, 1);
}
return STALL;
}
ASSERT(nodeState[cpuNum].uncachedReadState.done);
}
}
/* A new request. Fill in buffer for tracking */
nodeState[cpuNum].uncachedReadState.active = TRUE;
nodeState[cpuNum].uncachedReadState.addr = addr;
nodeState[cpuNum].uncachedReadState.size = writeback;
nodeState[cpuNum].uncachedReadState.done = FALSE;
fcmd = PI_PROC_UNC_READ_REQ;
flavor = SW_SERVICES_FLAVOR;
len = writeback;
break;
case MEMSYS_SYNC:
/* An accelerated write may be in progress. If we want to
* sync, then terminate the gather and let the write proceed.
*/
FlashBreakGatherIfNecessary(cpuNum);
/* SYNC is a special case that returns */
/* without calling flashlite, just */
/* querying its state */
if (!FlashGloballyPerformed(cpuNum)) {
/* Must wait for flashlite */
return STALL;
}
return SUCCESS;
default:
assert(0);
fcmd = 0;
}
elimAddr = 0;
/* elimAddr.fa.space = 0; - For now only NORMAL address space */
if (replacedPaddr == MEMSYS_NOADDR) {
elimcmd = 0;
elimflavor = 0;
} else {
#ifndef SOLO
if ((replacedPaddr == OSPC_LOADDR_SIMOS) ||
(replacedPaddr == OSPC_HIADDR_SIMOS) ||
(replacedPaddr == OSPC_VEC_REQ_ADDR_SIMOS) ||
(replacedPaddr == OSPC_VEC_REP_ADDR_SIMOS)) {
FLASHAddress faddr;
faddr.ll = 0;
faddr.fa.node = cpuNum;
faddr.fa.offset = OSPC_RANGE_OFFSET(OFFSET_FIELD_SIZE)
+ (replacedPaddr - OSPC_LOADDR_SIMOS);
elimAddr = faddr.ll;
} else {
elimAddr = FlashAddrFromAddr(0,replacedPaddr);
}
#else
#if 0
/* JH: This is the safe, default version that doesn't provide the lock hack.
In case the lock code crashes for you badly, this is a saving grace you can use*/
elimAddr = FlashAddrFromAddr(0,replacedPaddr);
#else
if ( ((replacedPaddr)&soloPACompressOffsetMask) >= soloBarrierBase) {
/* barrier space overloading currently supported in SOLO only */
#ifdef DEBUG_PAGE_VERBOSE
CPUPrint("Barrier address detected, mapping to space 2 addr %x offset %x\n",
replacedPaddr, ((addr)&soloPACompressOffsetMask));
#endif /* DEBUG_PAGE_VERBOSE */
elimAddr = FlashAddrFromAddr(2,replacedPaddr);
elimAddr -= soloBarrierBase;
/* This adjusts the phys addr so that
it begins from zero in space 2*/
} else if (((replacedPaddr)&soloPACompressOffsetMask) >= soloLockBase) {
/* Lock space overloading currently supported in SOLO only */
#ifdef DEBUG_PAGE_VERBOSE
CPUPrint("Lock address (replace) detected, mapping to space 1 addr %x offset %x\n",
replacedPaddr, ((replacedPaddr)&soloPACompressOffsetMask));
#endif
elimAddr = FlashAddrFromAddr(1,replacedPaddr);
elimAddr -= soloLockBase;
/* This adjusts the phys addr so that
it begins from zero in space 1*/
} else {
elimAddr = FlashAddrFromAddr(0,replacedPaddr);
}
#endif
#ifdef DEBUG_PAGE_VERBOSE
CPUPrint("after decompression ELIM addr, pAddr = %llx\n",elimAddr);
#endif /* DEBUG_PAGE_VERBOSE */
#endif
if (writeback) {
elimcmd = PI_PROC_PUTX_REQ;
elimflavor = 0;
nodeState[cpuNum].stats.numWBs++;
} else {
elimcmd = PI_PROC_REPLACE_REQ;
elimflavor = PI_REPLACE_SHARED;
}
if (transId < 0) {
stall = FALSE; /* Must be from a cache flush, don't stall the processor */
}
}
/* Store request info in flashPending so that it can be checked
while handling requests in FlashAdvanceTime */
flashPending.active = 1;
flashPending.fcmd = fcmd;
flashPending.flavor = flavor;
flashPending.cpuNum = cpuNum;
flashPending.addr = (addr & ~(SCACHE_LINE_SIZE - 1));
nextEvent = FlashAdvanceTime(MipsyReadTime(cpuNum));
/* Extract the fcmd/flavor from flashPending since it might have changed */
flashPending.active = 0;
fcmd = flashPending.fcmd;
flavor = flashPending.flavor;
if ((fcmd == PI_PROC_UNC_READ_REQ)
|| (fcmd == PI_PROC_UNC_WRITE_REQ)
|| (fcmd == PI_PROC_UNC_PUT_SEQ_REQ)) {
GetUncachedAddr(cpuNum, addr, &flashAddr, &flavor);
} else {
#ifndef SOLO
/* Change fcmd to NC_GET for OSPC and map it to correct address */
uint lineStartAddr = addr & ~(SCACHE_LINE_SIZE - 1);
if ((lineStartAddr == OSPC_LOADDR_SIMOS) ||
(lineStartAddr == OSPC_HIADDR_SIMOS) ||
(lineStartAddr == OSPC_VEC_REQ_ADDR_SIMOS) ||
(lineStartAddr == OSPC_VEC_REP_ADDR_SIMOS)) {
FLASHAddress faddr;
ASSERT(fcmd == PI_PROC_GET_REQ);
fcmd = PI_PROC_NC_GET_REQ;
faddr.ll = 0;
faddr.fa.node = cpuNum;
faddr.fa.offset = OSPC_RANGE_OFFSET(OFFSET_FIELD_SIZE)
+ (addr - OSPC_LOADDR_SIMOS);
flashAddr = faddr.ll;
} else {
if (simosPageToNode[addr/FLASH_PAGE_SIZE] < 0) {
simosPageToNode[addr/FLASH_PAGE_SIZE] = cpuNum; /* First touch */
}
flashAddr = FlashAddrFromAddr(0,addr);
}
#else
#if 0
/* JH: This is the safe, default version that doesn't provide the lock hack.
In case the lock code crashes for you badly, this is a saving grace you can use*/
flashAddr = FlashAddrFromAddr(0,addr);
#else
if ( ((addr)&soloPACompressOffsetMask) >= soloBarrierBase) {
/* barrier space overloading currently supported in SOLO only */
#ifdef DEBUG_PAGE_VERBOSE
CPUPrint("Barrier address detected, mapping to space 2 addr %x offset %x\n",
addr, ((addr)&soloPACompressOffsetMask));
#endif /* DEBUG_PAGE_VERBOSE */
flashAddr = FlashAddrFromAddr(2,addr);
flashAddr -= soloBarrierBase;
/* This adjusts the phys addr so that
it begins from zero in space 1*/
} else if ( ((addr)&soloPACompressOffsetMask) >= soloLockBase) {
/* lock space overloading currently supported in SOLO only */
#ifdef DEBUG_PAGE_VERBOSE
CPUPrint("Lock address detected, mapping to space 1 addr %x offset %x\n",addr, ((addr)&soloPACompressOffsetMask));
#endif /* DEBUG_PAGE_VERBOSE */
flashAddr = FlashAddrFromAddr(1,addr);
flashAddr -= soloLockBase;
/* This adjusts the phys addr so that
it begins from zero in space 1*/
} else {
flashAddr = FlashAddrFromAddr(0,addr);
}
#endif
#ifdef DEBUG_PAGE_VERBOSE
CPUPrint("after decompression cmd addr, pAddr = %llx\n",flashAddr);
#endif /* DEBUG_PAGE_VERBOSE */
#endif
}
/* CPUPrint("Mapping Mipsy: %8.8x to Flash: %16.16llx\n",
addr, flashAddr); */
/* Grab way from the SMHT */
if (transId >= 0) {
way = SCACHE[GET_SCACHE_NUM(cpuNum)].SMHT[transId].scacheLRU;
}
former = SCACHE[GET_SCACHE_NUM(cpuNum)].SMHT[transId].formerState;
nextEvent = FlashCmdToMagic(cpuNum, transId,
FLASH_CMD_FORM(fcmd, flavor, way, len, former),
flashAddr,
FLASH_CMD_FORM(elimcmd, elimflavor, way, 0, 0),
elimAddr, wbData, errorVec);
assert(nextEvent >= MipsyReadTime(numNum));
assert(nextEvent <= 0x7FFFFFFFFFFFFFFFLL);
if (nextEvent != (LL)-1) {
nextEvent += 1;
if (callbackTime) {
if (nextEvent < callbackTime) {
EventCallbackUpdate(&callback, (SimTime) nextEvent);
callbackTime = nextEvent;
}
} else {
EventDoCallback(cpuNum,RunFlashlite, &callback, 0,
nextEvent - MipsyReadTime(cpuNum));
callbackTime = nextEvent;
}
}
if (stall) {
return STALL;
} else {
return SUCCESS;
}
}
static void
RetryUncachedOp(int cpuNum, EventCallbackHdr *hdr, void *arg)
{
int isRead = (int) arg;
if (isRead) {
/*
* If writeQueue is still not empty try again later otherwise
* we allow the processor to retry.
*/
if (!FlashUncachedWriteQueueEmpty(cpuNum)) {
EventDoCallback(cpuNum,RetryUncachedOp, &nodeState[cpuNum].retryCallback, arg, 1);
return;
}
} else {
/*
* If writeQueue is still full try again later otherwise
* we allow the processor to retry.
*/
if (FlashUncachedWriteQueueFull(cpuNum)) {
EventDoCallback(cpuNum,RetryUncachedOp, &nodeState[cpuNum].retryCallback, arg, 1);
return;
}
}
MipsyReissueUncachedOp(cpuNum);
}
void
DumpCacheLine(char *data,int length)
{
unsigned long *ld = (unsigned long *)data;
int i;
for (i=0; i< (length/sizeof(long)); i+=4) {
CPUPrint("%8.8x %8.8x %8.8x %8.8x ",ld[i],ld[i+1], ld[i+2],ld[i+3]);
if ((i+4)%8 == 0) {
CPUPrint("\n");
}
}
}
static void
RunFlashlite(int cpuNum, EventCallbackHdr *hdr, void *v)
{
LL nextEvent;
nextEvent = FlashAdvanceTime(MipsyReadTime(cpuNum));
if (nextEvent == (LL)-1) {
callbackTime = 0;
return;
}
assert(nextEvent >= MipsyReadTime(cpuNum));
assert(nextEvent <= 0x7FFFFFFFFFFFFFFFLL);
callbackTime = nextEvent+1;
EventDoCallback(cpuNum, RunFlashlite, &callback, 0, callbackTime - MipsyReadTime(0));
}
void
SimosCmdToSimos(int cpunum, int transId, int cmd, LL addr, int *cacheState,
byte *data, uint errorVec)
{
PA address;
int wasDirty;
LL lclData[WORDS_IN_CACHELINE];
int remoteResult; /* used to break stall into local vs. remote */
FLASHAddress faddr;
/* set REMOTE_HOME if this addr's is not local */
faddr.ll = addr;
remoteResult = (cpunum != faddr.fa.node) ? MEMSYS_RESULT_REMOTE_HOME : 0;
#ifndef SOLO
if (cmd == PI_DP_UNC_READ_RPLY ||
cmd == PI_DP_UNC_ERR_RPLY ||
cmd == PI_DP_UNC_NAK_RPLY)
address = Uncached64To32Bit(addr);
else {
#endif
#ifdef SOLO
if (faddr.fa.space == 1) { /* Convert to lock range */
faddr.fa.space = 0;
faddr.fa.offset = faddr.fa.offset + soloLockBase;
/* Offset to start of lock VA range */
addr = faddr.ll;
#ifdef DEBUG_PAGE_VERBOSE
CPUPrint("Lock address detected, mapping upwards for (FA) %16.16llx\n",
addr);
#endif /* DEBUG_PAGE_VERBOSE */
}
if (faddr.fa.space == 2) { /* Convert to lock range */
faddr.fa.space = 0;
faddr.fa.offset = faddr.fa.offset + soloBarrierBase;
/* Offset to start of lock VA range */
addr = faddr.ll;
#ifdef DEBUG_PAGE_VERBOSE
CPUPrint("Barrier address detected, mapping upwards for (FA) %16.16llx\n",
addr);
#endif /* DEBUG_PAGE_VERBOSE */
}
#endif /* SOLO */
address = FlashAddrToAddr(addr);
#ifndef SOLO
}
#endif
#ifdef DEBUG_PAGE_VERBOSE
CPUPrint("After FAtoA: mipsy addr = %x\n",address);
#endif /* DEBUG_PAGE_VERBOSE */
/* CPUPrint("Mapping Flash: %16.16llx to Mipsy: %8.8x\n",
addr, address); */
#ifndef SOLO
if (errorVec && /* looks like an ECC... */
/* ... but check whether this is an unc read -- only bit 0 matters */
!(cmd == PI_DP_UNC_READ_RPLY && (errorVec & 0x1) == 0)) {
if (cmd == PI_DP_UNC_READ_RPLY) {
/* BUS ERROR the uncached ref */
MipsyTakeBusError(cpunum, 0, address);
} else {
/* Asynchronous */
MipsyCacheError(cpunum, 1);
}
/*
Transaction should be allowed to complete. At 3:30am we think it's
safe to allow the CPU to continue.
return;
*/
}
#endif
switch (cmd) {
case PI_DP_ERR_RPLY:
/* bus error that goes through caches */
CacheCmdDone(cpunum, transId, 0, MEMSYS_STATUS_ERROR,
remoteResult | MEMSYS_RESULT_MEMORY, data);
break;
case PI_DP_NAK_RPLY:
CacheCmdDone(cpunum, transId, 0, MEMSYS_STATUS_NAK,
remoteResult | MEMSYS_RESULT_MEMORY, data);
nodeState[cpunum].stats.numNAKs++;
#ifdef DEBUG
CPUPrint("FLNAK: cpu %d count %lld\n", cpunum,
nodeState[cpunum].stats.numNAKs);
#endif
break;
case PI_DP_PUT_RPLY:
if (data) {
ConvertCritWordFirstToNormal((LL *)data, lclData,
(unsigned)(addr & (SCACHE_LINE_SIZE-1)));
data = (byte *)lclData;
}
CacheCmdDone(cpunum, transId, MEMSYS_SHARED, MEMSYS_STATUS_SUCCESS,
remoteResult | MEMSYS_RESULT_MEMORY, data);
break;
case PI_DP_PUTX_RPLY:
case PI_DP_ACK_RPLY:
if (data) {
ConvertCritWordFirstToNormal((LL *)data, lclData,
(unsigned)(addr & (SCACHE_LINE_SIZE-1)));
data = (byte *)lclData;
}
CacheCmdDone(cpunum, transId, MEMSYS_EXCLUSIVE, MEMSYS_STATUS_SUCCESS,
remoteResult | MEMSYS_RESULT_MEMORY, data);
break;
case PI_DP_GET_REQ:
if (CacheWriteback(cpunum, address, SCACHE_LINE_SIZE, (byte *)lclData)) {
*cacheState = DIRTYEX;
} else {
*cacheState = SHARED;
}
ConvertNormalToCritWordFirst((LL*)data, lclData,
(unsigned)(address & (SCACHE_LINE_SIZE-1)));
break;
case PI_DP_UNC_NAK_RPLY:
if (!nodeState[cpunum].uncachedReadState.active) {
CPUError("PI_DP_UNC_NAK_RPLY without active uncached read\n");
}
nodeState[cpunum].uncachedReadState.active = FALSE;
#ifndef SOLO
MipsyNakUncachedOp(cpunum);
#endif
break;
case PI_DP_UNC_ERR_RPLY:
if (!nodeState[cpunum].uncachedReadState.active) {
CPUError("PI_DP_UNC_ERR_RPLY without active uncached read\n");
}
/* xxx isIRef? */
#ifndef SOLO
MipsyErrUncachedOp(cpunum, nodeState[cpunum].uncachedReadState.addr);
#endif
break;
case PI_DP_UNC_READ_RPLY:
if (!nodeState[cpunum].uncachedReadState.active) {
CPUError("PI_DP_UNC_READ_RPLY without active uncached read\n");
}
bcopy(data, nodeState[cpunum].uncachedReadState.data,
nodeState[cpunum].uncachedReadState.size);
nodeState[cpunum].uncachedReadState.done = TRUE;
MipsyReissueUncachedOp(cpunum);
break;
case PI_DP_GETX_REQ:
if (CacheExtract(cpunum, address, SCACHE_LINE_SIZE, &wasDirty, (char *)lclData)) {
if (wasDirty)
*cacheState = DIRTYEX;
else
*cacheState = SHARED;
} else {
*cacheState = INVAL;
}
ConvertNormalToCritWordFirst((LL *)data, lclData,
(unsigned)(address & (SCACHE_LINE_SIZE-1)));
break;
case PI_DP_INVAL_REQ:
if (CacheInvalidate(cpunum, address, SCACHE_LINE_SIZE, 0, &wasDirty)) {
if (wasDirty)
*cacheState = DIRTYEX;
else
*cacheState = SHARED;
} else {
*cacheState = INVAL;
}
/* Check for a pending upgrade request to the same line,
change it into a GETX if found. */
if (flashPending.active && (flashPending.cpuNum == cpunum) &&
(flashPending.addr == (address & ~(SCACHE_LINE_SIZE - 1))) &&
(flashPending.fcmd == PI_PROC_UPGRADE_REQ)) {
CPUPrint("MIPSY %lld: UPGRADE changing to GETX on cpu %d addr 0x%x\n",
(uint64)CPUVec.CycleCount(cpunum),cpunum,flashPending.addr);
flashPending.fcmd = PI_PROC_GETX_REQ;
if (flashPending.flavor == PI_UPGRADE_SC) {
flashPending.flavor = PI_GET_DATA;
}
}
break;
default:
printf("Unknown command from MAGIC 0x%x for address %#llx\n", cmd, faddr.ll);
}
}
void
FlashliteStatus(void)
{
FlashliteDumpStats();
}
#ifdef notdef
static char *
FlashliteStatus(int cpuNum)
{
static struct FlashStats oldStats[SIM_MAXCPUS];
static char buf[256];
sprintf(buf, "%lld/%lld/%lld",
(nodeState[cpuNum].stats.numGETs - oldStats[cpuNum].numGETs) +
(nodeState[cpuNum].stats.numGETXs - oldStats[cpuNum].numGETXs),
(nodeState[cpuNum].stats.numWBs - oldStats[cpuNum].numWBs),
(nodeState[cpuNum].stats.numNAKs - oldStats[cpuNum].numNAKs));
oldStats[cpuNum] = nodeState[cpuNum].stats;
return buf;
}
#endif
static void
FlashliteDone(void)
{
#ifndef SOLO
int i;
for (i = 0; i < NUM_CPUS(0); i++) {
cpu_finish[i] = MipsyReadTime(0);
}
#endif
FlashEnd();
}
#define FLASHLITE_DUMPEVERY -1
static void
FlashliteDumpStats(void)
{
static int numCalls = 0;
if(++numCalls == FLASHLITE_DUMPEVERY) {
FlashDumpStats();
numCalls = 0;
}
}
void
FlashliteResetStats(void)
{
FlashResetStats();
}
void
FlashliteStartCPU(int cpuNum)
{
cpu_start[cpuNum] = MipsyReadTime(cpuNum);
}
void
FlashliteStopCPU(int cpuNum)
{
cpu_finish[cpuNum] = MipsyReadTime(cpuNum);
}
/*
* The flash memory system deals with data in critical word first format
* as we keep things in normal order. Here are two function for convert
* data between the formats.
*/
static void
ConvertNormalToCritWordFirst(LL *subBuffer,LL *alignedBuffer, unsigned startAddr)
{
unsigned offset;
unsigned count;
unsigned start;
start = (startAddr & ((WORDS_IN_CACHELINE*8)-1)) >> 3;
for (count=0; count < WORDS_IN_CACHELINE; count++) {
offset = start ^ count;
subBuffer[count] = alignedBuffer[offset];
}
}
static void
ConvertCritWordFirstToNormal(LL *subBuffer, LL *alignedBuffer, unsigned startAddr)
{
unsigned offset;
unsigned count;
unsigned start;
start = (startAddr & ((WORDS_IN_CACHELINE*8)-1)) >> 3;
for (count=0; count < WORDS_IN_CACHELINE; count++) {
offset = start ^ count;
alignedBuffer[count] = subBuffer[offset];
}
}
#ifndef SOLO
/* convert a 32 bit magic address to a full 64 bit addr.
Also, return the zone */
static void
Uncached32To64Bit(int cpuNum, uint PA, unsigned long long *p_addr, int *p_flavor)
{
FLASHAddress faddr;
uint node, zone, zoneOffset;
node = (PA >> __MAGIC_NODE_OFFS) & ((1 << __MAGIC_NODE_BITS) - 1);
zone = (PA >> __MAGIC_ZONE_OFFS) & ((1 << __MAGIC_ZONE_BITS) - 1);
zoneOffset = (PA & ((1 << __MAGIC_ZONE_OFFS) - 1));
*p_flavor = SW_SERVICES_FLAVOR;
faddr.ll = 0;
faddr.fa.node = node;
/* if the following assert is no longer true, we'll have to change the code
below to use faddr.ll instead of faddr.fa.offset */
ASSERT(OFFSET_FIELD_SIZE > (SWS_ZONENUM_BITS + SWS_ZONENUM_OFFSET));
faddr.fa.offset = (((unsigned long long)zone) << SWS_ZONENUM_OFFSET)
| zoneOffset;
switch (zone) {
case MAGIC_ZONE_BDOOR_DEV: {
uint offset;
*p_flavor = PIO_FLAVOR;
/*
* Since Flashlite doesn't support remote PIOs we always make the local.
* Until we have remote device support we just pass the PA to thru Magic
* back to SimosDispatchPIO().
*/
offset = PA - __MAGIC_BASE;
faddr.fa.node = cpuNum; /* Make PIOs always local. */
faddr.fa.offset = offset;
ASSERT(faddr.fa.offset == offset) /* Detects if fa.offset it too small */
break;
}
case MAGIC_ZONE_FPROM_ALIAS:
/* hack to convert 32bit frpom zone to 64bit fprom zone because they're not the same */
{
#ifdef LARGE_SIMULATION
if (node == 127) { /* 0xbfc0.... is node 127 */
#endif
/* first, zero out bad zone number and part of offset fields */
faddr.fa.offset &= ~(((1 << __MAGIC_ZONE_BITS) - 1) << SWS_ZONENUM_OFFSET);
/* now add back the correct zone and portion of offset fields */
faddr.fa.offset |= SWS_ZONE_FPROMALIAS | (MAGIC_ZONE_FPROM_ALIAS << __MAGIC_ZONE_OFFS);
#ifdef LARGE_SIMULATION
/* need to add 'c' of 'bfc' back */
faddr.fa.offset |= 0xc00000;
}
#endif
}
break;
case MAGIC_ZONE_FIREWALL:
/* if firewall zone, need to fix it to match address mapping */
{
uint fwForAddr32 = faddr.fa.node << bytesPerNode_shift
| (zoneOffset/sizeof(MagicRegister))*FLASH_PAGE_SIZE;
FLASHAddress fwForAddr64;
fwForAddr64.ll = FlashAddrFromSimosAddr(0, fwForAddr32);
faddr.fa.node = fwForAddr64.fa.node;
faddr.fa.offset = SWS_ZONE_FIREWALL
| (fwForAddr64.fa.offset/FLASH_PAGE_SIZE)*sizeof(MagicRegister);
}
break;
default:
/* don't need to do anything */
break;
}
*p_addr = faddr.ll;
}
static uint
Uncached64To32Bit(unsigned long long addr64)
{
FLASHAddress faddr;
uint addr32;
int zone;
faddr.ll = addr64;
/* if the following assert is no longer true, we'll have to change the code
below to use faddr.ll instead of faddr.fa.offset */
ASSERT(OFFSET_FIELD_SIZE > (SWS_ZONENUM_BITS + SWS_ZONENUM_OFFSET));
zone = faddr.fa.offset >> SWS_ZONENUM_OFFSET;
if (zone == (SWS_ZONE_FPROMALIAS>>SWS_ZONENUM_OFFSET)) {
zone = MAGIC_ZONE_FPROM_ALIAS;
}
addr32 = __MAGIC_BASE
| (faddr.fa.node << __MAGIC_NODE_OFFS)
| (zone << __MAGIC_ZONE_OFFS)
| (faddr.ll & ((1 << __MAGIC_ZONE_OFFS) - 1));
/*CPUPrint("U64T32 %llx => %x\n", addr64, addr32);*/
return addr32;
}
void
GetUncachedAddr(int cpuNum, PA vAddr, unsigned long long *p_addr,
int *p_flavor)
{
FLASHAddress faddr;
/*
* For testing we convert all backdoor addresses to uncached
* ops to the IO space.
*/
faddr.ll = 0;
#ifdef HWBCOPY
/* For now, if the given address is a valid physical address,
* assume that we are doing an access to the MSG space.
*/
if (vAddr < MEM_SIZE(0)) {
if (simosPageToNode[vAddr/FLASH_PAGE_SIZE] < 0) {
simosPageToNode[vAddr/FLASH_PAGE_SIZE] = cpuNum; /* First touch */
}
*p_addr = FlashAddrFromSimosAddr(MSG,vAddr);
CPUPrint("MSG: Message space write to 0x%08x (0x%016llx) on CPU %d\n",
vAddr,*p_addr,cpuNum);
return;
}
#endif
/* direct access firewall and PPC ver2 regions are translated specially
* because they are not always local
*/
#ifdef OLD_INT
if (vAddr >= PPC2_ZONES && vAddr < (PPC2_ZONES + PPC2_ZONES_SIZE)) {
int szone = PPC2_ZONE(vAddr);
faddr.fa.node = PPC2_NODE(vAddr);
faddr.fa.space = NORMAL;
*p_flavor = SW_SERVICES_FLAVOR;
if (szone < PPCZONE_PPCCORE || szone >= PPCZONE_SWTLB) {
/* each of these zones has a one-to-one translation of addresses
* from the 1k of space offered by SimOS to the first 1k of
* the 16 MB zone implemented by flashlite
*/
LL mzone;
switch (szone) {
case PPCZONE_PPR: mzone = SWS_ZONE_PPR; break;
case PPCZONE_DMAMAP: mzone = SWS_ZONE_DMAMAP; break;
case PPCZONE_NODEMAP: mzone = SWS_ZONE_NODEMAP; break;
case PPCZONE_SWTLB: mzone = SWS_ZONE_SWTLB; break;
default:
CPUError("\rUncached access to unimplemented zone %d in flash_interface.c:GetUncachedAddr\n", szone);
break;
}
faddr.fa.offset = mzone + PPC2_ZONE_OFFSET(vAddr);
} else {
/* ppcs are special because of the limited available address space in simos */
int group = PPC2_PPCGROUP(szone);
int op = PPC2_PPCOP(vAddr,szone);
int seq = SWS_ZONE_PPC_SEQUENCE(vAddr);
faddr.fa.offset = (SWS_ZONE_PPC
+ (group << SWS_ZONE_PPC_GROUP_OFFSET)
+ (op << SWS_ZONE_PPC_OPCODE_OFFSET))
+ seq;
}
} else if (vAddr>=SIMFW_DIRECT && vAddr<(SIMFW_DIRECT+SIMFW_DIRECT_SIZE)) {
int pgnum = (vAddr - SIMFW_DIRECT) / sizeof(FWvector);
int nodeoffset;
/* get the full flash addr and mask off the high word (cpuNum) */
nodeoffset = FlashAddrFromSimosAddr(0, pgnum*FLASH_PAGE_SIZE) & 0xffffffff;
faddr.fa.node = simosPageToNode[pgnum];
faddr.fa.offset = SWS_ZONE_FIREWALL
+ (sizeof(FWvector)*(nodeoffset / FLASH_PAGE_SIZE));
faddr.fa.space = NORMAL;
*p_flavor = SW_SERVICES_FLAVOR;
} else if (vAddr >= SIMRAMALIAS && vAddr < (SIMRAMALIAS + SIMRAMALIAS_SIZE)) {
faddr.fa.node = 0; /* node field ignored in an alias range */
faddr.fa.offset = SWS_ZONE_FRAMALIAS + (vAddr - SIMRAMALIAS);
faddr.fa.space = NORMAL;
*p_flavor = SW_SERVICES_FLAVOR;
} else if (vAddr >= SIMPROMALIAS
&& vAddr < (SIMPROMALIAS + SIMPROMALIAS_SIZE)) {
faddr.fa.node = 0; /* node field ignored in an alias range */
faddr.fa.offset = SWS_ZONE_FPROMALIAS + (vAddr - SIMPROMALIAS);
faddr.fa.space = NORMAL;
*p_flavor = SW_SERVICES_FLAVOR;
} else if (vAddr >= PPC_RANGE && vAddr < (PPC_RANGE + PPC_RANGE_SIZE)) {
faddr.fa.offset = 0x7480000 + (vAddr - PPC_RANGE);
faddr.fa.space = IO;
faddr.fa.node = cpuNum;
} else if (vAddr >= SIMBASEADDR) {
faddr.fa.offset = (vAddr - SIMBASEADDR);
faddr.fa.space = IO;
faddr.fa.node = cpuNum; /* XXX - always local for now */
} else {
CPUWarning("Unknown uncached address 0x%x pasted to flashlite GetUncachedAddr cpu %d\n",
vAddr, cpuNum);
faddr.fa.offset = vAddr;
faddr.fa.node = cpuNum;
}
#else
Uncached32To64Bit(cpuNum, vAddr, &faddr.ll, p_flavor);
#endif
#ifdef notdef
CPUWarning("GetUncachedAddr: input 0x%x output 0x%x%x (flavor 0x%x)\n",
vAddr, ((int) (faddr.ll >> 32)), ((int) (faddr.ll & 0xffffffff)),
*p_flavor);
#endif
#ifdef OLD_INT
if ((faddr.ll & 0x7)
&& (vAddr >= PPC_RANGE) && (vAddr < PIO_RANGE)) {
CPUWarning("GetUncachedAddr: unaligned PPC or PPR: input 0x%x output 0x%x%x cpu %d\n",
vAddr,
((int) (faddr.ll >> 32)),
((int) (faddr.ll & 0xffffffff)), cpuNum);
}
#endif
*p_addr = faddr.ll;
}
int
SimosDispatchPIO(int node_num, uint offset, int isRead, int size, volatile void *data)
{
return SimMagic_DoPIO(node_num, offset + __MAGIC_BASE, isRead, size, (void *)data);
}
#ifndef SOLO
Bool
SimosGetMemoryAddr(LL p_addrll, Address *v_addr, int mem_type)
{
*v_addr = (Address) PHYS_TO_MEMADDR(0,(PA)FlashAddrToSimosAddr(p_addrll));
return TRUE;
}
#endif
/*
* Interrupt hookup for flashlite.
*/
void
FlashliteRaiseSlot(int cpu, int slot)
{
FlashRaiseInterrupt(cpu, slot);
}
void
FlashliteClearSlot(int cpu, int slot)
{
FlashClearInterrupt(cpu, slot);
}
int
SimosSetIntrBits(int cpunum, uint enableMask, uint intrBits)
{
#ifdef notdef
/* hack so we can run SIPS through flashlite while all the
* other interrupt support is still in SimOS
*/
CPUWarning("SimosSetInterBits: Hack: assuming OSPC interrupt only\n");
if (enableMask & (0x1)) { /* OSPC LO */
if (intrBits & (0x1)) {
SimRaiseIBit(cpunum, IEC_OSPC_LO);
} else {
SimClearIBit(cpunum, IEC_OSPC_LO);
}
}
if (enableMask & (0x1 << 1)) { /* OSPC HI */
if (intrBits & (0x1 << 1)) {
SimRaiseIBit(cpunum, IEC_OSPC_HI);
} else {
SimClearIBit(cpunum, IEC_OSPC_HI);
}
}
return 0;
#endif
enableMask <<= 2; /* Skip over softeare interrupt bits */
intrBits <<= 2;
CPUVec.intrBits[cpunum] = (CPUVec.intrBits[cpunum] & ~enableMask) | intrBits;
if (DEBUG_INTR()) {
LogEntry("SSIB", cpunum, "emask: 0x%x ibits: 0x%x vec->ibits: 0x%x\n",
enableMask, intrBits, CPUVec.intrBits[cpunum]);
}
if (CPUVec.IntrBitsChanged) {
(CPUVec.IntrBitsChanged)(cpunum);
}
return 0;
}
#endif
#ifdef SOLO
void
GetUncachedAddr(int cpuNum, PA vAddr, unsigned long long *p_addr, int *p_flavor)
{
uint flavor;
*p_addr = (unsigned long long) SoloV_to_P(cpuNum, vAddr, cpuNum, 0, &flavor);
ASSERT(flavor == TLB_UNCACHED);
}
int
SimosDispatchPIO(int node_num, uint offset, int isRead, int size, volatile void *data)
{
CPUError("SOLO got a PIO to the PCI bus!!!\n");
return 0;
}
Bool
SimosGetMemoryAddr(LL p_addrll, Address *v_addr, int mem_type)
{
(*v_addr) = (Address)SoloGetMemoryAddr(p_addrll);
return ((*v_addr) ? TRUE : FALSE);
}
int
SimosSetIntrBits(int cpunum, uint enableMask, uint intrBits)
{
CPUWarning("SOLO interrupt (%#x)\n",intrBits);
return 0;
}
#endif /* SOLO */
/*
* SetConsistencyType(int cpuNum, ConsistencyType ctype)
* Set the write consistency model used by flashlite.
*
* Note this routine does an uncached write to launch a PPC
* to change the PI's opspace bits. This is intrusive (i.e.
* it cosumes time/resources to execute) and it assumes
* flashlite is in a state such that it can accept uncached
* writes.
*/
static void
SetConsistencyType(int cpuNum, enum ConsistencyType ctype)
{
#ifdef notdef
LL faddr;
Result ret;
FlashCmd cmd;
LL data;
LL nextEvent;
ASSERT(flashliteRunning);
if (FlashUncachedWriteQueueFull(cpuNum)) {
CPUError("SetConsistencyType called with write queue full\n");
}
data = ((LL)ctype) << 62;
cmd = FLASH_CMD_FORM(PI_PROC_UNC_WRITE_REQ,PI_UNC_FLAVOR_A,0,LEN_NODATA);
faddr = (LL)PPC_ADDR(PPCG_MISC, PPCO_MISC_CONTEXTSWITCH);
nextEvent = FlashCmdToMagic(cpuNum, 0, cmd, faddr, 0, 0, (char *)&data);
if (nextEvent != (LL)-1) {
nextEvent += 1;
if (callbackTime) {
if (nextEvent < callbackTime) {
EventCallbackUpdate(&callback, (SimTime) nextEvent);
callbackTime = nextEvent;
}
} else {
EventDoCallback(cpuNum,RunFlashlite, &callback, 0,
nextEvent - MipsyReadTime(cpuNum));
callbackTime = nextEvent;
}
}
#endif
CPUError("This is broken\n");
}
#ifndef SOLO
static void FlashliteSetRemap(int cpunum, PA mask);
static void FlashliteControlRemap(int cpunum, int isEnabled);
static unsigned int FlashliteGetNodeAddress(int cpunum);
static void FlashliteInitRemap(void);
static void
InitSimosMemoryMap(void)
{
char *addrMapType;
int i, memPerProc = 0;
memsysVec.MemsysSetRemap = FlashliteSetRemap;
memsysVec.MemsysControlRemap = FlashliteControlRemap;
memsysVec.MemsysGetNodeAddress = FlashliteGetNodeAddress;
FlashliteInitRemap();
ParamLookup(&addrMapType, "MEMSYS.FLASH.FlashAddrMap", PARAM_STRING);
if (addrMapType == NULL)
addrMapType = "ZeroOnly";
simosPageToNode = (signed char *) calloc(1,MEM_SIZE(0)/FLASH_PAGE_SIZE);
ParamLookup(&memPerProc, "MEMSYS.FLASH.TotalMemPerProc", PARAM_INT);
bytesPerNode_shift = GetLog2(MEM_SIZE(0)/NUM_CPUS(0));
ASSERT(MEM_SIZE(0) == ((1<<bytesPerNode_shift) * NUM_CPUS(0)));
nodeOffsetMask = (1<<bytesPerNode_shift) - 1;
/* Hive currently uses only a single remap page, but using 2 pages just to be safe.
There's an assert in remap code anyway... */
directMapLimit = 2*FLASH_PAGE_SIZE;
if (!strcmp(addrMapType, "FirstTouch")) {
addrMap = FIRST_TOUCH;
ASSERT(MEM_SIZE(0) <= memPerProc);
for(i = 0; i < MEM_SIZE(0)/FLASH_PAGE_SIZE; i++)
simosPageToNode[i] = -1;
CPUPrint("FlashAddrMap is FirstTouch\n");
} else if (!strcmp(addrMapType, "RoundRobin")) {
int pagesPerMem = 0, stripewidth = 0;
addrMap = ROUND_ROBIN;
ASSERT(MEM_SIZE(0) <= memPerProc);
ParamLookup(&pagesPerMem, "MEMSYS.FLASH.RoundRobinStripe", PARAM_INT);
ParamLookup(&stripewidth, "MEMSYS.FLASH.NumFlashNodes", PARAM_INT);
if (stripewidth < 0) stripewidth = NUM_CPUS(0);
for(i = 0; i < MEM_SIZE(0)/FLASH_PAGE_SIZE; i++)
simosPageToNode[i] = (i/pagesPerMem) % stripewidth;
CPUPrint("FlashAddrMap is RoundRobin with stripe unit of %d\n",
pagesPerMem);
} else if (!strcmp(addrMapType, "HiveRoundRobin")) {
int pageNum, cell, cpu, ncpusPerCell, pagesPerCPU;
addrMap = HIVE_ROUND_ROBIN;
/* compact roundrobin memory layout:
pages are laid out across all cpus in cell using roundrobin allocation,
and the offset is same as for Hive.
*/
ncpusPerCell = NUM_CPUS(0)/NUM_CELLS(0);
pagesPerCPU = MEM_SIZE(0)/NUM_CPUS(0)/FLASH_PAGE_SIZE;
ASSERT(MEM_SIZE(0)/NUM_CPUS(0) <= memPerProc);
CPUPrint("FlashAddrMap is HiveRoundRobin with ncells: %d\nncpusPerCell: %d\npagesPerCPU: 0x%x\nbytesPerNode_shift: %d nodeOffsetMask: 0x%x directMapLimit: 0x%x\n",
NUM_CELLS(0), ncpusPerCell, pagesPerCPU,
bytesPerNode_shift, nodeOffsetMask, directMapLimit);
for (cell = 0; cell < NUM_CELLS(0); cell++) {
for (cpu = 0; cpu < ncpusPerCell; cpu++) {
int CPU = cell*ncpusPerCell + cpu;
for (pageNum = pagesPerCPU*CPU; pageNum < pagesPerCPU*(CPU+1); pageNum++) {
simosPageToNode[pageNum] = cell*ncpusPerCell + ((pageNum + cpu) % ncpusPerCell);
}
}
}
} else if (!strcmp(addrMapType, "Hive")) {
int pageNum, numPages;
addrMap = HIVE;
ASSERT(MEM_SIZE(0)/NUM_CPUS(0) <= memPerProc);
numPages = MEM_SIZE(0)/FLASH_PAGE_SIZE;
for (pageNum = 0; pageNum < numPages; pageNum++) {
PA paddr = pageNum*FLASH_PAGE_SIZE;
int n;
for (n = NUM_CPUS(0)-1; n >= 0; n--) {
if (paddr >= remapVec->NodeAddr[n]) {
simosPageToNode[pageNum] = n;
break;
}
}
}
CPUPrint("FlashAddrMap is using the Hive mappings\n");
} else {
CPUPrint("FlashAddrMap is node zero only\n");
}
#ifdef FIREWALL_HACK
FlashliteDownloadFirewall();
#endif
}
/*****************************************************************
* remap region support - XXX Once we get PPCs working this
* should use the remap support inside of flashlite. Until then
* we fake it here.
*****************************************************************/
static void
FlashliteInitRemap(void)
{
int i;
/* We initialize backmapMask to all ones except for the
* bits that might be set in the node id field
*/
nodeaddrMask = ~0;
for (i=0; i<NUM_CPUS(0); i++) {
if (!remapVec->NodeAddrInitialized) {
remapVec->NodeAddr[i] =
MEMADDR_TO_PHYS(0, SIM_MEM_ADDR(0) + i * (MEM_SIZE(0) / NUM_CPUS(0)));
}
nodeaddrMask &= ~remapVec->NodeAddr[i];
}
remapVec->NodeAddrInitialized = 1;
}
static void
FlashliteSetRemap(int cpunum, PA mask)
{
remapVec->RemapMask[cpunum] = mask;
}
static void
FlashliteControlRemap(int cpunum, int isEnabled)
{
remapVec->RemapEnable[cpunum] = isEnabled;
/* make sure directMapLimit is bigger than remap range */
if (isEnabled)
ASSERT(directMapLimit & remapVec->RemapMask[cpunum]);
}
static unsigned int
FlashliteGetNodeAddress(int cpunum)
{
return remapVec->NodeAddr[cpunum];
}
static void
InitMagicPromalias(void)
{
int cpu;
char* pFram; /* points into Flashlite's FRAM memory */
char* pFprom; /* points into Flashlite's FPROM memory */
char* fprom; /* points to Simos's copy of the FPROM */
fprom = sim_misc.fprom[0];
if (fprom == NULL) return; /* none there */
for (cpu= 0; cpu<NUM_CPUS(0); cpu++) {
pFprom = FlashWritePromAlias(cpu, SWS_ZONE_FPROMALIAS,
fprom, FPROM_SIZE);
/* For now, don't use SIMRAMALIAS_SIZE ... it's big! */
pFram = FlashWriteRamAlias(cpu, SWS_ZONE_FRAMALIAS,
sim_misc.fram[cpu], FRAM_SIZE);
free(sim_misc.fram[cpu]);
sim_misc.fram[cpu] = pFram;
sim_misc.fprom[cpu] = pFprom;
}
free(fprom);
/* NOTE: at this point, the sim_misc fprom and fram pointers
* point directly into Flashlite memory. This allows a
* cohabitation between Flite and fast FRAM/FPROM access
* emulation through simmagic.
*/
}
/*
* The following function is called by the memory fault command
* (cpus/shared/faults.c) to set ECC for a number of lines, starting at a
* specified address. The address MUST be KSEG0.
*/
int insertECC(unsigned int addr, int lines)
{
LL faddr;
int node;
int cachelinesz = SCACHE_LINE_SIZE;
if (!IS_KSEG0(addr) || lines <= 0 || !IS_KSEG0(addr+(unsigned)lines))
return 1;
faddr = FlashAddrFromAddr(0, MEMADDR_TO_PHYS(0, addr));
node = SimosAddrToMemnum(MEMADDR_TO_PHYS(0, addr));
for ( ; lines > 0; lines--) {
SetECC(node, faddr, ~0);
addr += cachelinesz;
}
return 0;
}
#ifdef HWBCOPY
/******************************************************************
* Hwbcopy annotations -- place pages on a specific node
*****************************************************************/
static int HwbPlaceCmd(Tcl_Interp *interp, int argc, char *argv[]);
static tclcmd hwbcopyCmds[] = {
"place", 4, HwbPlaceCmd, " place address node",
NULL, 0, NULL, NULL
};
void HwbcopyAnnInit(Tcl_Interp *interp)
{
Tcl_CreateCommand(interp, "hwbcopy", DispatchCmd,
(ClientData) hwbcopyCmds, (Tcl_CmdDeleteProc*)NULL);
Tcl_SetVar2(interp, "HWBCOPY", "hwbDMA", "No", TCL_GLOBAL_ONLY);
Tcl_LinkVar(interp, "HWBCOPY(hwbDMA)",
(char *) &hwbDMA, TCL_LINK_BOOLEAN);
Tcl_SetVar2(interp, "HWBCOPY", "hwprefetch", "No", TCL_GLOBAL_ONLY);
Tcl_LinkVar(interp, "HWBCOPY(hwprefetch)",
(char *) &hwprefetch, TCL_LINK_BOOLEAN);
Tcl_SetVar2(interp, "HWBCOPY", "hwprefRange", "0", TCL_GLOBAL_ONLY);
Tcl_LinkVar(interp, "HWBCOPY(hwprefRange)",
(char *) &hwprefRange, TCL_LINK_INT);
Tcl_SetVar2(interp, "HWBCOPY", "hwprefDepth", "0", TCL_GLOBAL_ONLY);
Tcl_LinkVar(interp, "HWBCOPY(hwprefDepth)",
(char *) &hwprefDepth, TCL_LINK_INT);
Tcl_SetVar2(interp, "HWBCOPY", "hwbDMAChannels", "1", TCL_GLOBAL_ONLY);
Tcl_LinkVar(interp, "HWBCOPY(hwbDMAChannels)",
(char *) &hwbDMAChannels, TCL_LINK_INT);
Tcl_SetVar2(interp, "HWBCOPY", "hwbDMADelay", "0", TCL_GLOBAL_ONLY);
Tcl_LinkVar(interp, "HWBCOPY(hwbDMADelay)",
(char *) &hwbDMADelay, TCL_LINK_INT);
}
static int HwbPlaceCmd(Tcl_Interp *interp, int argc, char *argv[])
{
int node;
int pAddr;
int page;
char *addrMapType;
ParamLookup(&addrMapType, "MEMSYS.FLASH.FlashAddrMap", PARAM_STRING);
if ((memsysVec.type == FLASHLITE) && (!strcmp(addrMapType, "FirstTouch"))) {
if (argc < 4) {
Tcl_AppendResult(interp, "not enough arguments to hwbcopy place", NULL);
return TCL_ERROR;
}
Tcl_GetInt(interp, argv[3], &node);
Tcl_GetInt(interp, argv[2], &pAddr);
page = pAddr / FLASH_PAGE_SIZE;
if (simosPageToNode[page] == -1) {
simosPageToNode[page] = node;
/* CPUWarning("Page 0x%x being placed on node %d\n",pAddr,node);*/
} else if (node != simosPageToNode[page]) {
CPUWarning("Tried to place page 0x%x on node %d, already on node %d\n",pAddr,node,simosPageToNode[page]);
}
}
return TCL_OK;
}
#endif /* HWBCOPY */
#endif
#ifndef SOLO
void FlashliteUndirtify(int leaveShared)
{
/* first drain memory system, then undirtify */
FlashDrainMemSys();
FlashUndirtify(leaveShared);
}
void SyncMemory(void)
{
datafindHeader *dfH;
int pAddr;
int nDirty = 0, nCrit = 0;
FlashFreezeMemSys();
for (pAddr = 0; pAddr < MEM_SIZE(0); pAddr += SCACHE_LINE_SIZE) {
dfH = FlashGetAppData(FlashAddrFromAddr(0, pAddr));
ASSERT(dfH->numCopies > 0);
if (dfH->dirty) {
#ifdef SOLO
LL *memAddr = (LL *)pAddr;
#else
LL *memAddr = (LL *)PHYS_TO_MEMADDR(0, pAddr);
#endif
ASSERT(dfH->numCopies == 1);
if (dfH->critWordOffset[0]) {
ConvertCritWordFirstToNormal((LL*)(dfH->dataCopies[0]),
memAddr, dfH->critWordOffset[0]);
nCrit++;
} else {
bcopy(dfH->dataCopies[0], memAddr, SCACHE_LINE_SIZE);
}
nDirty++; /* just for stats */
} else {
/* clean: so there must be a copy in memory, and I don't need to do anything */
ASSERT((dfH->dataLocation[dfH->numCopies-1] & DATAFIND_LOCATION_TYPE_MASK) == DATAFIND_LOCATION_MEMORY);
}
}
FlashUnfreezeMemSys();
CPUWarning("%d critical-word ordered lines, %d dirty lines, %d total lines\n", nCrit, nDirty, MEM_SIZE(0)/SCACHE_LINE_SIZE);
}
#endif
/*
Routines for reading from / writing to the FPROM and FRAM.
Check for the [vAddr, vAddr+nbytes) to see if it's in FPROM/FRAM range.
If so, copy the data into buf and return 1 to indicate data was found
in FPROM/FRAM.
*/
int
GetFPROMAndFRAM(int cpunum, VA vAddr, uint nbytes, char *buf)
{
#ifndef SOLO
if (vAddr >= FRAM_BASE && vAddr+nbytes < FRAM_BASE + FRAM_SIZE) {
unsigned raddr = vAddr - FRAM_BASE + SWS_ZONE_FRAMALIAS;
FlashReadRamAlias(cpunum, buf, (unsigned long long)raddr, nbytes);
return 1;
}
if (vAddr >= FPROM_BASE && vAddr+nbytes < FPROM_BASE + FPROM_SIZE) {
unsigned raddr = vAddr - FPROM_BASE + SWS_ZONE_FPROMALIAS;
FlashReadPromAlias(cpunum, buf, (unsigned long long) raddr, nbytes);
return 1;
}
#endif
return 0;
}
int
PutFPROMAndFRAM(int cpunum, VA vAddr, uint nbytes, char *buf)
{
#ifndef SOLO
if (vAddr >= FRAM_BASE && vAddr+nbytes < FRAM_BASE + FRAM_SIZE) {
unsigned raddr = vAddr - FRAM_BASE + SWS_ZONE_FRAMALIAS;
FlashWriteRamAlias(cpunum, (unsigned long long)raddr, buf, nbytes);
return 1;
}
if (vAddr >= FPROM_BASE && vAddr+nbytes < FPROM_BASE + FPROM_SIZE) {
unsigned raddr = vAddr - FPROM_BASE + SWS_ZONE_FPROMALIAS;
FlashWritePromAlias(cpunum, (unsigned long long) raddr, buf, nbytes);
return 1;
}
#endif
return 0;
}
void
FlashliteDrain(void)
{
#ifndef SOLO
uint cpu, i, numBadNodes, *badNodes;
FlashDrainMemSys();
/* download nodemap */
numBadNodes = FlashGetBadNodesList(0, &badNodes);
for (i = 0; i < numBadNodes; i++) {
int badNode = badNodes[i];
/* NOTE: this is not exactly what flashlite does for non-Hive addr maps
due to roundrobin effect */
uint memPerCPU = MEM_SIZE(0)/NUM_CPUS(0);
uint startAddr = memPerCPU * badNode;
uint endAddr = memPerCPU * (badNode+1);
uint addr;
for (addr = startAddr; addr < endAddr; addr += SCACHE_LINE_SIZE) {
SimMagic_MakeIncoherent(addr);
}
CPUVec.ResetCPU(badNode);
ResetCPUs(badNode, badNode);
}
/* incoherent lines on working nodes */
for (cpu = 0; cpu < NUM_CPUS(0); cpu++) {
uint *badLines;
uint numBadLines;
FLASHAddress faddr;
/* skip bad nodes */
for (i = 0; i < numBadNodes; i++) {
if (cpu == badNodes[i])
break;
}
if (i != numBadNodes)
continue;
faddr.ll = 0;
faddr.fa.node = cpu;
numBadLines = FlashGetIncoherentLinesList(cpu, &badLines);
for (i = 0; i < numBadLines; i++) {
faddr.fa.offset = badLines[i];
SimMagic_MakeIncoherent(FlashAddrToSimosAddr(faddr.ll));
}
free(badLines);
if (numBadLines) CPUWarning("WARNING: incoherent lines found.\n");
}
free(badNodes);
/* download firewall */
if (SIMFIREWALL_ON) {
FLASHAddress faddr;
LL prot;
uint p;
for (p = 0; p < MEM_SIZE(0); p += FLASH_PAGE_SIZE) {
faddr.ll = FlashAddrFromSimosAddr(0,p);
prot = FlashGetAccessControlVector(faddr.ll);
sim_firewall_set_page_prot_raw(faddr.fa.node,
faddr.fa.offset/FLASH_PAGE_SIZE,
prot);
}
}
/* SIPS */
for (cpu = 0; cpu < NUM_CPUS(0); cpu++) {
int numOSPC;
char *queue = NULL;
numOSPC = FlashGetOSPCHiQueue(cpu, (LL **)&queue);
for (i = 0; i < numOSPC; i++) {
CPUWarning("OSPCHi in flight\n");
SimMagic_InsertOspcHiQueue(cpu, queue + i*SCACHE_LINE_SIZE);
}
if (queue)
free(queue);
numOSPC = FlashGetOSPCLoQueue(cpu, (LL **)&queue);
for (i = 0; i < numOSPC; i++) {
CPUWarning("OSPCLo in flight\n");
SimMagic_InsertOspcLoQueue(cpu, queue + i*SCACHE_LINE_SIZE);
}
if (queue)
free(queue);
}
/* remove flashlite clock advance callback */
EventCallbackRemove(&callback);
#endif
}
extern int
FlashliteWQFull(int cpu)
{
if ((memsysVec.type == FLASHLITE) && FlashWriteQueueFull(cpu)) {
return 1;
} else {
return 0;
}
}
#endif /* is defined(USE_FLASHLITE) */