memory.c 21.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857

/**************************************************************************
 *                                                                        *
 *               Copyright (C) 1994, Silicon Graphics, Inc.               *
 *                                                                        *
 *  These coded instructions, statements, and computer programs  contain  *
 *  unpublished  proprietary  information of Silicon Graphics, Inc., and  *
 *  are protected by Federal copyright  law.  They  may not be disclosed  *
 *  to  third  parties  or copied or duplicated in any form, in whole or  *
 *  in part, without the prior written consent of Silicon Graphics, Inc.  *
 *                                                                        *
 *************************************************************************/

/*
 * File:	memory.c
 * Creator:	hsa@sgi.com
 * Create Date:	Mon Feb 14 13:04:36 PST 1994
 *
 * This is the low-level memory module for the RSP simulator.
 * Only two modules talk to this directly: the DMA engine (of course),
 * and the simulator debugger.
 *
 */

/*
 * Memory Layout:
 *
 * The RSP is a memory-mapped architecture; the layout here is
 * a simple (arbitrary) choice just to get started.
 *
 *    0x00000000   - --------------------
 *                   |                  |
 *                   |                  |
 *                   |      2MB         |
 *                   |      DRAM        |
 *                   |                  |
 *                   |                  |
 *                   |                  |
 *    0x00200000    -|------------------|
 *                   .                  .  DRAM has 26-bit addressing
 *                   .                  .
 *                   .                  .
 *                   .  could be 64MB   .
 *                   .  of DRAM         .
 *                   .                  .
 *                   .                  .
 *    0x03ffffff    -|                  |
 *    0x04000000    -|------------------|
 *                   |                  |
 *                   | 4K of RSP DMem   |
 *                   |                  |
 *    0x04001000    -|------------------|
 *                   |                  |
 *                   | 4K of RSP IMem   |
 *                   | (1K instructions)|
 *                   |                  |
 *                   |------------------|
 *                   .                  .
 *                   .                  .
 *                   .                  .
 *    0x10003000    -|------------------|
 *                   |                  |
 *                   | RSP registers    |
 *                   | memory-mapped    |
 *                   |                  |
 *                   .                  .
 *                   .                  .
 *                   .                  .
 *    0x10010000    -|------------------|
 *                   | Trig ROM         |
 *                   |                  |
 *    0x....        -|------------------|
 *                   .                  .
 *                   . other I/O        .
 *                   . (audio, video,   .
 *                   . RDP, ...         .
 *                   .                  .
 *                   .                  .
 *
 */

#include <stdio.h>
#include <math.h>	/* for trig stub */
#include <errno.h>
#include <rcp.h>
#include "rsp.h"
#include "rspctl.h"
#include "memory.h"

/* This is the main memory: */
u8 	rsp_mainMemory_p[rsp_DRAM_SIZE8];

/* the data cache: */
u8 	rsp_dataCache_p[rsp_DCACHE_SIZE8];

/* The instruction cache: */
u8	rsp_instructionCache_p[rsp_ICACHE_SIZE8];

/* This is the scratch memory: (see comment in memory.h) */
u8 	rsp_scratchMemory_p[rsp_SCRATCH_SIZE8];

/*
 * the global pointers are separate from the actual memory, so
 * we can redirect the memory (like to shared memory)
 */
u8 	*rsp_mainMemory;
u8 	*rsp_dataCache;
u8	*rsp_instructionCache;
u8 	*rsp_scratchMemory;

/* The Trig ROM: */
#include "sintable.h"
u32	rsp_trigROM[2];		/* see comment below... */
static void	rsp_fillTrig(u32 addr);

/*
 * Macros for addressing memory. They are here, not in memory.h, because
 * nobody else should be calling them.
 */
#define mem_AddrIsDRAM(addr)	((u32)(addr) >= rsp_DRAM_LOW &&		\
				 (u32)(addr) < rsp_DRAM_LOW + rsp_DRAM_SIZE8)
#define mem_AddrIsDCACHE(addr)	((u32)(addr) >= rsp_DCACHE_LOW && 	\
				 (u32)(addr) < rsp_DCACHE_LOW + rsp_DCACHE_SIZE8)
#define mem_AddrIsICACHE(addr)	((u32)(addr) >= rsp_ICACHE_LOW && 	\
				 (u32)(addr) < rsp_ICACHE_LOW + rsp_ICACHE_SIZE8)
#define mem_AddrIsGPR(addr)	((u32)(addr) >= rsp_GPR_LOW &&		\
				 (u32)(addr) < rsp_GPR_LOW + rsp_GPR_SIZE8)
#define mem_AddrIsDMA(addr)	((u32)(addr) >= rsp_DMA_LOW &&		\
				 (u32)(addr) < rsp_DMA_LOW + rsp_DMA_SIZE8)
#define mem_AddrIsTrig(addr)	(((u32)(addr) & 0xffff0000) == 0x10010000)

#define mem_AddrIsSCRATCH(addr)	((u32)(addr) >= rsp_SCRATCH_LOW &&		\
				 (u32)(addr) < rsp_SCRATCH_LOW + rsp_SCRATCH_SIZE8)

extern void	rsp_CheckWatchpoint(u32 addr);

void
rsp_MemoryInit(void)
{
    rsp_mainMemory = rsp_mainMemory_p;
    rsp_dataCache = rsp_dataCache_p;
    rsp_instructionCache = rsp_instructionCache_p;
    rsp_scratchMemory = rsp_scratchMemory_p;
}

/*
 * Trig ROM:
 *
 * In order to fit in with the other memory routines, it does the
 * table lookup, then puts the answer in a temporary storage to be read...
 *
 * addr is from 0-4095, the sin/cos values of the unit circle.
 *
 */
static void
rsp_fillTrig(u32 addr)
{
    i16		x, val;

    /* compute sin: */
#define sine(x)					\
    if (x & 0x400) {				\
	val = sintable[0x3ff - (x & 0x3ff)];	\
    } else {					\
	val = sintable[x & 0x3ff];		\
    }						\
    if (x & 0x800) {				\
	val = -val;				\
    }

    x = addr;
    sine(x);
    rsp_trigROM[0] = val;
    rsp_trigROM[0] <<= 16;

    /* compute cos: */
    x = addr + 0x400;
    x &= 0x00000fff;
    sine(x);
    rsp_trigROM[0] |= (0x0000ffff & (i32)val);
}

/********************** standalone debugging support ***********************/
/*
 * The following are simulator-only routines, designed to allow
 * the user to peek/poke the memory while the processor is
 * halted.
 */

/*
 * utility routine that accepts an address and an address of a base pointer.
 * returns the 'normalized' address and the base pointer filled
 * in. (sets baseptr to be bottom of {DRAM | DMem | IMem} and adjusts addr)
 */
static u32
translate_addr(u32 addr, u8 **baseptr)
{
    u8		*memptr = (u8 *) NULL;
    extern int rsp_disable_scratch_mem;

    rsp_CheckWatchpoint(addr);

    /* should prevent boundary crossing... */

    if (mem_AddrIsDRAM(addr)) {
	memptr = &(rsp_mainMemory[0]);
	addr -= rsp_DRAM_LOW;
    } else if (mem_AddrIsDCACHE(addr)) {
	memptr = &(rsp_dataCache[0]);
	addr -= rsp_DCACHE_LOW;
    } else if (mem_AddrIsICACHE(addr)) {
	memptr = &(rsp_instructionCache[0]);
	addr -= rsp_ICACHE_LOW;
    } else if (mem_AddrIsGPR(addr)) {
	/*
	 * since this is the RSP simulator, and it's the
	 * host CPU and RDP that might want to do this, I
	 * haven't implemented this yet...
	 */
    } else if (mem_AddrIsDMA(addr)) {
	/*
	 * nobody will do it this way...
	 */
    } else if (mem_AddrIsTrig(addr)) {
	rsp_fillTrig(addr & 0x00000fff);
	memptr = (char *) &(rsp_trigROM[0]);
	addr = 0;
    } else if (mem_AddrIsSCRATCH(addr)) {

	if ( rsp_disable_scratch_mem ) {
	    rsp_eprintf(stderr,"ERROR : Scratch Memory disabled (addr = %08x)\n",addr);
	    rsp_SuSpecialBreak(0x0);
	} else {
	    memptr = &(rsp_scratchMemory[0]);
	    addr -= rsp_SCRATCH_LOW;
	};

    } else {
	rsp_eprintf(stderr,"ERROR : invalid address: %08x\n",addr);
	rsp_SuSpecialBreak(0x0);
    }

    *baseptr = memptr;

    return addr;
}

/*
 * utility routine that accepts an address and the type of memory it should be 
 * in.  memtype = the type of memory: rsp_DCACHE_ACCESS (DCACHE memory) or
 * rsp_ICACHE_ACCESS (ICACHE memory) or rsp_ABSOLUTE_ACCESS (any other memory).
 * The rsp ignores all but the significant bits in the DCACHE and ICACHE
 * memory ranges, so accesses supposedly aimed at those ranges will always go
 * to that range even if the high bits point somewhere else.  This routine
 * strips off the high bits and ensures that the access goes to the correct
 * memory block.  Scratch memory addresses (0x20000000-0x201fffff, which is
 * used on the simulator but will not exist in the hardware) are not altered
 * so they will still access the protected range.
 */
static u32
alias_addr(u32 addr, int memtype)
{
	u32 retaddr;
	extern int rsp_disable_scratch_mem;

	retaddr = addr;
	if ( rsp_disable_scratch_mem ||
	     (addr < rsp_SCRATCH_LOW) || (addr >= rsp_SCRATCH_LOW+rsp_SCRATCH_SIZE8))
		switch (memtype) {
			case rsp_DCACHE_ACCESS :
				retaddr = (addr & rsp_DCACHE_BITS) + rsp_DCACHE_LOW;
				break;
			case rsp_ICACHE_ACCESS :
				retaddr = (addr & rsp_ICACHE_BITS) + rsp_ICACHE_LOW;
				break;
			default:
				break;
		}
	return retaddr;
}

/*
 * initialize DRAM from a file:
 */
boolean
rsp_MemLoad(char *filename, u32 baseaddr)
{
    FILE	*init_file;
    u32		addr;
    u8		*baseptr;
    int		byte;

    if ((init_file = fopen(filename, "r")) == NULL) {
	rsp_eprintf(stderr,"ERROR : could not load memory from [%s]. %d\n",
		filename, errno);
	return(FALSE);
    }

    addr = translate_addr(baseaddr, &baseptr);

    if (baseptr == (u8 *) NULL) {
	rsp_eprintf(stderr,"ERROR : could not load memory from [%s]. (base NULL)\n",
		filename);
	fclose(init_file);
	return(FALSE);
    }

    /* the format of this file should probably handle offsets, etc. */
    while ((byte = fgetc(init_file)) != EOF && !ferror(init_file)) {
	baseptr[addr++] = byte;
    }

    fclose(init_file);
    return(TRUE);
}

/*
 * write DRAM to a file:
 */
boolean
rsp_MemUnLoad(char *filename, u32 baseaddr, u32 length, boolean doAppend)
{
    FILE	*output_file;
    u32		i, addr;
    u8		*baseptr;
    int		byte;
    char	*modeFlag[2] = {"w", "a"};

    if ((output_file = fopen(filename, modeFlag[doAppend])) == NULL) {
	rsp_eprintf(stderr,"ERROR : could not save main memory to [%s].\n",
		filename);
	return(FALSE);
    }

    addr = translate_addr(baseaddr, &baseptr);

    if (baseptr == (u8 *) NULL) {
	rsp_eprintf(stderr,"ERROR : could not save main memory to [%s].\n",
		filename);
	fclose(output_file);
	return(FALSE);
    }

    for (i=0; i<length; i++) {
	fputc(baseptr[addr++], output_file);
    }

    fclose(output_file);
    return(TRUE);
}

/*
 * do a bcopy between memory pieces.
 */
boolean
rsp_MemBcopy(u32 from, u32 to, u32 length)
{
    u32		*word;
    u8		*fromptr, *toptr, *frombase, *tobase;

    from = translate_addr(from, &frombase);
    to = translate_addr(to, &tobase);

    if (frombase == (u8 *) NULL || tobase == (u8 *) NULL) {
	rsp_eprintf(stderr,"ERROR : could not do bcopy.\n");
	return(FALSE);
    }

    fromptr = &(frombase[from]);
    toptr = &(tobase[from]);

    bcopy(fromptr, toptr, length);

    return(TRUE);
}

/*
 * do a bcopy between memory and IPC buffer.
 */
boolean
rsp_MemToIPC(u32 from, u32 to, u32 length)
{
    u8		*fromptr, *frombase;

    from = translate_addr(from, &frombase);

    if (frombase == (u8 *) NULL) {
	rsp_eprintf(stderr,"ERROR : could not do bcopy.\n");
	return(FALSE);
    }

    fromptr = &(frombase[from]);

    bcopy(fromptr, (char *)to, length);

    return(TRUE);
}

/*
 * do a bcopy between memory and IPC buffer.
 */
boolean
rsp_MemFromIPC(u32 from, u32 to, u32 length)
{
    u8		*toptr, *tobase;

    to = translate_addr(to, &tobase);

    if (tobase == (u8 *) NULL) {
	rsp_eprintf(stderr,"ERROR : could not do bcopy.\n");
	return(FALSE);
    }

    toptr = &(tobase[to]);

    bcopy((char *)from, toptr, length);

    return(TRUE);
}

/*
 * byte read
 */
u8
rsp_MemReadByte(u32 addr,int memtype)
{
    u8		*baseptr;

	addr = alias_addr(addr,memtype);

    addr = translate_addr(addr, &baseptr);

    if (baseptr == (u8 *) NULL) {
	rsp_eprintf(stderr,"ERROR : could not access memory.\n");
	return(0);
    }

    return(baseptr[addr]);
}

/*
 * halfword read
 */
u16
rsp_MemReadHalf(u32 addr,int memtype)
{
    u8		*baseptr;
    u16		tmp;

	addr = alias_addr(addr,memtype);

    addr = translate_addr(addr, &baseptr);

    if (baseptr == (u8 *) NULL) {
	rsp_eprintf(stderr,"ERROR : could not access memory.\n");
	return(0);
    }

    if (baseptr == &(rsp_scratchMemory[0])) {
	tmp = ((u16) baseptr[addr] << 8) | baseptr[(addr+1)];
    } else {
	tmp = ((u16) baseptr[addr] << 8) | baseptr[(addr+1)&0xfff];
    }
    return(tmp);
}

/*
 * word read
 */
u32
rsp_MemReadWord(u32 addr,int memtype)
{
    u8		*baseptr;
    u32		tmp;

	addr = alias_addr(addr,memtype);

    addr = translate_addr(addr, &baseptr);

    if (baseptr == (u8 *) NULL) {
	rsp_eprintf(stderr,"ERROR : could not access memory.\n");
	return(0);
    }

    if (baseptr == &(rsp_scratchMemory[0])) {
	tmp = (((u32) baseptr[(addr+0)] << 24) |
	       ((u32) baseptr[(addr+1)] << 16) |
	       ((u32) baseptr[(addr+2)] <<  8) |
	       ((u32) baseptr[(addr+3)]));
    } else {
	tmp = (((u32) baseptr[(addr+0)&0xfff] << 24) |
	       ((u32) baseptr[(addr+1)&0xfff] << 16) |
	       ((u32) baseptr[(addr+2)&0xfff] <<  8) |
	       ((u32) baseptr[(addr+3)&0xfff]));
    }
    return(tmp);
}

/*
 * double word read
 */
u64
rsp_MemReadDouble(u32 addr,int memtype)
{
    int		i;
    u8		*baseptr;
    u64		tmp;

	addr = alias_addr(addr,memtype);

    addr = translate_addr(addr, &baseptr);

    if (baseptr == (u8 *) NULL) {
	rsp_eprintf(stderr,"ERROR : could not access memory.\n");
	return(0);
    }

    tmp = 0x0000000000000000;
    for (i=0; i<8; i++) {
	if (baseptr == &(rsp_scratchMemory[0])) {
	    tmp |= (((u64)baseptr[(addr + i)]) << ((7-i)*8));
	} else {
	    tmp |= (((u64)baseptr[(addr + i)&0xfff]) << ((7-i)*8));
	}
    }

    return(tmp);
}

/*
 * byte write
 */
void
rsp_MemWriteByte(u32 addr, u8 byte,int memtype)
{
    u8		*baseptr;

	addr = alias_addr(addr,memtype);

    addr = translate_addr(addr, &baseptr);

    if (baseptr == (u8 *) NULL) {
	rsp_eprintf(stderr,"ERROR : could not access memory.\n");
	return;
    }

    baseptr[addr] = byte;
}

/*
 * halfword write
 */
void
rsp_MemWriteHalf(u32 addr, u16 half,int memtype)
{
    u8		*baseptr;

	addr = alias_addr(addr,memtype);

    addr = translate_addr(addr, &baseptr);

    if (baseptr == (u8 *) NULL) {
	rsp_eprintf(stderr,"ERROR : could not access memory.\n");
	return;
    }

    if (baseptr == &(rsp_scratchMemory[0])) {
	baseptr[addr] = (half & 0xff00) >> 8;
	baseptr[(addr+1)] = (half & 0x00ff);
    } else {
	baseptr[addr] = (half & 0xff00) >> 8;
	baseptr[(addr+1)&0xfff] = (half & 0x00ff);
    }
}

/*
 * word write
 */
void
rsp_MemWriteWord(u32 addr, u32 word,int memtype)
{
    u8		*baseptr;

	addr = alias_addr(addr,memtype);

    addr = translate_addr(addr, &baseptr);

    if (baseptr == (u8 *) NULL) {
	rsp_eprintf(stderr,"ERROR : could not access memory.\n");
	return;
    }

    if (baseptr == &(rsp_scratchMemory[0])) {
	baseptr[(addr+0)] = (word & 0xff000000) >> 24;
	baseptr[(addr+1)] = (word & 0x00ff0000) >> 16;
	baseptr[(addr+2)] = (word & 0x0000ff00) >>  8;
	baseptr[(addr+3)] = (word & 0x000000ff);
    } else {
	baseptr[(addr+0)&0xfff] = (word & 0xff000000) >> 24;
	baseptr[(addr+1)&0xfff] = (word & 0x00ff0000) >> 16;
	baseptr[(addr+2)&0xfff] = (word & 0x0000ff00) >>  8;
	baseptr[(addr+3)&0xfff] = (word & 0x000000ff);
    }
}

/*
 * double word write
 */
void
rsp_MemWriteDouble(u32 addr, u64 word,int memtype)
{
    int		i;
    u8		*baseptr;
    u64		mask, tmp;

	addr = alias_addr(addr,memtype);

    addr = translate_addr(addr, &baseptr);

    if (baseptr == (u8 *) NULL) {
	rsp_eprintf(stderr,"ERROR : could not access memory.\n");
	return;
    }

    /* the compiler didn't like shifting the other way... */
    mask = 0x00000000000000ff;
    for (i=7; i>=0; i--) {
	tmp = word & mask;
	tmp >>= (7-i)*8;
	if (baseptr == &(rsp_scratchMemory[0])) {
	    baseptr[(addr + i)] = (u8) tmp;
	} else {
	    baseptr[(addr + i)&0xfff] = (u8) tmp;
	}
	mask <<= 8;
    }
}

/*
 * word-aligned read from debugger:
 */
/* Same as rsp_ExamineMemory, except it uses memtype as the memory base
 * This allows the vertual PC (e.g.  pc starting at address 0).
 * (Kishor 9/26/94)*/

u32
rsp_ExamineMemory1(u32 addr, int memtype)
{
    u32		*word;
    u8		*baseptr;

    addr &= 0xfffffffc;	/* you can only address by word from debugger... */
    
    addr = alias_addr(addr,memtype);
    addr = translate_addr(addr, &baseptr);

    if (baseptr == (u8 *) NULL) {
	rsp_eprintf(stderr,"ERROR : could not access memory.\n");
	return(FALSE);
    }

    word = (u32 *) &(baseptr[addr]);


    return ntohl(*word);
}

/*
 * word-aligned read from debugger:
 */
u32
rsp_ExamineMemory(u32 addr)
{
    u32		*word;
    u8		*baseptr;

    addr &= 0xfffffffc;	/* you can only address by word from debugger... */
    
    addr = translate_addr(addr, &baseptr);

    if (baseptr == (u8 *) NULL) {
	rsp_eprintf(stderr,"ERROR : could not access memory.\n");
	return(FALSE);
    }

    word = (u32 *) &(baseptr[addr]);


    return ntohl(*word);
}

/*
 * word-aligned write from debugger:
 */
u32
rsp_DepositMemory(u32 addr, u32 value)
{
    u32		*word;
    u8		*baseptr;

    addr &= 0xfffffffc;	/* you can only address by word from debugger... */

    addr = translate_addr(addr, &baseptr);

    if (baseptr == (u8 *) NULL) {
	rsp_eprintf(stderr,"ERROR : could not access memory.\n");
	return(FALSE);
    }

    word = (u32 *) &(baseptr[addr]);
    *word = htonl(value);

    return TRUE;
}


/*
 * These next routines read/write a single word using the
 * global RCP memory map. They are called from the IPC
 * module, which is handling requests on behalf of the host CPU.
 *
 */
void
rsp_MemWriteMap(u32 addr, u32 val)
{
    if (addr >= SP_DMEM_START && addr <= SP_DMEM_END) {		/* DMEM */
	rsp_MemWriteWord(addr, val, rsp_DCACHE_ACCESS);
    } else if (addr >= SP_IMEM_START && addr <= SP_IMEM_END) {	/* IMEM */
	rsp_MemWriteWord(addr, val, rsp_ICACHE_ACCESS);
    } else if (addr == SP_MEM_ADDR_REG) {	/* DMA dram address */
	cop0_RegSet(1, val);
    } else if (addr == SP_MEM_ADDR_REG) {	/* DMA sp mem address */
	cop0_RegSet(0, val);
    } else if (addr == SP_RD_LEN_REG) {		/* DMA read length */
	cop0_RegSet(2, val);
    } else if (addr == SP_WR_LEN_REG) {		/* DMA write length */
	cop0_RegSet(3, val);
    } else if (addr == SP_STATUS_REG) {		/* SP status (write) */
	/* further decode necessary: */

	if (val & SP_CLR_HALT) {		/* clear halt */
	    rsp_controlReg = UnFlag(rsp_controlReg, SP_STATUS_HALT);
	} 

	if (val & SP_SET_HALT) {		/* set halt */
	    rsp_controlReg = Flag(rsp_controlReg, SP_STATUS_HALT);
	}
	
	if (val & SP_CLR_BROKE) {		/* clear broke */
	    rsp_controlReg = UnFlag(rsp_controlReg, SP_STATUS_BROKE);
	} 

	if (val & SP_CLR_INTR) {		/* clear rsp interrupt */
	    /* ? */
	} 

	if (val & SP_SET_INTR) {		/* set rsp interrupt */
	    /* ? */
	}

	if (val & SP_CLR_SSTEP) {	/* clear single step */
	    rsp_controlReg = UnFlag(rsp_controlReg, SP_STATUS_SSTEP);
	}

	if (val & SP_SET_SSTEP) {	/* set single step */
	    rsp_controlReg = Flag(rsp_controlReg, SP_STATUS_SSTEP);
	}

	if (val & SP_CLR_SIG0) {		/* clear signal 0 */
	    rsp_controlReg = UnFlag(rsp_controlReg, SP_STATUS_SIG0);
	}

	if (val & SP_SET_SIG0) {		/* set signal 0 */
	    rsp_controlReg = Flag(rsp_controlReg, SP_STATUS_SIG0);
	}

	if (val & SP_CLR_SIG1) {		/* clear signal 1 */
	    rsp_controlReg = UnFlag(rsp_controlReg, SP_STATUS_SIG1);
	}

	if (val & SP_SET_SIG1) {		/* set signal 1 */
	    rsp_controlReg = Flag(rsp_controlReg, SP_STATUS_SIG1);
	}

	if (val & SP_CLR_SIG2) {		/* clear signal 2 */
	    rsp_controlReg = UnFlag(rsp_controlReg, SP_STATUS_SIG2);
	}

	if (val & SP_SET_SIG2) {		/* set signal 2 */
	    rsp_controlReg = Flag(rsp_controlReg, SP_STATUS_SIG2);
	}

	if (val & SP_CLR_SIG3) {		/* clear signal 3 */
	    rsp_controlReg = UnFlag(rsp_controlReg, SP_STATUS_SIG3);
	}

	if (val & SP_SET_SIG3) {		/* set signal 3 */
	    rsp_controlReg = Flag(rsp_controlReg, SP_STATUS_SIG3);
	}

	if (val & SP_CLR_INTR_BREAK) {	/* clear interrupt on break */
	    /* ? */

	}

	if (val & SP_SET_INTR_BREAK) {	/* set interrupt on break */
	    /* ? */
	}

    } else if (addr == SP_DMA_FULL_REG) {	/* SP DMA full */
	/* can't write */
    } else if (addr == SP_DMA_BUSY_REG) {	/* SP DMA busy */
	/* can't write */
    } else if (addr == SP_SEMAPHORE_REG) {	/* SP semaphore (write) */
	cop0_RegSet(7, val);

    } else if (addr == SP_PC_REG) {	/* SP pc */
	rsp_programCounter = (val | 0x04001000);
    } else if (addr == SP_IBIST_REG) {	/* SP IMEM BIST status */
    }
}

u32
rsp_MemReadMap(u32 addr)
{
    u32		word;

    if (addr >= SP_DMEM_START && addr <= SP_DMEM_END) {		/* DMEM */
	word = rsp_MemReadWord(addr, rsp_DCACHE_ACCESS);
    } else if (addr >= SP_IMEM_START && addr <= SP_IMEM_END) {	/* IMEM */
	word = rsp_MemReadWord(addr, rsp_ICACHE_ACCESS);
    } else if (addr == SP_MEM_ADDR_REG) {	/* DMA dram address */
	word = cop0_RegGet(1);
    } else if (addr == SP_MEM_ADDR_REG) {	/* DMA sp mem address */
	word = cop0_RegGet(0);
    } else if (addr == SP_RD_LEN_REG) {		/* DMA read length */
	word = cop0_RegGet(2);
    } else if (addr == SP_WR_LEN_REG) {		/* DMA write length */
	word = cop0_RegGet(3);
    } else if (addr == SP_STATUS_REG) {		/* SP status (read) */

	word = rsp_controlReg;

    } else if (addr == SP_DMA_FULL_REG) {	/* SP DMA full */
	word = cop0_RegGet(5);
    } else if (addr == SP_DMA_BUSY_REG) {	/* SP DMA busy */
	word = cop0_RegGet(6);
    } else if (addr == SP_SEMAPHORE_REG) {	/* SP semaphore (read) */
	word = cop0_RegGet(7);

    } else if (addr == SP_PC_REG) {	/* SP pc */
	word = (rsp_programCounter & 0x00000fff);
    } else if (addr == SP_IBIST_REG) {	/* SP IMEM BIST status */
    }

    return(word);
}