bhv_rac.v 16.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
// Behavioral RAC
//
// Copyright 1994, Rambus Inc., All Rights Reserved
// CONFIDENTIAL INFORMATION - RAMBUS INC. PROPRIETARY
// 
// Data contained herein is proprietary information of Rambus Inc.
// which shall be treated confidentially and shall not be furnished to
// third parties or made public without prior written permission by
// Rambus Inc. Rambus Inc. does not convey any license under its
// patent, copyright or maskwork rights or any rights of others.
// 
// Data contained herein is preliminary. Rambus Inc. makes no warranties,
// expressed or implied, of functionality or suitability for any purpose.
// Rambus Inc. assumes no obligation to correct any errors contained
// herein or to advise any user of this text of any correction if such be
// made.

// This model supports only synchronous mode operation.  Testability, 
// PowerDown, or Stop clock features are not supported by this RAC model.

`timescale 1ns/1ns

module rac (
	 RData7, RData6, RData5, RData4, RData3, RData2, RData1, RData0, 
	 SynClk, SynClkFd,
 	 BusEnable, BISTFlag, SCANOut,
 	 BusCtrl, BusData,
 	 BusClk, BDSel, BCSel, BESel, RDSel, RCSel,
 	 Reset, 
	 TData7, TData6, TData5, TData4, TData3, TData2, TData1, TData0,
 	 Vref,
 	 BISTMode, IOSTMode, SCANMode, SCANClk, SCANEn, SCANIn, SynClkIn,
 	 CCtlEn, CCtlLd, CCtlI, CCtlPgm, PwrUp, ExtBE, StopR, StopT,
	 ByPass, ByPSel, rclkASIC, tclkASIC, PhStall);

output  [9:0]   RData7, RData6, RData5, RData4, RData3, RData2, RData1, RData0;
output          SynClk, SynClkFd;
output          BusEnable;
output          BISTFlag, SCANOut;
 
inout           BusCtrl;
inout   [8:0]   BusData;
input           BusClk;
input   [3:0]   BDSel, BCSel, BESel, RDSel, RCSel;
input           Reset;
input   [10:0]  TData7, TData6, TData5, TData4, TData3, TData2, TData1, TData0;
input           Vref;
input           BISTMode, IOSTMode, SCANMode, SCANClk, SCANEn, SCANIn,SynClkIn;
input           CCtlEn, CCtlLd;
input   [5:0]   CCtlI;
input           CCtlPgm, PwrUp, ExtBE, StopR, StopT;
input		ByPass, ByPSel, rclkASIC, tclkASIC, PhStall;

parameter	RAC_NUM = 99;

// Test Modes ( This is a temporary placeholder to get rid of "no fanin" warn )
wire		BISTFlag;
assign		BISTFlag = 1'b0;

wire		SCANOut;
assign		SCANOut = 1'b0;


// This code performs basic error checking and causes the rac to fail 
// disastrously upon detection.  It's just a reminder that it is only
// a very simple model.

reg	bhv_rac_error;
reg	error_checking_on;


initial	bhv_rac_error = 0;
initial	error_checking_on = 0;

always @( posedge BusClk )
    if ( error_checking_on & ~bhv_rac_error )
      begin
	if ( IOSTMode !== 1'b0 ) 
	  begin
	   $display("bhv_rac: BISTMode detected, not supported, stopping now!");
	   $display("bhv_rac: RAC# %d at time %d", RAC_NUM, $stime);
	   if ( RAC_NUM == 99 )
	       $display("bhv_rac:Override RAC_NUM parameter for sensible report.");
	   bhv_rac_error = 1;
	  end
	if ( BISTMode !== 1'b0 ) 
	  begin
	   $display("bhv_rac: BISTMode detected, not supported, stopping now!");
	   $display("bhv_rac: RAC# %d at time %d", RAC_NUM, $stime);
	   if ( RAC_NUM == 99 )
	       $display("bhv_rac:Override RAC_NUM parameter for sensible report.");
	   bhv_rac_error = 1;
	  end
	if ( SCANMode !== 1'b0 ) 
	  begin
	   $display("bhv_rac: SCANMode detected, not supported, stopping now!");
	   $display("bhv_rac: RAC# %d at time %d", RAC_NUM, $stime);
	   if ( RAC_NUM == 99 )
	       $display("bhv_rac:Override RAC_NUM parameter for sensible report.");
	   bhv_rac_error = 1;
	  end
	if ( SCANEn !== 1'b0 ) 
	  begin
	   $display("bhv_rac: SCANEn detected, not supported, stopping now!");
	   $display("bhv_rac: RAC# %d at time %d", RAC_NUM, $stime);
	   if ( RAC_NUM == 99 )
	       $display("bhv_rac:Override RAC_NUM parameter for sensible report.");
	   bhv_rac_error = 1;
	  end
	if (( ExtBE !== 1'b0 ) && ( Reset === 1'b0))
	  begin
	   $display("bhv_rac: ExtBE detected outside of Reset, stopping now!");
	   $display("bhv_rac: RAC# %d at time %d", RAC_NUM, $stime);
	   if ( RAC_NUM == 99 )
	       $display("bhv_rac:Override RAC_NUM parameter for sensible report.");
	   bhv_rac_error = 1;
	  end
	if ( StopR !== 1'b0 ) 
	  begin
	   $display("bhv_rac: StopR detected, not supported, stopping now!");
	   $display("bhv_rac: RAC# %d at time %d", RAC_NUM, $stime);
	   if ( RAC_NUM == 99 )
	       $display("bhv_rac:Override RAC_NUM parameter for sensible report.");
	   bhv_rac_error = 1;
	  end
	if ( StopT !== 1'b0 ) 
	  begin
	   $display("bhv_rac: StopT detected, not supported, stopping now!");
	   $display("bhv_rac: RAC# %d at time %d", RAC_NUM, $stime);
	   if ( RAC_NUM == 99 )
	       $display("bhv_rac:Override RAC_NUM parameter for sensible report.");
	   bhv_rac_error = 1;
	  end
	if ( ByPass !== 1'b0 ) 
	  begin
	   $display("bhv_rac: ByPass detected, not supported, stopping now!");
	   $display("bhv_rac: RAC# %d at time %d", RAC_NUM, $stime);
	   if ( RAC_NUM == 99 )
	       $display("bhv_rac:Override RAC_NUM parameter for sensible report.");
	   bhv_rac_error = 1;
	  end
	if ( PhStall !== 1'b0 ) 
	  begin
	   $display("bhv_rac: PhStall detected, not supported, stopping now!");
	   $display("bhv_rac: RAC# %d at time %d", RAC_NUM, $stime);
	   if ( RAC_NUM == 99 )
	       $display("bhv_rac:Override RAC_NUM parameter for sensible report.");
	   bhv_rac_error = 1;
	  end
      end

// The following code sets up the definition for the clocks.  A temporary
// flip-flop is used to divide the SynClkIn signal and passes that to the
// SynClkFd output.  This in turn is divided later to generate SynClk.

reg	SynClk, SynClkFd, SynClk_Quad_Gen;
reg	SynClk_Quad_Gen_sample, SynClk_Quad_Gen2;
reg	dll_on;
integer	i;

initial	dll_on = 0;
initial	i = 0;

wire	SynClk_wire, SynClkFd_wire, SynClk_Quad_Gen_wire;

assign	SynClk_wire = SynClk;
assign	SynClkFd_wire = SynClkFd;
assign	SynClk_Quad_Gen_wire = SynClk_Quad_Gen;


always @ ( negedge BusClk ) SynClk_Quad_Gen_sample = SynClkIn;

always @ ( posedge BusClk ) SynClk_Quad_Gen = SynClk_Quad_Gen_sample;

always @ ( negedge BusClk ) SynClk_Quad_Gen2 = SynClk_Quad_Gen;

always @ ( posedge BusClk )
  begin
    if ( dll_on & ~bhv_rac_error )
      SynClk = ~SynClk_Quad_Gen2;
    else if ( bhv_rac_error )
      SynClk = 1'bx;
    else
      SynClk = SynClk_wire;
  end

always @ ( posedge BusClk )
  begin
    if ( dll_on & ~bhv_rac_error )
      SynClkFd = ~SynClk_Quad_Gen2;
    else if ( bhv_rac_error )
      SynClkFd = 1'bx;
    else
      SynClkFd = SynClkFd_wire;
  end


always @( posedge BusClk )
  begin
    if ( PwrUp & ~dll_on )	// PwrUp started, clocks unstable until dll_on
      begin
	i = i + 1;
	if ( i == 20 )
	    dll_on = 1;
      end
    else if ( PwrUp & dll_on )	// PwrUp complete, clocks running
      begin
	i = 0;
      end
    else if ( bhv_rac_error )
      begin
	i = 0;
	dll_on = 0;
      end
    else if ( ~dll_on )	// non-run condition, RAC not PwrUp
      begin
	error_checking_on = 0;
	i = 0;
      end
    else 		// normal run condition, dll_on and !Reset
      begin
	error_checking_on = 1;
	i = 0;
      end
  end

// This ensures that a Reset condition clears out error checking.
always @ ( posedge Reset )
  begin
    bhv_rac_error = 0;
    error_checking_on = 0;
  end

always @ ( PwrUp )
  begin
    dll_on = 0;
    i = 0;
  end

// This routine helps to simulate the reset sequence that the
// real rac goes through.  Not exact, but similar and painful.
// This is modelled this way so that a simulation model that 
// switches between this RAC and a gate-level model may use 
// an identical reset procedure.

reg		CCtl_OK;
integer		CCtl_ctr_load;

initial	CCtl_OK =0;

always @ ( negedge SynClk )
  begin
    if ( CCtlLd & ~CCtlEn & (CCtl_ctr_load >= 32))
      begin
	if ( CCtlI === 'bx )
	  begin
            CCtl_OK = 0;
	  end
	else
	  begin
	    CCtl_OK = 1;
	  end
      end
    else if ( CCtlLd & CCtlEn & CCtl_OK )
      begin
        if ( CCtlPgm === 'bx )
	  begin
	    CCtl_OK = 0;
	  end
	else
	  begin
	    CCtl_OK = 1;
	  end
      end
  end

always @ ( posedge Reset )
  CCtl_ctr_load = 0;

always @ ( negedge SynClk )
  begin
    if ( Reset )
      CCtl_ctr_load = 0;
    else if ( CCtl_ctr_load < 40 )
      CCtl_ctr_load = CCtl_ctr_load + 1;
  end

wire	SynClk_QUAD1;
assign	SynClk_QUAD1 = ( ~SynClk_Quad_Gen_wire & ~SynClk_wire );

wire	SynClk_QUAD0;
assign	SynClk_QUAD0 = ( SynClk_Quad_Gen_wire & ~SynClk_wire );

// This code generates an internal clock that is used to center the data
// around the edges of BusClk.  This is for modelling purposes only.

reg	BusClk_Center;
integer	B_CLK_PERIOD;
time	TIME_DELAY;

initial TIME_DELAY = 0;
initial B_CLK_PERIOD = 0;

always @ (posedge BusClk)
begin
  if ( Reset )
    TIME_DELAY = $time;
  else if ( TIME_DELAY < $time )
    B_CLK_PERIOD = ( $time - TIME_DELAY ) / 4;
  else B_CLK_PERIOD = B_CLK_PERIOD;

  TIME_DELAY = $time;
end

always @ (BusClk) #B_CLK_PERIOD BusClk_Center = BusClk;


// This code generates the BusEnable output.
// BusEnable is made from a combination of the shift circuitry and
// a combinatorial logic produced from Reset and ExtBE.  This shifter is
// slightly different than the others for this reason.

wire	BusEnable_Shifter_wire;
assign	BusEnable = (Reset & ExtBE) ? (CCtl_OK ? 1'b0 : 1'bx) : BusEnable_Shifter_wire;

reg	[3:0]	BESel_Hold;
reg	[3:0]	BESel_Shift;

wire	BESel_Load;
assign	BESel_Load = BESel_Shift[0];

always @ ( negedge SynClk ) BESel_Hold = BESel;

always @ ( posedge BusClk )
  if ( SynClk_QUAD1 )
    BESel_Shift = BESel_Hold;
  else
    BESel_Shift = ( BESel_Shift >> 1'b1 );
  
wire	[7:0]	BE_Bus;
assign	BE_Bus = { TData7[10], TData6[10], TData5[10], TData4[10],
		   TData3[10], TData2[10], TData1[10], TData0[10] };

pin_shift_driver	BE_shifter
( BusEnable_Shifter_wire, BE_Bus, BusClk, BusClk_Center, BESel_Load, CCtl_OK );

// This code generates the BusControl output.

reg	[3:0]	BCSel_Hold;
reg	[3:0]	BCSel_Shift;

wire	BCSel_Load;
assign	BCSel_Load = BCSel_Shift[0];

always @ ( negedge SynClk ) BCSel_Hold = BCSel;

always @ ( posedge BusClk )
  if ( SynClk_QUAD1 )
    BCSel_Shift = BCSel_Hold;
  else
    BCSel_Shift = ( BCSel_Shift >> 1'b1 );
  
wire	[7:0]	BC_Bus;
assign	BC_Bus = { TData7[9], TData6[9], TData5[9], TData4[9],
		   TData3[9], TData2[9], TData1[9], TData0[9] };

pin_shift_driver	BC_shifter
	( BusCtrl, BC_Bus, BusClk, BusClk_Center, BCSel_Load, CCtl_OK );


// This code generates the BusData outputs.

reg	[3:0]	BDSel_Hold;
reg	[3:0]	BDSel_Shift;

wire	BDSel_Load;
assign	BDSel_Load = BDSel_Shift[0];

always @ ( negedge SynClk ) BDSel_Hold = BDSel;

always @ ( posedge BusClk )
  if ( SynClk_QUAD1 )
    BDSel_Shift = BDSel_Hold;
  else
    BDSel_Shift = ( BDSel_Shift >> 1'b1 );

wire	[7:0]	BD_Bus8;
assign	BD_Bus8 = { TData7[8], TData6[8], TData5[8], TData4[8],
		    TData3[8], TData2[8], TData1[8], TData0[8] };

pin_shift_driver	BD_shifter8
	( BusData[8], BD_Bus8, BusClk, BusClk_Center, BDSel_Load, CCtl_OK );

wire	[7:0]	BD_Bus7;
assign	BD_Bus7 = { TData7[7], TData6[7], TData5[7], TData4[7],
		    TData3[7], TData2[7], TData1[7], TData0[7] };

pin_shift_driver	BD_shifter7
	( BusData[7], BD_Bus7, BusClk, BusClk_Center, BDSel_Load, CCtl_OK );

wire	[7:0]	BD_Bus6;
assign	BD_Bus6 = { TData7[6], TData6[6], TData5[6], TData4[6],
		    TData3[6], TData2[6], TData1[6], TData0[6] };

pin_shift_driver	BD_shifter6
	( BusData[6], BD_Bus6, BusClk, BusClk_Center, BDSel_Load, CCtl_OK );

wire	[7:0]	BD_Bus5;
assign	BD_Bus5 = { TData7[5], TData6[5], TData5[5], TData4[5],
		    TData3[5], TData2[5], TData1[5], TData0[5] };

pin_shift_driver	BD_shifter5
	( BusData[5], BD_Bus5, BusClk, BusClk_Center, BDSel_Load, CCtl_OK );

wire	[7:0]	BD_Bus4;
assign	BD_Bus4 = { TData7[4], TData6[4], TData5[4], TData4[4],
		    TData3[4], TData2[4], TData1[4], TData0[4] };

pin_shift_driver	BD_shifter4
	( BusData[4], BD_Bus4, BusClk, BusClk_Center, BDSel_Load, CCtl_OK );

wire	[7:0]	BD_Bus3;
assign	BD_Bus3 = { TData7[3], TData6[3], TData5[3], TData4[3],
		    TData3[3], TData2[3], TData1[3], TData0[3] };

pin_shift_driver	BD_shifter3
	( BusData[3], BD_Bus3, BusClk, BusClk_Center, BDSel_Load, CCtl_OK );

wire	[7:0]	BD_Bus2;
assign	BD_Bus2 = { TData7[2], TData6[2], TData5[2], TData4[2],
		    TData3[2], TData2[2], TData1[2], TData0[2] };

pin_shift_driver	BD_shifter2
	( BusData[2], BD_Bus2, BusClk, BusClk_Center, BDSel_Load, CCtl_OK );

wire	[7:0]	BD_Bus1;
assign	BD_Bus1 = { TData7[1], TData6[1], TData5[1], TData4[1],
		    TData3[1], TData2[1], TData1[1], TData0[1] };

pin_shift_driver	BD_shifter1
	( BusData[1], BD_Bus1, BusClk, BusClk_Center, BDSel_Load, CCtl_OK );

wire	[7:0]	BD_Bus0;
assign	BD_Bus0 = { TData7[0], TData6[0], TData5[0], TData4[0],
		    TData3[0], TData2[0], TData1[0], TData0[0] };

pin_shift_driver	BD_shifter0
	( BusData[0], BD_Bus0, BusClk, BusClk_Center, BDSel_Load, CCtl_OK );


// This code generates the RData bus for the internal logic of the ASIC.
// This is for RCData, which is RData[8] or the BusControl wire.

reg	[3:0]	RCSel_Hold;
reg	[3:0]	RCSel_Shift;

wire	RCSel_Load;
assign	RCSel_Load = RCSel_Shift[0];

always @ ( negedge SynClk ) RCSel_Hold = RCSel;

always @ ( posedge BusClk )
  if ( SynClk_QUAD0 )
    RCSel_Shift = RCSel_Hold;
  else
    RCSel_Shift = ( RCSel_Shift >> 1'b1 );
  
wire	[7:0]	RD_Bus9;
assign	{ RData7[9], RData6[9], RData5[9], RData4[9],
	  RData3[9], RData2[9], RData1[9], RData0[9] } = RD_Bus9;

pin_shift_sampler
	RD_shifter9( RD_Bus9, BusCtrl, BusClk, RCSel_Load );

// This code generates the RData bus for the internal logic of the ASIC.
// This is for the remainder of the RData bus which includes BusData[8:0]

reg	[3:0]	RDSel_Hold;
reg	[3:0]	RDSel_Shift;

wire	RDSel_Load;
assign	RDSel_Load = RDSel_Shift[0];

always @ ( negedge SynClk ) RDSel_Hold = RDSel;

always @ ( posedge BusClk )
  if ( SynClk_QUAD0 )
    RDSel_Shift = RDSel_Hold;
  else
    RDSel_Shift = ( RDSel_Shift >> 1'b1 );
  
wire	[7:0]	RD_Bus0;
assign	{ RData7[0], RData6[0], RData5[0], RData4[0],
	  RData3[0], RData2[0], RData1[0], RData0[0] } = RD_Bus0;

pin_shift_sampler
	RD_shifter0( RD_Bus0, BusData[0], BusClk, RDSel_Load );

wire	[7:0]	RD_Bus1;
assign	{ RData7[1], RData6[1], RData5[1], RData4[1],
	  RData3[1], RData2[1], RData1[1], RData0[1] } = RD_Bus1;

pin_shift_sampler
	RD_shifter1( RD_Bus1, BusData[1], BusClk, RDSel_Load );

wire	[7:0]	RD_Bus2;
assign	{ RData7[2], RData6[2], RData5[2], RData4[2],
	  RData3[2], RData2[2], RData1[2], RData0[2] } = RD_Bus2;

pin_shift_sampler
	RD_shifter2( RD_Bus2, BusData[2], BusClk, RDSel_Load );

wire	[7:0]	RD_Bus3;
assign	{ RData7[3], RData6[3], RData5[3], RData4[3],
	  RData3[3], RData2[3], RData1[3], RData0[3] } = RD_Bus3;

pin_shift_sampler
	RD_shifter3( RD_Bus3, BusData[3], BusClk, RDSel_Load );

wire	[7:0]	RD_Bus4;
assign	{ RData7[4], RData6[4], RData5[4], RData4[4],
	  RData3[4], RData2[4], RData1[4], RData0[4] } = RD_Bus4;

pin_shift_sampler
	RD_shifter4( RD_Bus4, BusData[4], BusClk, RDSel_Load );

wire	[7:0]	RD_Bus5;
assign	{ RData7[5], RData6[5], RData5[5], RData4[5],
	  RData3[5], RData2[5], RData1[5], RData0[5] } = RD_Bus5;

pin_shift_sampler
	RD_shifter5( RD_Bus5, BusData[5], BusClk, RDSel_Load );

wire	[7:0]	RD_Bus6;
assign	{ RData7[6], RData6[6], RData5[6], RData4[6],
	  RData3[6], RData2[6], RData1[6], RData0[6] } = RD_Bus6;

pin_shift_sampler
	RD_shifter6( RD_Bus6, BusData[6], BusClk, RDSel_Load );

wire	[7:0]	RD_Bus7;
assign	{ RData7[7], RData6[7], RData5[7], RData4[7],
	  RData3[7], RData2[7], RData1[7], RData0[7] } = RD_Bus7;

pin_shift_sampler
	RD_shifter7( RD_Bus7, BusData[7], BusClk, RDSel_Load );

wire	[7:0]	RD_Bus8;
assign	{ RData7[8], RData6[8], RData5[8], RData4[8],
	  RData3[8], RData2[8], RData1[8], RData0[8] } = RD_Bus8;

pin_shift_sampler
	RD_shifter8( RD_Bus8, BusData[8], BusClk, RDSel_Load );

endmodule


module pin_shift_driver
	( pin_out, Data_In, BusClk, BusClk_Center, Load, CCtl_OK );

  output	pin_out;

  input	[7:0]	Data_In;
  input		BusClk;
  input		BusClk_Center;
  input		Load;
  input		CCtl_OK;
reg	[7:0]	shifter;
reg		pin_out;

always @ ( BusClk_Center )
  if ( BusClk_Center )
    if ( shifter[0] == 1'b1 )
      pin_out = 1'b0;
    else if ( shifter[0] === 1'bx )
      pin_out = 1'bx;
    else 
      pin_out = 1'bz;
  else
    if ( shifter[1] == 1'b1 )
      pin_out = 1'b0;
    else if ( shifter[1] === 1'bx )
      pin_out = 1'bx;
    else
      pin_out = 1'bz;

always @( posedge BusClk )
  if ( Load & CCtl_OK )
    shifter = Data_In;
  else if ( Load & ~CCtl_OK )
    shifter = 8'bx;
  else
    shifter = { 2'b0,shifter[7:2] };

endmodule

module pin_shift_sampler
	( Data_In, pin_in, BusClk, Sample );

  output	[7:0]	Data_In;

  input			pin_in;
  input			BusClk;
  input			Sample;

reg	[9:0]	bit_stream;
reg	[7:0]	Data_In;

wire	[9:0]	bit_stream_wire;
assign	bit_stream_wire = bit_stream;

always @ ( BusClk )
  begin
    bit_stream[8:0] = bit_stream_wire[9:1];
    bit_stream[9] = ~pin_in;
  end

always @ ( posedge BusClk )
  if ( Sample )
    Data_In = bit_stream[7:0];	// [9:8] is receive latency

endmodule