dummy_rsp.v
25.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
module rsp (.clk(clock), reset_l, iddq_test,
sp_cbus_read_enable, sp_cbus_write_enable, mem_cbus_write_enable,
cmd_cbus_read_enable, cmd_cbus_write_enable, cbus_select,
cbus_command, dma_start, dma_last, sp_dma_grant, sp_read_grant,
cmd_dma_grant, cmd_read_grant, sp_dbus_read_enable,
sp_dbus_write_enable, cbuf_ready,
cmd_busy, pipe_busy, tmem_busy, frozen,
sp_dma_request, sp_read_request, mem_read_request, cmd_dma_request,
cmd_read_request, cbuf_write, flush, freeze, unfreeze, sp_interrupt,
xbus_data, cbus_data, dbus_data);
`include "sp.vh"
`include "define.vh"
input clock;
input reset_l;
input iddq_test;
input sp_cbus_read_enable;
input sp_cbus_write_enable;
input mem_cbus_write_enable;
input cmd_cbus_read_enable;
input cmd_cbus_write_enable;
input [CBUS_SELECT_SIZE-1:0] cbus_select;
input [CBUS_COMMAND_SIZE-1:0] cbus_command;
input dma_start;
input dma_last;
input sp_dma_grant;
input sp_read_grant;
input cmd_dma_grant;
input cmd_read_grant;
input sp_dbus_read_enable;
input sp_dbus_write_enable;
input cbuf_ready;
input cmd_busy;
input pipe_busy;
input tmem_busy;
input frozen;
output sp_dma_request;
output sp_read_request;
output mem_read_request;
output cmd_dma_request;
output cmd_read_request;
output cbuf_write;
output flush;
output freeze;
output unfreeze;
output sp_interrupt;
output [XBUS_DATA_SIZE-1:0] xbus_data;
inout [CBUS_DATA_SIZE-1:0] cbus_data;
inout [DBUS_DATA_SIZE-1:0] dbus_data;
wire [SP_REG_DATA_SIZE-1:0] cp0_data;
wire cp0_cmd_select;
wire [SP_REG_ADDRESS_SIZE-1:0] cp0_address;
wire cp0_write;
wire cp0_read;
wire cp0_enable;
wire imem_select;
wire [SP_MEM_ADDRESS_SIZE-1:0] mem_address;
wire mem_read;
wire mem_write;
wire [SP_MEM_MASK_SIZE-1:0] mem_mask;
wire xbus_dmem_dma;
wire halt;
wire single_step;
wire dma_busy;
wire set_broke;
wire cmd_ready;
wire cmd_read;
wire [SP_MEM_ADDRESS_SIZE-1:0] cmd_address;
wire pc_write;
wire [SP_PC_SIZE-1:0] pc_data;
reg bist_done;
reg [SP_BIST_FAIL_SIZE-1:0] bist_fail;
wire bist_go;
wire bit_check;
always @(negedge reset_l) begin
bist_done = LOW;
bist_fail = 0;
end
assign set_broke = LOW;
io_cmd_dma io_cmd_dma_0(clock, reset_l,
cp0_enable, cmd_cbus_read_enable, cmd_cbus_write_enable, cbus_select,
cbus_command, dma_start, dma_last, cmd_dma_grant, cmd_read_grant,
cbuf_ready, cp0_cmd_select, cp0_address, cp0_write, cmd_ready, cmd_busy,
pipe_busy, tmem_busy, frozen, cmd_dma_request, cmd_read_request, cbuf_write,
xbus_dmem_dma, cmd_read, cmd_address, flush, freeze, unfreeze, cp0_data,
cbus_data);
io_mem_dma io_mem_dma_0(clock, reset_l,
cp0_enable, sp_cbus_read_enable, sp_cbus_write_enable, cbus_select,
cbus_command, dma_start, dma_last, sp_dma_grant, sp_read_grant,
cp0_cmd_select, cp0_address, cp0_read, cp0_write, set_broke, cmd_read,
cmd_address, bist_done, bist_fail, sp_dma_request, sp_read_request,
mem_read_request, imem_select, mem_address, mem_read, mem_write, mem_mask,
halt, single_step, dma_busy, cmd_ready, pc_write, pc_data, io_read_select,
io_write_select, mem_load, io_load, sp_interrupt, bist_go, bist_check,
cp0_data, cbus_data);
sp_mem sp_mem_0(clock, reset_l,
imem_select, xbus_dmem_dma, mem_cbus_write_enable, sp_dbus_read_enable,
sp_dbus_write_enable, mem_address,
mem_read, mem_write, mem_mask, io_read_select, io_write_select, mem_load,
io_load, xbus_data, cbus_data, dbus_data);
sp_test sp_test_0(clock, reset_l,
{cp0_cmd_select, cp0_address}, cp0_read, cp0_write, cp0_enable, cp0_data);
endmodule
module sp_mem (clock, reset_l,
dbus_imem_select, xbus_dmem_select, cbus_write_enable, dbus_read_enable,
dbus_write_enable, mem_address, mem_read, mem_write, mem_mask,
io_read_select, io_write_select, mem_load, io_load,
xbus_data,
cbus_data, dbus_data);
`include "sp.vh"
parameter DMEM_SIZE = 'h100;
parameter IMEM_SIZE = 'h200;
input clock;
input reset_l;
input dbus_imem_select;
input xbus_dmem_select;
input cbus_write_enable;
input dbus_write_enable;
input dbus_read_enable;
input [SP_MEM_ADDRESS_SIZE-1:0] mem_address;
input mem_read;
input mem_write;
input [SP_MEM_MASK_SIZE-1:0] mem_mask;
input io_read_select;
input io_write_select;
input mem_load;
input io_load;
output [XBUS_DATA_SIZE-1:0] xbus_data;
inout [CBUS_DATA_SIZE-1:0] cbus_data;
inout [DBUS_DATA_SIZE-1:0] dbus_data;
// memory arrays
reg [DBUS_DATA_SIZE-1:0] even_dmem[0:DMEM_SIZE-1], odd_dmem[0:DMEM_SIZE-1];
reg [DBUS_DATA_SIZE-1:0] imem[0:IMEM_SIZE-1];
// dmem registers
reg [SP_MEM_ADDRESS_SIZE-2:0] even_address, odd_address;
reg [DBUS_DATA_SIZE-1:0] even_write_data, odd_write_data;
reg [DBUS_DATA_SIZE-1:0] even_read_data, odd_read_data;
reg [SP_MEM_MASK_SIZE-1:0] even_write_enable, odd_write_enable;
reg [SP_MEM_MASK_SIZE-1:0] mem_mask_pl;
reg dmem_write_1;
reg dmem_read_1, dmem_read_2, dmem_read_3;
reg [DBUS_DATA_SIZE-1:0] secondary_read_data;
reg [DBUS_DATA_SIZE-1:0] secondary_write_data;
reg swap_1, swap_2;
// bus registers
reg [DBUS_DATA_SIZE-1:0] dbus_data_reg;
reg [CBUS_DATA_SIZE-1:0] cbus_data_reg;
// imem registers
reg imem_read_1, imem_read_2, imem_read_3;
reg imem_write_1, imem_write_2;
reg [SP_MEM_ADDRESS_SIZE-1:0] imem_address;
reg [DBUS_DATA_SIZE-1:0] imem_read_data;
reg [DBUS_DATA_SIZE-1:0] imem_write_data;
// busses
wire [DBUS_DATA_SIZE-1:0] dmem_read_data;
wire [DBUS_DATA_SIZE-1:0] primary_read_bus, secondary_read_bus;
wire [DBUS_DATA_SIZE-1:0] even_write_bus, odd_write_bus;
wire [DBUS_DATA_SIZE-1:0] mem_read_data;
wire [SP_MEM_MASK_SIZE-1:0] even_mask, odd_mask;
wire swap;
wire [CBUS_DATA_SIZE-1:0] mem_read_data_0, mem_read_data_1;
wire [CBUS_DATA_SIZE-1:0] io_read_data;
wire [CBUS_DATA_SIZE-1:0] mem_load_data;
wire [DBUS_DATA_SIZE-1:0] io_write_data;
wire [DBUS_DATA_SIZE-1:0] mem_write_data;
wire [CBUS_DATA_SIZE-1:0] next_cbus_data;
wire [DBUS_DATA_SIZE-1:0] next_dbus_data;
// debug registers
reg [SP_MEM_ADDRESS_SIZE-2:0] even_address_1, odd_address_1;
reg [SP_MEM_ADDRESS_SIZE-1:0] imem_address_1;
initial if ($test$plusargs("load_dmem")) begin
$display("loading DMEM from dmem_even.data and dmem_odd.data...");
$readmemh("dmem_even.data", even_dmem);
$readmemh("dmem_odd.data", odd_dmem);
end
initial if ($test$plusargs("load_imem")) begin
$display("loading IMEM from imem.data...");
$readmemh("imem.data", imem);
end
reg mem_monitor;
initial mem_monitor = $test$plusargs("mem_mon");
cbus_driver cbus_driver_0(
.cbus_data_out(cbus_data_reg),
.cbus_enable(cbus_write_enable),
.cbus_data(cbus_data));
dbus_driver dbus_driver_0(
.dbus_data_out(dbus_data_reg),
.dbus_enable(dbus_write_enable),
.dbus_data(dbus_data));
// dma muxes
assign dmem_read_data = dmem_read_3 ? primary_read_bus : secondary_read_data;
assign primary_read_bus = swap_2 ? odd_read_data : even_read_data;
assign secondary_read_bus = swap_2 ? even_read_data : odd_read_data;
assign even_write_bus = swap ? dbus_data_reg : secondary_write_data;
assign odd_write_bus = swap ? secondary_write_data : dbus_data_reg;
assign mem_read_data = imem_read_3 ? imem_read_data : dmem_read_data;
assign even_mask = swap ? mem_mask : mem_mask_pl;
assign odd_mask = swap ? mem_mask_pl : mem_mask;
assign swap = mem_address[0];
// bus muxes
assign {mem_read_data_0, mem_read_data_1} = mem_read_data;
assign io_read_data = io_read_select ? mem_read_data_1 : mem_read_data_0;
assign mem_load_data = mem_load ? io_read_data : cbus_data_reg;
assign io_write_data = io_read_select
? {mem_read_data_0, cbus_data_reg}
: {cbus_data_reg, mem_read_data_1};
assign mem_write_data = io_write_select ? io_write_data : dbus_data_reg;
assign next_cbus_data = io_load ? cbus_data : mem_load_data;
assign next_dbus_data = dbus_read_enable ? dbus_data : mem_read_data;
assign xbus_data = xbus_dmem_select ? dmem_read_data : dbus_data_reg;
always @(posedge clock) begin : main_block
reg [DBUS_DATA_SIZE/2-1:0] old_data_low, old_data_high;
reg [DBUS_DATA_SIZE/2-1:0] new_data_low, new_data_high;
// ************************* DMEM model ***********************
dmem_write_1 <= mem_write && !dbus_imem_select;
dmem_read_1 <= mem_read && !dbus_imem_select;
dmem_read_2 <= dmem_read_1;
dmem_read_3 <= dmem_read_2;
// swap address/data flag
swap_1 <= swap;
swap_2 <= swap_1;
// load secondary register
secondary_read_data <= secondary_read_bus;
secondary_write_data <= mem_write_data;
// load address registers
if (dmem_write_1 || dmem_read_1) begin
even_address <= mem_address[SP_MEM_ADDRESS_SIZE-1:1] + swap;
odd_address <= mem_address[SP_MEM_ADDRESS_SIZE-1:1];
end
else begin
even_address <= 'bx;
odd_address <= 'bx;
end
// DMA read pipeline
mem_mask_pl <= mem_mask;
if (dmem_write_1) begin
even_write_enable <= even_mask;
even_write_data <= even_write_bus;
odd_write_enable <= odd_mask;
odd_write_data <= odd_write_bus;
end
else begin
even_write_enable <= 0;
even_write_data <= 64'bx;
odd_write_enable <= 0;
odd_write_data <= 64'bx;
end
{old_data_low, old_data_high} = even_dmem[even_address];
{new_data_low, new_data_high} = even_write_data;
even_dmem[even_address] <= {
even_write_enable[1] ? new_data_low : old_data_low,
even_write_enable[0] ? new_data_high : old_data_high};
{old_data_low, old_data_high} = odd_dmem[odd_address];
{new_data_low, new_data_high} = odd_write_data;
odd_dmem[odd_address] <= {
odd_write_enable[1] ? new_data_low : old_data_low,
odd_write_enable[0] ? new_data_high : old_data_high};
// DMA write pipeline
even_read_data <= even_dmem[even_address];
odd_read_data <= odd_dmem[odd_address];
// ************************* IMEM model ***********************
imem_write_1 <= mem_write && dbus_imem_select;
imem_write_2 <= imem_write_1;
imem_read_1 <= mem_read && dbus_imem_select;
imem_read_2 <= imem_read_1;
imem_read_3 <= imem_read_2;
if (imem_write_1 || imem_read_1) begin
imem_address <= mem_address;
end
else begin
imem_address <= 'bx;
end
if (imem_write_1) begin
imem_write_data <= mem_write_data;
end
else begin
imem_write_data <= 64'bx;
end
if (imem_write_2) begin
imem[imem_address] <= imem_write_data;
end
imem_read_data <= imem[imem_address];
// ********************** interface *********************
cbus_data_reg <= next_cbus_data;
dbus_data_reg <= next_dbus_data;
// DMEM monitor
even_address_1 <= even_address;
odd_address_1 <= odd_address;
if (mem_monitor) begin : debug_block
reg [31:0] high_data, low_data;
if (swap_1) begin
if (odd_write_enable) begin
{high_data, low_data} = odd_write_data;
$write(`CLOCK_COUNT, " : DMEM write - ");
if (odd_write_enable[1]) begin
$write("%h", high_data);
end
else begin
$write("--------");
end
if (odd_write_enable[0]) begin
$write("%h", low_data);
end
else begin
$write("--------");
end
$display(" @ %h", odd_address * 16 + 8);
end
if (even_write_enable) begin
{high_data, low_data} = even_write_data;
$write(`CLOCK_COUNT, " : DMEM write - ");
if (even_write_enable[1]) begin
$write("%h", high_data);
end
else begin
$write("--------");
end
if (even_write_enable[0]) begin
$write("%h", low_data);
end
else begin
$write("--------");
end
$display(" @ %h", even_address * 16);
end
end
else begin
if (even_write_enable) begin
{high_data, low_data} = even_write_data;
$write(`CLOCK_COUNT, " : DMEM write - ");
if (even_write_enable[1]) begin
$write("%h", high_data);
end
else begin
$write("--------");
end
if (even_write_enable[0]) begin
$write("%h", low_data);
end
else begin
$write("--------");
end
$display(" @ %h", even_address * 16);
end
if (odd_write_enable) begin
{high_data, low_data} = odd_write_data;
$write(`CLOCK_COUNT, " : DMEM write - ");
if (odd_write_enable[1]) begin
$write("%h", high_data);
end
else begin
$write("--------");
end
if (odd_write_enable[0]) begin
$write("%h", low_data);
end
else begin
$write("--------");
end
$display(" @ %h", odd_address * 16 + 8);
end
end
if (dmem_read_3) begin
if (swap_2) begin
$display(`CLOCK_COUNT, " : DMEM read - %h @ %h",
odd_read_data, odd_address_1 * 16 + 8);
$display(`CLOCK_COUNT, " : DMEM read - %h @ %h",
even_read_data, even_address_1 * 16);
end
else begin
$display(`CLOCK_COUNT, " : DMEM read - %h @ %h",
even_read_data, even_address_1 * 16);
$display(`CLOCK_COUNT, " : DMEM read - %h @ %h",
odd_read_data, odd_address_1 * 16 + 8);
end
end
end
// IMEM monitor
imem_address_1 <= imem_address;
if (mem_monitor) begin
if (imem_read_3) begin
$display(`CLOCK_COUNT, " : IMEM read - %h @ %h",
imem_read_data, imem_address_1 * 8);
end
if (imem_write_2) begin
$display(`CLOCK_COUNT, " : IMEM write - %h @ %h",
imem_write_data, imem_address * 8);
end
end
end
endmodule
module sp_test (clock, reset_l,
cp0_address, cp0_read, cp0_write, cp0_enable, cp0_data);
`include "sp.vh"
parameter
DMA_MEM_ADDRESS = 0,
DMA_DBUS_ADDRESS = 1,
DMA_READ_LENGTH = 2,
DMA_WRITE_LENGTH = 3,
DMA_STATUS = 4,
CMD_START_ADDRESS = 8,
CMD_END_ADDRESS = 9,
CMD_CURRENT_ADDRESS = 10,
CMD_STATUS = 11,
COUNTER_CLOCK = 12,
COUNTER_CMD = 13,
COUNTER_PIPE = 14,
COUNTER_TMEM = 15;
input clock;
input reset_l;
output [SP_REG_ADDRESS_SIZE:0] cp0_address;
output cp0_read;
output cp0_write;
output cp0_enable;
inout [SP_REG_DATA_SIZE-1:0] cp0_data;
reg [SP_REG_ADDRESS_SIZE:0] cp0_address;
reg cp0_enable;
reg cp0_read;
reg cp0_write;
reg [SP_REG_DATA_SIZE-1:0] cp0_data_out;
reg test_selected;
assign cp0_data = cp0_enable ? 32'bz : cp0_data_out;
initial begin
cp0_read <= LOW;
cp0_write <= LOW;
cp0_enable <= LOW;
test_selected <= LOW;
wait(`SYSTEM_READY);
@(posedge clock);
if ($test$plusargs("test_sp_cbuf_dma")) cbuf_dma;
if ($test$plusargs("test_sp_copy_imem")) copy_imem;
if ($test$plusargs("test_sp_copy_dmem_aligned")) copy_dmem_aligned;
if ($test$plusargs("test_sp_start_end_hazard")) start_end_hazard;
if ($test$plusargs("test_sp_dbus_hazard")) dbus_hazard;
if ($test$plusargs("test_sp_ras_again")) ras_again;
if ($test$plusargs("test_sp_read_aligned")) read_aligned;
if ($test$plusargs("test_sp_miss")) miss;
if ($test$plusargs("test_sp_write_dmem_aligned")) write_dmem_aligned;
if ($test$plusargs("test_sp_write_dmem_hazard")) write_dmem_hazard;
if ($test$plusargs("test_sp_read_write_hazard")) read_write_hazard;
end
initial begin
if ($test$plusargs("help")) begin
$display("sp test arguments include:");
$display(" +test_sp_cbuf_dma");
$display(" +test_sp_copy_imem");
$display(" +test_sp_copy_dmem_aligned");
$display(" +test_sp_start_end_hazard");
$display(" +test_sp_dbus_hazard");
$display(" +test_sp_ras_again");
$display(" +test_sp_read_aligned");
$display(" +test_sp_miss");
$display(" +test_sp_write_dmem_aligned");
$display(" +test_sp_write_dmem_hazard");
$display(" +test_sp_read_write_hazard");
$display("");
#0 $finish;
end
end
parameter START_ADDRESS = 'h0000_0000;
parameter END_ADDRESS = 'h0000_0200;
parameter NUM_PACKETS = 20;
reg [6:0] request_size;
reg [31:0] next_address, current_address, end_address;
reg [5:0] delay;
task cbuf_dma;
begin
test_selected <= HIGH;
reality.r4200b_0.config_rdram;
// initial conditions
next_address = END_ADDRESS;
end_address = END_ADDRESS;
write_reg(CMD_START_ADDRESS, next_address);
write_reg(CMD_END_ADDRESS, end_address);
repeat (NUM_PACKETS) begin
delay = $random;
request_size = $random * 8;
while (request_size == 0) request_size = $random * 8;
end_address = next_address + request_size;
repeat (delay) begin
cp0_write <= LOW;
@(posedge clock);
end
// wrap the buffer if the packet will not fit
if (end_address > END_ADDRESS) begin
// Wait until the current pointer advances past the
// start address. Be sure to leave START_ADDRESS
// empty to prevent wrapping.
read_reg(CMD_CURRENT_ADDRESS, current_address);
while (current_address > next_address
|| current_address == START_ADDRESS) begin
read_reg(CMD_CURRENT_ADDRESS, current_address);
end
next_address = START_ADDRESS;
end_address = request_size;
write_reg(CMD_START_ADDRESS, next_address);
cp0_write <= LOW;
end
// this leaves one word empty to prevent wrapping
read_reg(CMD_CURRENT_ADDRESS, current_address);
while (current_address > next_address
&& current_address <= end_address) begin
read_reg(CMD_CURRENT_ADDRESS, current_address);
end
write_reg(CMD_END_ADDRESS, end_address);
cp0_write <= LOW;
next_address = end_address;
end
repeat(1000) @(posedge clock);
$finish;
end
endtask
task write_reg;
input [31:0] address, data;
begin
cp0_enable <= LOW;
cp0_write <= HIGH;
cp0_address <= address;
cp0_data_out <= data;
@(posedge clock);
end
endtask
task read_reg;
input [31:0] address;
output [31:0] data;
begin
cp0_enable <= HIGH;
cp0_address <= address;
@(posedge clock);
data = cp0_data;
end
endtask
task copy_imem;
parameter length = 40 * 8;
begin
test_selected <= HIGH;
repeat (10) @(posedge clock);
reality.r4200b_0.config_rdram;
dma_read ('h1000, 'h000, 0, 0, length-1);
dma_write('h1000, 'h800, 0, 0, length-1);
dma_read ('h1800, 'h800, 0, 0, length-1);
dma_write('h1800, 'h100, 0, 0, length-1);
cp0_enable <= HIGH;
cp0_address <= DMA_STATUS;
@(posedge clock);
while (cp0_data[2]) @(posedge clock);
repeat(10) @(posedge clock);
$finish;
end
endtask
task copy_dmem_aligned;
begin
test_selected <= HIGH;
repeat (10) @(posedge clock);
reality.r4200b_0.config_rdram;
dma_write((8*32)*0+0, (8*32)*0+0, 8*(32-5), 3, 8*5-1);
dma_read ((8*32)*4+0, (8*32)*0+0, 8*(32-5), 3, 8*5-1);
dma_write ((8*32)*4+0, (8*32)*4+0, 8*(32-5), 3, 8*5-1);
cp0_enable <= HIGH;
cp0_address <= DMA_STATUS;
@(posedge clock);
while (cp0_data[2]) @(posedge clock);
repeat(10) @(posedge clock);
$finish;
end
endtask
task start_end_hazard;
begin
test_selected <= HIGH;
reality.r4200b_0.config_rdram;
dma_write(8, 'h008, 0, 0, 16 * 8 - 1);
dma_read (8, 'h008, 0, 0, 16 * 8 - 1);
dma_write(8, 'h008, 0, 0, 16 * 8 - 1);
dma_read (8, 'h008, 0, 0, 16 * 8 - 1);
cp0_enable <= HIGH;
cp0_address <= DMA_STATUS;
@(posedge clock);
while (cp0_data[2]) @(posedge clock);
repeat(10) @(posedge clock);
$finish;
end
endtask
task ras_again;
begin
test_selected <= HIGH;
reality.r4200b_0.config_rdram;
// dirty misses
dma_write( 0*8, 'h00_0000, 0, 0, 1*8 - 1);
dma_write( 1*8, 'h00_0800, 0, 0, 1*8 - 1);
dma_write( 2*8, 'h00_1000, 0, 0, 1*8 - 1);
dma_write( 3*8, 'h00_1800, 0, 0, 1*8 - 1);
// clean misses
dma_read ( 0*8, 'h00_0000, 0, 0, 1*8 - 1);
dma_read ( 1*8, 'h00_0800, 0, 0, 1*8 - 1);
dma_read ( 2*8, 'h00_1000, 0, 0, 1*8 - 1);
dma_read ( 3*8, 'h00_1800, 0, 0, 1*8 - 1);
// clean write misses
dma_write( 0*8, 'h00_0800, 0, 0, 1*8 - 1);
dma_write( 0*8, 'h10_0800, 0, 0, 1*8 - 1);
dma_read ( 0*8, 'h00_0800, 0, 0, 1*8 - 1);
dma_read ( 0*8, 'h10_0800, 0, 0, 1*8 - 1);
dma_write( 0*8, 'h00_0000, 0, 0, 1*8 - 1);
dma_write( 0*8, 'h10_0000, 0, 0, 1*8 - 1);
// clean read miss
dma_read ( 0*8, 'h00_0000, 0, 0, 1*8 - 1);
dma_read ( 0*8, 'h00_0800, 0, 0, 1*8 - 1);
cp0_enable <= HIGH;
cp0_address <= DMA_STATUS;
@(posedge clock);
while (cp0_data[2]) @(posedge clock);
repeat(10) @(posedge clock);
$finish;
end
endtask
task dbus_hazard;
begin
test_selected <= HIGH;
reality.r4200b_0.config_rdram;
dma_write(8, 0, 0, 0, 16 * 8 - 1);
dma_read (8, 0, 0, 0, 16 * 8 - 1);
dma_write(8, 0, 0, 0, 16 * 8 - 1);
dma_read (8, 0, 0, 0, 16 * 8 - 1);
cp0_enable <= HIGH;
cp0_address <= DMA_STATUS;
@(posedge clock);
while (cp0_data[2]) @(posedge clock);
repeat(10) @(posedge clock);
$finish;
end
endtask
task read_aligned;
begin
$display("Running read_dmem_aligned");
test_selected <= HIGH;
reality.r4200b_0.config_rdram;
dma_read(0, 0, 0, 0, 50 * 8 - 1);
dma_read(8, 0, 0, 0, 50 * 8 - 1);
dma_read(0, 8, 0, 0, 50 * 8 - 1);
cp0_enable <= HIGH;
cp0_address <= DMA_STATUS;
@(posedge clock);
while (cp0_data[2]) @(posedge clock);
repeat(10) @(posedge clock);
$finish;
end
endtask
task miss;
begin
test_selected <= HIGH;
reality.r4200b_0.config_rdram;
dma_write( 0*8, 'h00_0000, 0, 0, 16*8 - 1);
dma_write( 0*8, 'h10_0000, 0, 0, 16*8 - 1);
// both writes generate dirty misses
dma_write(16*8, 'h00_0800, 0, 0, 16*8 - 1);
dma_write(16*8, 'h10_0800, 0, 0, 16*8 - 1);
// both reads generate dirty misses
dma_read( 0*8, 'h00_0000, 0, 0, 16*8 - 1);
dma_read( 0*8, 'h10_0000, 0, 0, 16*8 - 1);
// both reads generate clean misses
dma_read(16*8, 'h00_0800, 0, 0, 16*8 - 1);
dma_read(16*8, 'h10_0800, 0, 0, 16*8 - 1);
// both writes generate clean misses
dma_write( 0*8, 'h00_0000, 0, 0, 16*8 - 1);
dma_write( 0*8, 'h10_0000, 0, 0, 16*8 - 1);
cp0_enable <= HIGH;
cp0_address <= DMA_STATUS;
@(posedge clock);
while (cp0_data[2]) @(posedge clock);
repeat(10) @(posedge clock);
$finish;
end
endtask
task write_dmem_aligned;
begin
test_selected <= HIGH;
reality.r4200b_0.config_rdram;
dma_write(0, 0, 0, 0, 17 * 8 - 1);
dma_write(8, 0, 0, 0, 30 * 8 - 1);
dma_write(0, 8, 0, 0, 17 * 8 - 1);
cp0_enable <= HIGH;
cp0_address <= DMA_STATUS;
@(posedge clock);
while (cp0_data[2]) @(posedge clock);
repeat(10) @(posedge clock);
$finish;
end
endtask
task write_dmem_hazard;
begin
test_selected <= HIGH;
reality.r4200b_0.config_rdram;
dma_write(0, 0, 0, 0, 8-1);
dma_write(0, 'h800, 0, 0, 8 - 1);
dma_write(0, 0, 0, 0, 8 - 1);
dma_write(0, 'h800, 0, 0, 8 - 1);
cp0_enable <= HIGH;
cp0_address <= DMA_STATUS;
@(posedge clock);
while (cp0_data[2]) @(posedge clock);
repeat(10) @(posedge clock);
$finish;
end
endtask
task read_write_hazard;
begin
test_selected <= HIGH;
reality.r4200b_0.config_rdram;
dma_write(0, 0, 0, 0, 16*8-1);
dma_read(0, 'h800, 0, 0, 16*8-1);
dma_write(0, 0, 0, 0, 16*8-1);
dma_write(0, 0, 0, 0, 8-1);
dma_read(0, 'h800, 0, 0, 8-1);
dma_write(0, 0, 0, 0, 8-1);
cp0_enable <= HIGH;
cp0_address <= DMA_STATUS;
@(posedge clock);
while (cp0_data[2]) @(posedge clock);
repeat(10) @(posedge clock);
$finish;
end
endtask
task dma_read;
input [31:0] master_address;
input [31:0] slave_address;
input [11:0] skip;
input [7:0] count;
input [11:0] length;
begin
cp0_enable <= HIGH;
cp0_address <= DMA_STATUS;
@(posedge clock);
while (cp0_data[3]) @(posedge clock);
cp0_enable <= LOW;
cp0_write <= HIGH;
// write the master address
cp0_address <= DMA_MEM_ADDRESS;
cp0_data_out <= master_address;
@(posedge clock);
// write the slave address
cp0_address <= DMA_DBUS_ADDRESS;
cp0_data_out <= slave_address;
@(posedge clock);
// write the length
cp0_address <= DMA_READ_LENGTH;
cp0_data_out <= {skip, count, length};
@(posedge clock);
cp0_write <= LOW;
@(posedge clock);
end
endtask
task dma_write;
input [31:0] master_address;
input [31:0] slave_address;
input [11:0] skip;
input [7:0] count;
input [11:0] length;
begin
cp0_enable <= HIGH;
cp0_address <= DMA_STATUS;
@(posedge clock);
while (cp0_data[3]) @(posedge clock);
cp0_enable <= LOW;
cp0_write <= HIGH;
// write the master address
cp0_address <= DMA_MEM_ADDRESS;
cp0_data_out <= master_address;
@(posedge clock);
// write the slave address
cp0_address <= DMA_DBUS_ADDRESS;
cp0_data_out <= slave_address;
@(posedge clock);
// write the length
cp0_address <= DMA_WRITE_LENGTH;
cp0_data_out <= {skip, count, length};
@(posedge clock);
cp0_write <= LOW;
@(posedge clock);
end
endtask
endmodule