ms_fetch.c
21.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
/*
* Copyright (C) 1996-1998 by the Board of Trustees
* of Leland Stanford Junior University.
*
* This file is part of the SimOS distribution.
* See LICENSE file for terms of the license.
*
*/
/*
* ms_fetch.c - Handle instruction fetching for the MXS simulator
*
* Jim Bennett
* 1994, 1995
*/
#ifdef MIPSY_MXS
#include <sys/types.h>
#endif
#include <stdlib.h>
#include "ms.h"
#ifdef MIPSY_MXS
#include "cpu_state.h"
#include "mipsy.h"
#include "annotations.h"
#include "cp0.h"
#include "pcache.h"
#endif
/* Global variable set if there is an annotation on this instruction. */
extern int mxs_annotation;
static int ms_rename (struct s_cpu_state *st, INST *ip, THREAD *th,
int this_inst, int store_inst);
/*
* ms_fetch - Fetch instructions from the text segment and add
* them to the instruction window
*/
void ms_fetch (struct s_cpu_state *st)
{
INST *ip;
THREAD *th;
BrTREE *br;
int this_inst, fetches, store_inst;
int nfetch; /* Number of successful fetches */
#ifdef MIPSY_MXS
uint inst;
#endif
AddToStat (ST_FETCHES_TRIED, FETCH_WIDTH);
if (st->exception_pending)
{ /* Pending exception stalls all threads */
AddToStat (ST_FETCH_EXPEND, FETCH_WIDTH)
return;
}
nfetch = 0;
#if MAX_ACT_THREADS == 1
for (fetches=0;fetches<FETCH_WIDTH;fetches++)
#else
for (th = st->active_thread, fetches=0;
fetches<FETCH_WIDTH;
fetches++, th = th->active_thread)
#endif
{
/* If instruction window is full, */
/* then proceed to next unit. */
if (st->iwin_ninst >= IWIN_SIZE)
{
AddToStat (ST_FETCH_IW_FULL, FETCH_WIDTH-fetches)
break;
}
this_inst = st->iwin_nextfree;
if (this_inst < 0)
{
AddToStat (ST_FETCH_RB_FULL, FETCH_WIDTH-fetches)
break;
}
/* If there are no active unstalled threads, */
/* then proceed to next unit. */
#if MAX_ACT_THREADS == 1
th = st->active_thread;
if (!th) {
AddToStat (ST_FETCH_STALL_OTH,FETCH_WIDTH-fetches)
AddToStat (ST_FETCH_STALL,FETCH_WIDTH-fetches)
break;
}
if (th->stall_fetch) {
if (th->stall_branch) {
if (th->stall_thread) {
AddToStat (ST_FETCH_STALLTHREAD,FETCH_WIDTH-fetches);
} else {
AddToStat (ST_FETCH_STALLBRANCH,FETCH_WIDTH-fetches);
}
} else if (th->stall_fpc) {
AddToStat (ST_FETCH_STALLFPC,FETCH_WIDTH-fetches);
} else if (th->stall_icache) {
AddToStat (ST_FETCH_STALLICACHE,FETCH_WIDTH-fetches);
} else if (th->stall_itlbmiss) {
AddToStat (ST_FETCH_STALLITLB,FETCH_WIDTH-fetches);
} else if (th->stall_except) {
AddToStat (ST_FETCH_STALLEXCEPT,FETCH_WIDTH-fetches);
} else if (th->stall_sys) {
AddToStat (ST_FETCH_STALLSYS,FETCH_WIDTH-fetches);
} else if (th->stall_cp0) {
AddToStat (ST_FETCH_STALLCP0,FETCH_WIDTH-fetches);
} else if (th->stall_sc) {
AddToStat (ST_FETCH_STALLSC,FETCH_WIDTH-fetches);
} else {
AddToStat (ST_FETCH_STALL_OTH,FETCH_WIDTH-fetches);
}
AddToStat (ST_FETCH_STALL,FETCH_WIDTH-fetches)
#ifndef MIPSY_MXS
#ifdef DEBUG_CHECKS
if (((th->thread_st & TH_SPEC) == 0) &&
(th->stall_icache || th->stall_except) )
{
fprintf (stderr,
"Fetch unit permanently stalled\r\n");
fprintf (stderr,
"Cycle #% 9d%0.5d\r\n",
st->work_ticks, st->work_cycle);
ms_break (st, NULL, "ERR");
}
#endif
#endif
break;
}
#else
while ((th) && th->stall_fetch)
th = th->active_thread;
if (th == NULL)
{
th = st->active_thread;
while ((th) && th->stall_fetch)
th = th->active_thread;
if (th == NULL)
{
AddToStat (ST_FETCH_STALL_OTH,
FETCH_WIDTH-fetches)
AddToStat (ST_FETCH_STALL,
FETCH_WIDTH-fetches);
break;
}
}
#endif
ip = &st->iwin [this_inst];
#ifdef MIPSY_MXS
/* Fetch the instruction to this thread */
{
PA paddr;
int ret, dum1, dum2, bdoor;
uint tlbFlavor = TLB_IFETCH|TLB_READING;
CPUState *P = (CPUState *) (st->mipsyPtr);
if ((th->pc & 3) == 0) {
void *bdoorAddr = 0;
ret = TranslateVirtual(P, th->pc, &paddr, &tlbFlavor, &bdoorAddr);
} else {
RECORD_EXCEPTION(P, EXC_RADE, E_VEC,th->pc,
P->CP0[C0_TLBHI], P->CP0[C0_CTXT],
P->CP0[C0_XCTXT]);
ret = FAILURE;
}
if (ret != SUCCESS)
{
th->except = GetLastException(st);
th->stall_itlbmiss = 1;
UpdateStallFetch (th);
IncStat (ST_FETCH_STALLITLB);
IncStat (ST_FETCH_STALL);
continue;
}
bdoor = (tlbFlavor & TLB_BDOOR);
if (!bdoor) {
st->ms_action = ACT_UNSTALL_ICACHE;
P->PC = th->pc;
ret = ReadICache(P->myNum, th->pc, paddr, &inst);
if (ret != SUCCESS)
{
if (ret == FAILURE) {
/* Cache wouldn't accept req - stall for a cycle. */
IncStat (ST_FETCH_CACHEFAILURE);
IncStat (ST_FETCH_STALLICACHE);
IncStat (ST_FETCH_STALL);
continue;
}
th->stall_icache = 1;
th->icache_stall_reason = MxsClassifyMiss(P->myNum,
th->pc, paddr, TRUE);
UpdateStallFetch (th);
IncStat (ST_FETCH_STALLICACHE);
IncStat (ST_FETCH_STALL);
continue;
}
}
if (!bdoor) {
compile_inst (inst, th->pc, ip, &dum1, &dum2);
} else {
ip->op = OPBDOOR;
ip->r1 = ip->r2 = ip->r3 = -1;
ip->imm = paddr;
}
}
#else
/* If the PC of this thread is invalid, then */
/* stall the thread. */
if (th->pc == OUTSIDE_ADDR)
{
th->stall_icache = 1;
UpdateStallFetch (th);
IncStat (ST_FETCH_STALL_INV);
IncStat (ST_FETCH_STALL);
continue;
}
/* Fetch the instruction to this thread */
*ip = pmap.ctbuf[th->pc];
#endif
#ifdef PRINT_INST
{
int t, flagp;
if (enable_iprint && ((st->work_cycle % iprint_frequency) == 0))
{
printf ("% 7d%0.5d @0x%8.8x: ",
st->work_ticks, st->work_cycle, th->debugpc);
print_inst (stdout, ip);
flagp = 0;
if (ip->r2 > 0)
{
t = th->regnames [ip->r2];
printf (" [");
print_reg_contents (stdout, ip->r2, &st->regs[t]);
flagp = 1;
}
if (ip->r3 > 0)
{
t = th->regnames [ip->r3];
if (flagp)
printf (", ");
else
printf (" [");
print_reg_contents (stdout, ip->r3, &st->regs[t]);
flagp = 1;
}
if (flagp)
printf ("]\r\n");
else
printf ("\r\n");
#ifdef PRINT_IREG
for (i=0; i<32; i+=8)
printf ( "%8x %8x %8x %8x %8x %8x %8x %8x\r\n",
Ireg(i), Ireg(i+1), Ireg(i+2), Ireg(i+3),
Ireg(i+4), Ireg(i+5), Ireg(i+6), Ireg(i+7));
printf ("\r\n");
#endif
}
}
#endif
st->iwin_br_node [this_inst] = th->branch_node;
#ifdef BREAKPOINT
if (th->debugpc == brkpt) ms_break (st, ip, "PC BRK");
if (ip->op == opcbrk) ms_break (st, ip, "OP BRK");
#endif
/* If it is a branch likely inst, we need to */
/* ensure we can process it now. */
/* NOTE: This means that branch likely inst's */
/* won't work in a non-speculative model. */
/* I.e. THREAD_WIDTH must be at least two. */
if (is_likely (ip->op) && (st->nthreads >= THREAD_WIDTH))
{
IncStat (ST_FETCH_THREAD);
continue;
}
/* Convert illegal instruction sequence to */
/* illegal instruction, for exception handling */
if (th->branch_dly && (is_branch (ip->op) || is_call (ip->op)))
{
ip->op = OPILL;
ip->r1 = ip->r2 = ip->r3 = -1;
}
/* Rename logical registers to use real */
/* (physical) registers. */
store_inst = is_store (ip->op);
if (ms_rename (st, ip, th, this_inst, store_inst) < 0)
{
IncStat (ST_FETCH_NAME);
continue;
}
/* Rename succeeded, so it is OK to update the */
/* machine state now. */
ms_grad_enqueue (st, this_inst);
st->iwin_pc [this_inst] = th->pc;
st->iwin_flags [this_inst] |= IWIN_BUSY;
if (mxs_annotation)
st->iwin_flags [this_inst] |= IWIN_ANNOTATED;
if (th->thread_st & TH_SPEC)
st->iwin_flags [this_inst] |= IWIN_SPEC;
st->iwin_nextfree = st->iwin_freelist [this_inst];
th->pc = th->pc + PC_INC;
th->debugpc += 4;
/* Add instruction to list for this thread */
br = &st->branch_tree [th->branch_node];
if (br->iwin_tail_th >= 0)
{
st->iwin_thread [br->iwin_tail_th] = this_inst;
st->iwin_bthread [this_inst] = br->iwin_tail_th;
st->iwin_thread [this_inst] = -1;
br->iwin_tail_th = this_inst;
}
else
{
br->iwin_head_th = this_inst;
br->iwin_tail_th = this_inst;
st->iwin_bthread [this_inst] = -1;
st->iwin_thread [this_inst] = -1;
}
/* Add load/store instructions to load/store chain */
if (is_ldst (ip->op))
{
if (store_inst) st->iwin_flags [this_inst] |= IWIN_STORE;
ms_ldst_enqueue (st, this_inst);
#ifdef ONE_PHASE_LS
/* Loads and stores must wait if there is a */
/* preceeding store. */
if (st->iwin_nstores > 0)
st->iwin_flags [this_inst] |= IWIN_LDST_DEP;
/* A store must wait if there are any */
/* preceeding loads or stores. */
if (store_inst)
{
if (this_inst != st->iwin_head_ldst)
st->iwin_flags [this_inst] |= IWIN_LDST_DEP;
st->iwin_nstores++;
}
#endif
}
/* Add this instruction to the tail */
/* of the priority chain in the window */
nfetch++;
ms_pri_enqueue (st, this_inst);
/* If we've just fetched some kind of branch, */
/* then stop fetching until the branch is */
/* resolved. */
if (is_branch (ip->op) || is_call (ip->op))
{
if (th->branch_dly)
{
fprintf (stderr,
"No branches allowed in branch shadow!!\r\n");
ms_break (st, NULL, "ERR");
}
/* IWIN_BRDLY is used to hold off issue */
/* of this inst until branch delay */
/* slots have been fetched. */
st->iwin_flags [this_inst] |= IWIN_BRDLY + IWIN_BRANCH;
th->branch_inum = this_inst;
th->branch_dly = BRANCH_SLOTS + 1;
th->returnpc = th->pc + (BRANCH_SLOTS*PC_INC);
/* Handle branch likely instructions */
if (is_likely (ip->op))
{
th->stall_branch = 1;
UpdateStallFetch (th);
ms_branch (st, th, 1);
}
}
else
/* If it is a system call or a write to the FP */
/* control register, stall fetching until all */
/* prior instructions are executed. */
if (is_sys (ip->op) || is_fp_ctl (ip->op) || is_sc(ip->op))
{
if (is_sc (ip->op))
th->stall_sc = 1;
else if (is_sys(ip->op)) {
if (ip->op == OPCP0)
th->stall_cp0 = 1;
else
th->stall_sys = 1;
} else
th->stall_fpc = 1;
UpdateStallFetch (th);
if (!is_sc(ip->op))
st->iwin_flags [this_inst] |= IWIN_FLUSH;
}
/* If there is branch processing in progress */
/* for this thread, check if we have finished */
/* fetching the branch delay instructions. */
/* If so, then OK to process the branch. */
/* In the case of the branch likely, the branch */
/* has already been processed, so just update */
/* the PC to the branch target. */
if (th->branch_dly)
{
th->branch_dly--;
if (th->branch_dly == 0)
{
if (th->branch_likely)
{
th->pc = th->branch_likely_pc;
th->branch_likely = 0;
}
else
{
th->stall_branch = 1;
UpdateStallFetch (th);
ms_branch (st, th, 0);
}
}
}
CheckInstAvail (st, this_inst);
if (ip->op == OPILL) {
/* Current off the fetching for threads that encounter an
* illegal instruction.
*/
th->stall_except = 1;
UpdateStallFetch (th);
}
}
AddToStat (ST_FETCHES, nfetch);
}
/*
* ms_rename - Rename logical registers to use real (physical)
* registers. Note that register 0 is never remapped,
* and that registers are allocated in pairs.
*
* Returns -1 if rename fails (out of free registers, or
* special register still in use)
*
* If a source register has the REG_ERROR bit set, this indicates
* that the writer of the register caused a fault, so stall
* this thread until the problem is dealt with.
*/
static int ms_rename (struct s_cpu_state *st, INST *ip, THREAD *th,
int this_inst, int store_inst)
{
int lreg_ix, reg_ix, dest_reg;
REGSTAT *rs;
int old_reg_ix, old_lreg, old_half_def;
int halfreg, evenreg, preg, halfpreg;
int owner;
#ifdef PRECISE
st->iwin_lr1 [this_inst] = ip->r1;
st->iwin_lr2 [this_inst] = ip->r2;
st->iwin_lr3 [this_inst] = ip->r3;
#endif
if (ip->r2 > 0)
{
lreg_ix = ip->r2 >> 1;
if (lreg_ix != (ip->r1 >> 1))
th->half_def[lreg_ix] &= ~REGNAME_MASK;
ip->r2 = th->regnames [ip->r2];
reg_ix = ip->r2 >> 1;
if (st->reg_rstat[reg_ix].reg_status & REG_ERROR)
{
th->stall_except = 1;
UpdateStallFetch (th);
IncStat (ST_REG_ERROR);
return (-1);
}
}
if (ip->r3 > 0)
{
lreg_ix = ip->r3 >> 1;
if (lreg_ix != (ip->r1 >> 1))
th->half_def[lreg_ix] &= ~REGNAME_MASK;
ip->r3 = th->regnames [ip->r3];
reg_ix = ip->r3 >> 1;
if (st->reg_rstat[reg_ix].reg_status & REG_ERROR)
{
th->stall_except = 1;
UpdateStallFetch (th);
IncStat (ST_REG_ERROR);
return (-1);
}
}
/* For destination register renaming, need a */
/* new register name. Find a free register, */
/* set owner to be this instruction, and set */
/* status = mapped + busy + in window. */
old_reg_ix = -1;
if (ip->r1 > 0)
{
reg_ix = st->reg_nextfree;
if (reg_ix < 0)
{
IncStat (ST_REG_BUSY);
return (-1); /* Out of free reg's */
}
dest_reg = reg_ix << 1;
halfreg = ip->r1 >> 1;
/*************************************************************************
At this point, the fetch is guaranteed to complete except for the
case of a special register, or a double precision register that
has been claimed by another thread, which might still be in use.
In the other cases, it is safe to update the machine state.
*************************************************************************/
/* Handle integer reg renaming */
if ((ip->r1 < FPREG) || (ip->r1 >= MAX_FP))
{
old_reg_ix = th->regnames[ip->r1] >> 1;
old_lreg = ip->r1;
old_half_def = 0;
th->regnames[ip->r1] = dest_reg;
AcquireRegMap (&st->reg_rstat[reg_ix], th, ip->r1);
st->reg_owner [dest_reg] = this_inst;
st->reg_rstat[reg_ix].reg_status |=
REG_BUSY + REG_IN_WIN;
st->reg_excuse [reg_ix] = ST_NOT_ISSUED;
st->new_excuse [reg_ix] = ST_NOT_ISSUED;
st->reg_nextfree = st->reg_freelist [reg_ix];
st->iwin_flags [this_inst] |= IWIN_DEFINE;
#ifdef BREAKPOINT
if (ip->r1 == trace_reg)
trace_preg = dest_reg;
#endif
ip->r1 = dest_reg;
}
else
/* Handle FP reg renaming, keep */
/* track of odd/even register */
/* pairs. */
if ((ip->r1 < FPCTL) || (ip->r1 >= TOT_REG))
{
if ((ip->op == OPCVTDW) || (ip->op == OPCVTDS) ||
((ip->op >= OPFADDD) && (ip->op <= OPFFLOORD)) )
{ /* These instructions update both */
/* halves of an FP register pair. */
old_reg_ix = th->regnames[ip->r1] >> 1;
old_lreg = ip->r1;
old_half_def = th->half_def[halfreg];
th->regnames[ip->r1] = dest_reg;
th->regnames[ip->r1+1] = dest_reg+1;
th->half_def[halfreg] = 0;
AcquireRegMap (&st->reg_rstat[reg_ix], th, ip->r1);
st->reg_owner [dest_reg] = this_inst;
st->reg_owner [dest_reg+1] = this_inst;
st->reg_rstat[reg_ix].reg_status |=
REG_BUSY + REG_IN_WIN;
st->reg_excuse [reg_ix] = ST_NOT_ISSUED;
st->new_excuse [reg_ix] = ST_NOT_ISSUED;
st->reg_nextfree = st->reg_freelist [reg_ix];
st->iwin_flags [this_inst] |= IWIN_DEFINE;
#ifdef BREAKPOINT
if (ip->r1 == trace_reg)
trace_preg = dest_reg;
#endif
ip->r1 = dest_reg;
}
else
{ /* Otherwise, are updating a half pair */
int old_owner;
evenreg = halfreg << 1;
halfpreg = (th->regnames[evenreg]) >> 1;
if ((th->half_def[halfreg]) &&
((th->half_def[halfreg] & REGNAME_MASK)
== (ip->r1^0x01)) )
{
/* Check if another thread has claimed */
/* this register, and if not then stake */
/* our claim. */
rs = &st->reg_rstat[halfpreg];
if (rs->reg_status & REG_CLAIMED)
{
IncStat (ST_REG_CLAIMED);
return (-1);
}
rs->reg_status |= REG_CLAIMED;
rs->reg_nclaims = 1;
/* If there is a danger that this register */
/* might be referenced by a non-descendant */
/* thread, set the control flag, so that the */
/* write won't complete until the instruction */
/* is no longer speculative. */
preg = th->regnames[ip->r1];
old_owner = st->reg_owner [preg];
if (((rs->reg_status & REG_IN_WIN) == 0) ||
(st->iwin_br_node [old_owner] != th->branch_node))
st->iwin_flags [this_inst] |= IWIN_CTL;
/* The first half of the register def */
/* is still valid, so complete the def */
th->half_def[halfreg] |= REGNAME_CLAIM;
th->half_def[halfreg] &= ~REGNAME_MASK;
st->reg_owner [preg] = this_inst;
#ifdef BREAKPOINT
if (ip->r1 == trace_reg)
trace_preg = preg;
#endif
ip->r1 = preg;
/* If it is still in the window, set */
/* register doubly mapped, and point */
/* from first definition to this one. */
if (rs->reg_status & REG_IN_WIN)
{
rs->reg_status |= REG_DMAP;
st->reg_otherhalf2 [halfpreg] = -1;
if ((preg & (~0x01)) == (ip->r2 & (~0x01)))
st->reg_otherhalf2 [halfpreg] =
this_inst;
st->reg_otherhalf3 [halfpreg] = -1;
if ((preg & (~0x01)) == (ip->r3 & (~0x01)))
st->reg_otherhalf3 [halfpreg] =
this_inst;
}
else
{
/* If the other half is no longer around, then */
/* set this instruction as the register owner. */
st->reg_owner [preg ^ 0x01] = this_inst;
rs->reg_status |= REG_BUSY + REG_IN_WIN;
st->reg_excuse [halfpreg] = ST_NOT_ISSUED;
st->new_excuse [halfpreg] = ST_NOT_ISSUED;
}
}
else
{
/* Otherwise, treat this as the start */
/* of a new (half) definition. */
old_reg_ix = th->regnames[evenreg] >> 1;
old_lreg = evenreg;
old_half_def = th->half_def[halfreg];
th->half_def[halfreg] = ip->r1;
th->regnames[evenreg] = dest_reg;
th->regnames[evenreg+1]= dest_reg+1;
st->regs[dest_reg] = 0;
st->regs[dest_reg+1] = 0;
AcquireRegMap (&st->reg_rstat[reg_ix], th, ip->r1);
st->reg_owner [dest_reg] = this_inst;
if (ip->r1 & 0x01)
{
dest_reg++;
st->reg_owner [dest_reg] = this_inst;
}
st->reg_rstat[reg_ix].reg_status |=
REG_BUSY + REG_IN_WIN;
st->reg_excuse [reg_ix] = ST_NOT_ISSUED;
st->new_excuse [reg_ix] = ST_NOT_ISSUED;
st->reg_nextfree = st->reg_freelist [reg_ix];
st->iwin_flags [this_inst] |= IWIN_DEFINE;
#ifdef BREAKPOINT
if (ip->r1 == trace_reg)
trace_preg = dest_reg;
#endif
ip->r1 = dest_reg;
}
}
}
else
/* For special registers, keep new */
/* writer out until the previous */
/* instance is out of the system. */
{
evenreg = halfreg << 1;
preg = th->regnames[evenreg];
halfpreg = preg >> 1;
if (st->reg_rstat[halfpreg].reg_status & REG_BUSY)
{
IncStat (ST_REG_SPEC);
return (-1);
}
st->iwin_flags [this_inst] |= IWIN_CTL;
st->reg_owner [preg] = this_inst;
if (ip->r1 & 0x01)
st->reg_owner [preg+1] = this_inst;
st->reg_rstat[halfpreg].reg_status |=
REG_BUSY + REG_IN_WIN;
st->reg_excuse [halfpreg] = ST_NOT_ISSUED;
st->new_excuse [halfpreg] = ST_NOT_ISSUED;
ip->r1 = (ip->r1 & 0x01 ? preg+1 : preg);
}
}
/****************************************************************************
Except as noted above, updates to machine state should occur after
this point. Previously, the fetch could be aborted. Now we know
the fetch succeeds, so we can update the machine state accordingly.
****************************************************************************/
/* During renaming, check for dependency on previous */
/* instruction in window, increment reference count, */
/* and add this inst to dependency list. */
halfpreg = ip->r1 >> 1;
if (ip->r2 > 0)
{
reg_ix = ip->r2 >> 1;
rs = &st->reg_rstat [reg_ix];
rs->reg_ref++;
#ifdef DEBUG_CHECKS
if (!(rs->reg_status & (REG_BUSY | REG_MAPPED)))
ms_break (st, ip, "CONERR");
#endif
if (rs->reg_status & REG_IN_WIN)
{
if (reg_ix == halfpreg)
{
if (rs->reg_status & REG_DMAP)
{
st->iwin_flags [this_inst] |= IWIN_DEP2;
owner = st->reg_owner [ip->r1 ^ 0x01];
st->iwin_dep2 [owner] [st->iwin_index2[owner]++] =
this_inst;
}
}
else
{
st->iwin_flags [this_inst] |= IWIN_DEP2;
owner = st->reg_owner [reg_ix << 1];
st->iwin_dep2 [owner] [st->iwin_index2[owner]++] =
this_inst;
}
}
}
if (ip->r3 > 0)
{
reg_ix = ip->r3 >> 1;
rs = &st->reg_rstat [reg_ix];
rs->reg_ref++;
#ifdef DEBUG_CHECKS
if (!(rs->reg_status & (REG_BUSY | REG_MAPPED)))
ms_break (st, ip, "CONERR");
#endif
#ifdef ONE_PHASE_LS
if (rs->reg_status & REG_IN_WIN)
#else
/* For stores, don't worry about R3, the load */
/* store buffer will handle that. */
if ((rs->reg_status & REG_IN_WIN) && (!store_inst))
#endif
{
if (reg_ix == halfpreg)
{
if (rs->reg_status & REG_DMAP)
{
st->iwin_flags [this_inst] |= IWIN_DEP3;
owner = st->reg_owner [ip->r1 ^ 0x01];
st->iwin_dep3 [owner] [st->iwin_index3[owner]++] =
this_inst;
}
}
else
{
st->iwin_flags [this_inst] |= IWIN_DEP3;
owner = st->reg_owner [reg_ix << 1];
st->iwin_dep3 [owner] [st->iwin_index3[owner]++] =
this_inst;
}
}
}
if (old_reg_ix >= 0)
{
int sav_half_def;
sav_half_def = th->half_def[old_lreg>>1];
th->half_def[old_lreg>>1] = old_half_def;
ReleaseRegMap (st, th, old_reg_ix, old_lreg);
th->half_def[old_lreg>>1] = sav_half_def;
}
return (0);
}