xtensa-isa.c 15.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
/* Configurable Xtensa ISA support.
   Copyright 2003 Free Software Foundation, Inc.

   This file is part of BFD, the Binary File Descriptor library.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <string.h>

#include "xtensa-isa.h"
#include "xtensa-isa-internal.h"

xtensa_isa xtensa_default_isa = NULL;

static int
opname_lookup_compare (const void *v1, const void *v2)
{
  opname_lookup_entry *e1 = (opname_lookup_entry *)v1;
  opname_lookup_entry *e2 = (opname_lookup_entry *)v2;

  return strcmp (e1->key, e2->key);
}


xtensa_isa
xtensa_isa_init (void)
{
  xtensa_isa isa;
  int mod;

  isa = xtensa_load_isa (0);
  if (isa == 0)
    {
      fprintf (stderr, "Failed to initialize Xtensa base ISA module\n");
      return NULL;
    }

  for (mod = 1; xtensa_isa_modules[mod].get_num_opcodes_fn; mod++)
    {
      if (!xtensa_extend_isa (isa, mod))
	{
	  fprintf (stderr, "Failed to initialize Xtensa TIE ISA module\n");
	  return NULL;
	}
    }

  return isa;
}

/* ISA information.  */

static int
xtensa_check_isa_config (xtensa_isa_internal *isa,
			 struct config_struct *config_table)
{
  int i, j;

  if (!config_table)
    {
      fprintf (stderr, "Error: Empty configuration table in ISA DLL\n");
      return 0;
    }

  /* For the first module, save a pointer to the table and record the
     specified endianness and availability of the density option.  */

  if (isa->num_modules == 0)
    {
      int found_memory_order = 0;

      isa->config = config_table;
      isa->has_density = 1;  /* Default to have density option.  */

      for (i = 0; config_table[i].param_name; i++)
	{
	  if (!strcmp (config_table[i].param_name, "IsaMemoryOrder"))
	    {
	      isa->is_big_endian =
		(strcmp (config_table[i].param_value, "BigEndian") == 0);
	      found_memory_order = 1;
	    }
	  if (!strcmp (config_table[i].param_name, "IsaUseDensityInstruction"))
	    {
	      isa->has_density = atoi (config_table[i].param_value);
	    }
	}
      if (!found_memory_order)
	{
	  fprintf (stderr, "Error: \"IsaMemoryOrder\" missing from "
		   "configuration table in ISA DLL\n");
	  return 0;
	}

      return 1;
    }

  /* For subsequent modules, check that the parameters match.  Note: This
     code is sufficient to handle the current model where there are never
     more than 2 modules; we might at some point want to handle cases where
     module N > 0 specifies some parameters not included in the base table,
     and we would then add those to isa->config so that subsequent modules
     would check against them. */

  for (i = 0; config_table[i].param_name; i++)
    {
      for (j = 0; isa->config[j].param_name; j++)
	{
	  if (!strcmp (config_table[i].param_name, isa->config[j].param_name))
	    {
	      int mismatch;
	      if (!strcmp (config_table[i].param_name, "IsaCoprocessorCount"))
		{
		  /* Only require the coprocessor count to be <= the base.  */
		  int tiecnt = atoi (config_table[i].param_value);
		  int basecnt = atoi (isa->config[j].param_value);
		  mismatch = (tiecnt > basecnt);
		}
	      else
		mismatch = strcmp (config_table[i].param_value,
				   isa->config[j].param_value);
	      if (mismatch)
		{
#define MISMATCH_MESSAGE \
"Error: Configuration mismatch in the \"%s\" parameter:\n\
the configuration used when the TIE file was compiled had a value of\n\
\"%s\", while the current configuration has a value of\n\
\"%s\". Please rerun the TIE compiler with a matching\n\
configuration.\n"
		  fprintf (stderr, MISMATCH_MESSAGE,
			   config_table[i].param_name,
			   config_table[i].param_value,
			   isa->config[j].param_value);
		  return 0;
		}
	      break;
	    }
	}
    }

  return 1;
}


static int
xtensa_add_isa (xtensa_isa_internal *isa, libisa_module_specifier libisa)
{
  int (*get_num_opcodes_fn) (void);
  struct config_struct *(*get_config_table_fn) (void);
  xtensa_opcode_internal **(*get_opcodes_fn) (void);
  int (*decode_insn_fn) (const xtensa_insnbuf);
  xtensa_opcode_internal **opcodes;
  int opc, insn_size, prev_num_opcodes, new_num_opcodes, this_module;

  get_num_opcodes_fn = xtensa_isa_modules[libisa].get_num_opcodes_fn;
  get_opcodes_fn = xtensa_isa_modules[libisa].get_opcodes_fn;
  decode_insn_fn = xtensa_isa_modules[libisa].decode_insn_fn;
  get_config_table_fn = xtensa_isa_modules[libisa].get_config_table_fn;

  if (!get_num_opcodes_fn || !get_opcodes_fn || !decode_insn_fn
      || (!get_config_table_fn && isa->num_modules == 0))
    return 0;

  if (get_config_table_fn
      && !xtensa_check_isa_config (isa, get_config_table_fn ()))
    return 0;

  prev_num_opcodes = isa->num_opcodes;
  new_num_opcodes = (*get_num_opcodes_fn) ();

  isa->num_opcodes += new_num_opcodes;
  isa->opcode_table = (xtensa_opcode_internal **)
    realloc (isa->opcode_table, isa->num_opcodes *
	     sizeof (xtensa_opcode_internal *));
  isa->opname_lookup_table = (opname_lookup_entry *)
    realloc (isa->opname_lookup_table, isa->num_opcodes *
	     sizeof (opname_lookup_entry));

  opcodes = (*get_opcodes_fn) ();

  insn_size = isa->insn_size;
  for (opc = 0; opc < new_num_opcodes; opc++)
    {
      xtensa_opcode_internal *intopc = opcodes[opc];
      int newopc = prev_num_opcodes + opc;
      isa->opcode_table[newopc] = intopc;
      isa->opname_lookup_table[newopc].key = intopc->name;
      isa->opname_lookup_table[newopc].opcode = newopc;
      if (intopc->length > insn_size)
	insn_size = intopc->length;
    }

  isa->insn_size = insn_size;
  isa->insnbuf_size = ((isa->insn_size + sizeof (xtensa_insnbuf_word) - 1) /
		       sizeof (xtensa_insnbuf_word));

  qsort (isa->opname_lookup_table, isa->num_opcodes,
	 sizeof (opname_lookup_entry), opname_lookup_compare);

  /* Check for duplicate opcode names.  */
  for (opc = 1; opc < isa->num_opcodes; opc++)
    {
      if (!opname_lookup_compare (&isa->opname_lookup_table[opc-1],
				  &isa->opname_lookup_table[opc]))
	{
	  fprintf (stderr, "Error: Duplicate TIE opcode \"%s\"\n",
		   isa->opname_lookup_table[opc].key);
	  return 0;
	}
    }

  this_module = isa->num_modules;
  isa->num_modules += 1;

  isa->module_opcode_base = (int *) realloc (isa->module_opcode_base,
					     isa->num_modules * sizeof (int));
  isa->module_decode_fn = (xtensa_insn_decode_fn *)
    realloc (isa->module_decode_fn, isa->num_modules *
	     sizeof (xtensa_insn_decode_fn));

  isa->module_opcode_base[this_module] = prev_num_opcodes;
  isa->module_decode_fn[this_module] = decode_insn_fn;

  xtensa_default_isa = isa;

  return 1;	/* Library was successfully added.  */
}


xtensa_isa
xtensa_load_isa (libisa_module_specifier libisa)
{
  xtensa_isa_internal *isa;

  isa = (xtensa_isa_internal *) malloc (sizeof (xtensa_isa_internal));
  memset (isa, 0, sizeof (xtensa_isa_internal));
  if (!xtensa_add_isa (isa, libisa))
    {
      xtensa_isa_free (isa);
      return NULL;
    }
  return (xtensa_isa) isa;
}


int
xtensa_extend_isa (xtensa_isa isa, libisa_module_specifier libisa)
{
  xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
  return xtensa_add_isa (intisa, libisa);
}


void
xtensa_isa_free (xtensa_isa isa)
{
  xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
  if (intisa->opcode_table)
    free (intisa->opcode_table);
  if (intisa->opname_lookup_table)
    free (intisa->opname_lookup_table);
  if (intisa->module_opcode_base)
    free (intisa->module_opcode_base);
  if (intisa->module_decode_fn)
    free (intisa->module_decode_fn);
  free (intisa);
}


int
xtensa_insn_maxlength (xtensa_isa isa)
{
  xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
  return intisa->insn_size;
}


int
xtensa_insnbuf_size (xtensa_isa isa)
{
  xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa;
  return intisa->insnbuf_size;
}


int
xtensa_num_opcodes (xtensa_isa isa)
{
  xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
  return intisa->num_opcodes;
}


xtensa_opcode
xtensa_opcode_lookup (xtensa_isa isa, const char *opname)
{
  xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
  opname_lookup_entry entry, *result;

  entry.key = opname;
  result = bsearch (&entry, intisa->opname_lookup_table, intisa->num_opcodes,
		    sizeof (opname_lookup_entry), opname_lookup_compare);
  if (!result) return XTENSA_UNDEFINED;
  return result->opcode;
}


xtensa_opcode
xtensa_decode_insn (xtensa_isa isa, const xtensa_insnbuf insn)
{
  xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
  int n, opc;
  for (n = 0; n < intisa->num_modules; n++) {
    opc = (intisa->module_decode_fn[n]) (insn);
    if (opc != XTENSA_UNDEFINED)
      return intisa->module_opcode_base[n] + opc;
  }
  return XTENSA_UNDEFINED;
}


/* Opcode information.  */

void
xtensa_encode_insn (xtensa_isa isa, xtensa_opcode opc, xtensa_insnbuf insn)
{
  xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
  xtensa_insnbuf template = intisa->opcode_table[opc]->template();
  int len = intisa->opcode_table[opc]->length;
  int n;

  /* Convert length to 32-bit words.  */
  len = (len + 3) / 4;

  /* Copy the template.  */
  for (n = 0; n < len; n++)
    insn[n] = template[n];

  /* Fill any unused buffer space with zeros.  */
  for ( ; n < intisa->insnbuf_size; n++)
    insn[n] = 0;
}


const char *
xtensa_opcode_name (xtensa_isa isa, xtensa_opcode opc)
{
  xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
  return intisa->opcode_table[opc]->name;
}


int
xtensa_insn_length (xtensa_isa isa, xtensa_opcode opc)
{
  xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
  return intisa->opcode_table[opc]->length;
}


int
xtensa_insn_length_from_first_byte (xtensa_isa isa, char first_byte)
{
  xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
  int is_density = (first_byte & (intisa->is_big_endian ? 0x80 : 0x08)) != 0;
  return (intisa->has_density && is_density ? 2 : 3);
}


int
xtensa_num_operands (xtensa_isa isa, xtensa_opcode opc)
{
  xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
  return intisa->opcode_table[opc]->iclass->num_operands;
}


xtensa_operand
xtensa_get_operand (xtensa_isa isa, xtensa_opcode opc, int opnd)
{
  xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
  xtensa_iclass_internal *iclass = intisa->opcode_table[opc]->iclass;
  if (opnd >= iclass->num_operands)
    return NULL;
  return (xtensa_operand) iclass->operands[opnd];
}


/* Operand information.  */

char *
xtensa_operand_kind (xtensa_operand opnd)
{
  xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd;
  return intop->operand_kind;
}


char
xtensa_operand_inout (xtensa_operand opnd)
{
  xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd;
  return intop->inout;
}


uint32
xtensa_operand_get_field (xtensa_operand opnd, const xtensa_insnbuf insn)
{
  xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd;
  return (*intop->get_field) (insn);
}


void
xtensa_operand_set_field (xtensa_operand opnd, xtensa_insnbuf insn, uint32 val)
{
  xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd;
  return (*intop->set_field) (insn, val);
}


xtensa_encode_result
xtensa_operand_encode (xtensa_operand opnd, uint32 *valp)
{
  xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd;
  return (*intop->encode) (valp);
}


uint32
xtensa_operand_decode (xtensa_operand opnd, uint32 val)
{
  xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd;
  return (*intop->decode) (val);
}


int
xtensa_operand_isPCRelative (xtensa_operand opnd)
{
  xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd;
  return intop->isPCRelative;
}


uint32
xtensa_operand_do_reloc (xtensa_operand opnd, uint32 addr, uint32 pc)
{
  xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd;
  if (!intop->isPCRelative)
    return addr;
  return (*intop->do_reloc) (addr, pc);
}


uint32
xtensa_operand_undo_reloc (xtensa_operand opnd, uint32 offset, uint32 pc)
{
  xtensa_operand_internal *intop = (xtensa_operand_internal *) opnd;
  if (!intop->isPCRelative)
    return offset;
  return (*intop->undo_reloc) (offset, pc);
}


/* Instruction buffers.  */

xtensa_insnbuf
xtensa_insnbuf_alloc (xtensa_isa isa)
{
  return (xtensa_insnbuf) malloc (xtensa_insnbuf_size (isa) *
				  sizeof (xtensa_insnbuf_word));
}


void
xtensa_insnbuf_free (xtensa_insnbuf buf)
{
  free( buf );
}


/* Given <byte_index>, the index of a byte in a xtensa_insnbuf, our
   internal representation of a xtensa instruction word, return the index of
   its word and the bit index of its low order byte in the xtensa_insnbuf.  */

static inline int
byte_to_word_index (int byte_index)
{
  return byte_index / sizeof (xtensa_insnbuf_word);
}


static inline int
byte_to_bit_index (int byte_index)
{
  return (byte_index & 0x3) * 8;
}


/* Copy an instruction in the 32 bit words pointed at by <insn> to characters
   pointed at by <cp>.  This is more complicated than you might think because
   we want 16 bit instructions in bytes 2,3 for big endian. This function
   allows us to specify which byte in <insn> to start with and which way to
   increment, allowing trivial implementation for both big and little endian.
   And it seems to make pretty good code for both.  */

void
xtensa_insnbuf_to_chars (xtensa_isa isa, const xtensa_insnbuf insn, char *cp)
{
  xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
  int insn_size = xtensa_insn_maxlength (intisa);
  int fence_post, start, increment, i, byte_count;
  xtensa_opcode opc;

  if (intisa->is_big_endian)
    {
      start = insn_size - 1;
      increment = -1;
    }
  else
    {
      start = 0;
      increment = 1;
    }

  /* Find the opcode; do nothing if the buffer does not contain a valid
     instruction since we need to know how many bytes to copy.  */
  opc = xtensa_decode_insn (isa, insn);
  if (opc == XTENSA_UNDEFINED)
    return;

  byte_count = xtensa_insn_length (isa, opc);
  fence_post = start + (byte_count * increment);

  for (i = start; i != fence_post; i += increment, ++cp)
    {
      int word_inx = byte_to_word_index (i);
      int bit_inx = byte_to_bit_index (i);

      *cp = (insn[word_inx] >> bit_inx) & 0xff;
    }
}

/* Inward conversion from byte stream to xtensa_insnbuf.  See
   xtensa_insnbuf_to_chars for a discussion of why this is
   complicated by endianness.  */
    
void
xtensa_insnbuf_from_chars (xtensa_isa isa, xtensa_insnbuf insn, const char* cp)
{
  xtensa_isa_internal *intisa = (xtensa_isa_internal *) isa;
  int insn_size = xtensa_insn_maxlength (intisa);
  int fence_post, start, increment, i;

  if (intisa->is_big_endian)
    {
      start = insn_size - 1;
      increment = -1;
    }
  else
    {
      start = 0;
      increment = 1;
    }

  fence_post = start + (insn_size * increment);
  memset (insn, 0, xtensa_insnbuf_size (isa) * sizeof (xtensa_insnbuf_word));

  for ( i = start; i != fence_post; i += increment, ++cp )
    {
      int word_inx = byte_to_word_index (i);
      int bit_inx = byte_to_bit_index (i);

      insn[word_inx] |= (*cp & 0xff) << bit_inx;
    }
}