Blame view

Kd-Trees/src/edu/princeton/cs/algs4/GaussJordanElimination.java 13.1 KB
Branden committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
/******************************************************************************
 *  Compilation:  javac GaussJordanElimination.java
 *  Execution:    java GaussJordanElimination n
 *  Dependencies: StdOut.java
 * 
 *  Finds a solutions to Ax = b using Gauss-Jordan elimination with partial
 *  pivoting. If no solution exists, find a solution to yA = 0, yb != 0,
 *  which serves as a certificate of infeasibility.
 *
 *  % java GaussJordanElimination
 *  -1.000000
 *  2.000000
 *  2.000000
 *
 *  3.000000
 *  -1.000000
 *  -2.000000
 * 
 *  System is infeasible
 *
 *  -6.250000
 *  -4.500000
 *  0.000000
 *  0.000000
 *  1.000000
 *
 *  System is infeasible
 *
 *  -1.375000
 *  1.625000
 *  0.000000
 *
 *
 ******************************************************************************/

package edu.princeton.cs.algs4;

/**
 *  The {@code GaussJordanElimination} data type provides methods
 *  to solve a linear system of equations <em>Ax</em> = <em>b</em>,
 *  where <em>A</em> is an <em>n</em>-by-<em>n</em> matrix
 *  and <em>b</em> is a length <em>n</em> vector.
 *  If no solution exists, it finds a solution <em>y</em> to
 *  <em>yA</em> = 0, <em>yb</em> &ne; 0, which
 *  which serves as a certificate of infeasibility.
 *  <p>
 *  This implementation uses Gauss-Jordan elimination with partial pivoting.
 *  See {@link GaussianElimination} for an implementation that uses
 *  Gaussian elimination (but does not provide the certificate of infeasibility).
 *  For an industrial-strength numerical linear algebra library,
 *  see <a href = "http://math.nist.gov/javanumerics/jama/">JAMA</a>. 
 *  <p>
 *  For additional documentation, see
 *  <a href="http://algs4.cs.princeton.edu/99scientific">Section 9.9</a>
 *  <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
 *
 *  @author Robert Sedgewick
 *  @author Kevin Wayne
 */
public class GaussJordanElimination {
    private static final double EPSILON = 1e-8;

    private final int n;      // n-by-n system
    private double[][] a;     // n-by-(n+1) augmented matrix

    // Gauss-Jordan elimination with partial pivoting
    /**
     * Solves the linear system of equations <em>Ax</em> = <em>b</em>,
     * where <em>A</em> is an <em>n</em>-by-<em>n</em> matrix and <em>b</em>
     * is a length <em>n</em> vector.
     *
     * @param  A the <em>n</em>-by-<em>n</em> constraint matrix
     * @param  b the length <em>n</em> right-hand-side vector
     */
    public GaussJordanElimination(double[][] A, double[] b) {
        n = b.length;

        // build augmented matrix
        a = new double[n][n+n+1];
        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++)
                a[i][j] = A[i][j];

        // only needed if you want to find certificate of infeasibility (or compute inverse)
        for (int i = 0; i < n; i++)
            a[i][n+i] = 1.0;

        for (int i = 0; i < n; i++)
            a[i][n+n] = b[i];

        solve();

        assert certifySolution(A, b);
    }

    private void solve() {

        // Gauss-Jordan elimination
        for (int p = 0; p < n; p++) {
            // show();

            // find pivot row using partial pivoting
            int max = p;
            for (int i = p+1; i < n; i++) {
                if (Math.abs(a[i][p]) > Math.abs(a[max][p])) {
                    max = i;
                }
            }

            // exchange row p with row max
            swap(p, max);

            // singular or nearly singular
            if (Math.abs(a[p][p]) <= EPSILON) {
                continue;
                // throw new ArithmeticException("Matrix is singular or nearly singular");
            }

            // pivot
            pivot(p, p);
        }
        // show();
    }

    // swap row1 and row2
    private void swap(int row1, int row2) {
        double[] temp = a[row1];
        a[row1] = a[row2];
        a[row2] = temp;
    }


    // pivot on entry (p, q) using Gauss-Jordan elimination
    private void pivot(int p, int q) {

        // everything but row p and column q
        for (int i = 0; i < n; i++) {
            double alpha = a[i][q] / a[p][q];
            for (int j = 0; j <= n+n; j++) {
                if (i != p && j != q) a[i][j] -= alpha * a[p][j];
            }
        }

        // zero out column q
        for (int i = 0; i < n; i++)
            if (i != p) a[i][q] = 0.0;

        // scale row p (ok to go from q+1 to n, but do this for consistency with simplex pivot)
        for (int j = 0; j <= n+n; j++)
            if (j != q) a[p][j] /= a[p][q];
        a[p][q] = 1.0;
    }

    /**
     * Returns a solution to the linear system of equations <em>Ax</em> = <em>b</em>.
     *      
     * @return a solution <em>x</em> to the linear system of equations
     *         <em>Ax</em> = <em>b</em>; {@code null} if no such solution
     */
    public double[] primal() {
        double[] x = new double[n];
        for (int i = 0; i < n; i++) {
            if (Math.abs(a[i][i]) > EPSILON)
                x[i] = a[i][n+n] / a[i][i];
            else if (Math.abs(a[i][n+n]) > EPSILON)
                return null;
        }
        return x;
    }

    /**
     * Returns a solution to the linear system of equations <em>yA</em> = 0,
     * <em>yb</em> &ne; 0.
     *      
     * @return a solution <em>y</em> to the linear system of equations
     *         <em>yA</em> = 0, <em>yb</em> &ne; 0; {@code null} if no such solution
     */
    public double[] dual() {
        double[] y = new double[n];
        for (int i = 0; i < n; i++) {
            if ((Math.abs(a[i][i]) <= EPSILON) && (Math.abs(a[i][n+n]) > EPSILON)) {
                for (int j = 0; j < n; j++)
                    y[j] = a[i][n+j];
                return y;
            }
        }
        return null;
    }

    /**
     * Returns true if there exists a solution to the linear system of
     * equations <em>Ax</em> = <em>b</em>.
     *      
     * @return {@code true} if there exists a solution to the linear system
     *         of equations <em>Ax</em> = <em>b</em>; {@code false} otherwise
     */
    public boolean isFeasible() {
        return primal() != null;
    }

    // print the tableaux
    private void show() {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                StdOut.printf("%8.3f ", a[i][j]);
            }
            StdOut.printf("| ");
            for (int j = n; j < n+n; j++) {
                StdOut.printf("%8.3f ", a[i][j]);
            }
            StdOut.printf("| %8.3f\n", a[i][n+n]);
        }
        StdOut.println();
    }


    // check that Ax = b or yA = 0, yb != 0
    private boolean certifySolution(double[][] A, double[] b) {

        // check that Ax = b
        if (isFeasible()) {
            double[] x = primal();
            for (int i = 0; i < n; i++) {
                double sum = 0.0;
                for (int j = 0; j < n; j++) {
                    sum += A[i][j] * x[j];
                }
                if (Math.abs(sum - b[i]) > EPSILON) {
                    StdOut.println("not feasible");
                    StdOut.printf("b[%d] = %8.3f, sum = %8.3f\n", i, b[i], sum);
                    return false;
                }
            }
            return true;
        }

        // or that yA = 0, yb != 0
        else {
            double[] y = dual();
            for (int j = 0; j < n; j++) {
                double sum = 0.0;
                for (int i = 0; i < n; i++) {
                    sum += A[i][j] * y[i];
                }
                if (Math.abs(sum) > EPSILON) {
                    StdOut.println("invalid certificate of infeasibility");
                    StdOut.printf("sum = %8.3f\n", sum);
                    return false;
                }
            }
            double sum = 0.0;
            for (int i = 0; i < n; i++) {
                sum += y[i] * b[i];
            }
            if (Math.abs(sum) < EPSILON) {
                StdOut.println("invalid certificate of infeasibility");
                StdOut.printf("yb  = %8.3f\n", sum);
                return false;
            }
            return true;
        }
    }


    private static void test(String name, double[][] A, double[] b) {
        StdOut.println("----------------------------------------------------");
        StdOut.println(name);
        StdOut.println("----------------------------------------------------");
        GaussJordanElimination gaussian = new GaussJordanElimination(A, b);
        if (gaussian.isFeasible()) {
            StdOut.println("Solution to Ax = b");
            double[] x = gaussian.primal();
            for (int i = 0; i < x.length; i++) {
                StdOut.printf("%10.6f\n", x[i]);
            }
        }
        else {
            StdOut.println("Certificate of infeasibility");
            double[] y = gaussian.dual();
            for (int j = 0; j < y.length; j++) {
                StdOut.printf("%10.6f\n", y[j]);
            }
        }
        StdOut.println();
        StdOut.println();
    }


    // 3-by-3 nonsingular system
    private static void test1() {
        double[][] A = {
            { 0, 1,  1 },
            { 2, 4, -2 },
            { 0, 3, 15 }
        };
        double[] b = { 4, 2, 36 };
        test("test 1", A, b);
    }

    // 3-by-3 nonsingular system
    private static void test2() {
        double[][] A = {
            {  1, -3,   1 },
            {  2, -8,   8 },
            { -6,  3, -15 }
        };
        double[] b = { 4, -2, 9 };
        test("test 2", A, b);
    }

    // 5-by-5 singular: no solutions
    // y = [ -1, 0, 1, 1, 0 ]
    private static void test3() {
        double[][] A = {
            {  2, -3, -1,  2,  3 },
            {  4, -4, -1,  4, 11 },
            {  2, -5, -2,  2, -1 },
            {  0,  2,  1,  0,  4 },
            { -4,  6,  0,  0,  7 },
        };
        double[] b = { 4, 4, 9, -6, 5 };
        test("test 3", A, b);
    }

    // 5-by-5 singluar: infinitely many solutions
    private static void test4() {
        double[][] A = {
            {  2, -3, -1,  2,  3 },
            {  4, -4, -1,  4, 11 },
            {  2, -5, -2,  2, -1 },
            {  0,  2,  1,  0,  4 },
            { -4,  6,  0,  0,  7 },
        };
        double[] b = { 4, 4, 9, -5, 5 };
        test("test 4", A, b);
    }

    // 3-by-3 singular: no solutions
    // y = [ 1, 0, 1/3 ]
    private static void test5() {
        double[][] A = {
            {  2, -1,  1 },
            {  3,  2, -4 },
            { -6,  3, -3 },
        };
        double[] b = { 1, 4, 2 };
        test("test 5", A, b);
    }

    // 3-by-3 singular: infinitely many solutions
    private static void test6() {
        double[][] A = {
            {  1, -1,  2 },
            {  4,  4, -2 },
            { -2,  2, -4 },
        };
        double[] b = { -3, 1, 6 };
        test("test 6 (infinitely many solutions)", A, b);
    }

    /**
     * Unit tests the {@code GaussJordanElimination} data type.
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {

        test1();
        test2();
        test3();
        test4();
        test5();
        test6();

        // n-by-n random system (likely full rank)
        int n = Integer.parseInt(args[0]);
        double[][] A = new double[n][n];
        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++)
                A[i][j] = StdRandom.uniform(1000);
        double[] b = new double[n];
        for (int i = 0; i < n; i++)
            b[i] = StdRandom.uniform(1000);
        test("random " + n + "-by-" + n + " (likely full rank)", A, b);


        // n-by-n random system (likely infeasible)
        A = new double[n][n];
        for (int i = 0; i < n-1; i++)
            for (int j = 0; j < n; j++)
                A[i][j] = StdRandom.uniform(1000);
        for (int i = 0; i < n-1; i++) {
            double alpha = StdRandom.uniform(11) - 5.0;
            for (int j = 0; j < n; j++) {
                A[n-1][j] += alpha * A[i][j];
            }
        }
        b = new double[n];
        for (int i = 0; i < n; i++)
            b[i] = StdRandom.uniform(1000);
        test("random " + n + "-by-" + n + " (likely infeasible)", A, b);
    }

}

/******************************************************************************
 *  Copyright 2002-2016, Robert Sedgewick and Kevin Wayne.
 *
 *  This file is part of algs4.jar, which accompanies the textbook
 *
 *      Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
 *      Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
 *      http://algs4.cs.princeton.edu
 *
 *
 *  algs4.jar is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  algs4.jar is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with algs4.jar.  If not, see http://www.gnu.org/licenses.
 ******************************************************************************/