GaussJordanElimination.java
13.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
/******************************************************************************
* Compilation: javac GaussJordanElimination.java
* Execution: java GaussJordanElimination n
* Dependencies: StdOut.java
*
* Finds a solutions to Ax = b using Gauss-Jordan elimination with partial
* pivoting. If no solution exists, find a solution to yA = 0, yb != 0,
* which serves as a certificate of infeasibility.
*
* % java GaussJordanElimination
* -1.000000
* 2.000000
* 2.000000
*
* 3.000000
* -1.000000
* -2.000000
*
* System is infeasible
*
* -6.250000
* -4.500000
* 0.000000
* 0.000000
* 1.000000
*
* System is infeasible
*
* -1.375000
* 1.625000
* 0.000000
*
*
******************************************************************************/
package edu.princeton.cs.algs4;
/**
* The {@code GaussJordanElimination} data type provides methods
* to solve a linear system of equations <em>Ax</em> = <em>b</em>,
* where <em>A</em> is an <em>n</em>-by-<em>n</em> matrix
* and <em>b</em> is a length <em>n</em> vector.
* If no solution exists, it finds a solution <em>y</em> to
* <em>yA</em> = 0, <em>yb</em> ≠ 0, which
* which serves as a certificate of infeasibility.
* <p>
* This implementation uses Gauss-Jordan elimination with partial pivoting.
* See {@link GaussianElimination} for an implementation that uses
* Gaussian elimination (but does not provide the certificate of infeasibility).
* For an industrial-strength numerical linear algebra library,
* see <a href = "http://math.nist.gov/javanumerics/jama/">JAMA</a>.
* <p>
* For additional documentation, see
* <a href="http://algs4.cs.princeton.edu/99scientific">Section 9.9</a>
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class GaussJordanElimination {
private static final double EPSILON = 1e-8;
private final int n; // n-by-n system
private double[][] a; // n-by-(n+1) augmented matrix
// Gauss-Jordan elimination with partial pivoting
/**
* Solves the linear system of equations <em>Ax</em> = <em>b</em>,
* where <em>A</em> is an <em>n</em>-by-<em>n</em> matrix and <em>b</em>
* is a length <em>n</em> vector.
*
* @param A the <em>n</em>-by-<em>n</em> constraint matrix
* @param b the length <em>n</em> right-hand-side vector
*/
public GaussJordanElimination(double[][] A, double[] b) {
n = b.length;
// build augmented matrix
a = new double[n][n+n+1];
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
a[i][j] = A[i][j];
// only needed if you want to find certificate of infeasibility (or compute inverse)
for (int i = 0; i < n; i++)
a[i][n+i] = 1.0;
for (int i = 0; i < n; i++)
a[i][n+n] = b[i];
solve();
assert certifySolution(A, b);
}
private void solve() {
// Gauss-Jordan elimination
for (int p = 0; p < n; p++) {
// show();
// find pivot row using partial pivoting
int max = p;
for (int i = p+1; i < n; i++) {
if (Math.abs(a[i][p]) > Math.abs(a[max][p])) {
max = i;
}
}
// exchange row p with row max
swap(p, max);
// singular or nearly singular
if (Math.abs(a[p][p]) <= EPSILON) {
continue;
// throw new ArithmeticException("Matrix is singular or nearly singular");
}
// pivot
pivot(p, p);
}
// show();
}
// swap row1 and row2
private void swap(int row1, int row2) {
double[] temp = a[row1];
a[row1] = a[row2];
a[row2] = temp;
}
// pivot on entry (p, q) using Gauss-Jordan elimination
private void pivot(int p, int q) {
// everything but row p and column q
for (int i = 0; i < n; i++) {
double alpha = a[i][q] / a[p][q];
for (int j = 0; j <= n+n; j++) {
if (i != p && j != q) a[i][j] -= alpha * a[p][j];
}
}
// zero out column q
for (int i = 0; i < n; i++)
if (i != p) a[i][q] = 0.0;
// scale row p (ok to go from q+1 to n, but do this for consistency with simplex pivot)
for (int j = 0; j <= n+n; j++)
if (j != q) a[p][j] /= a[p][q];
a[p][q] = 1.0;
}
/**
* Returns a solution to the linear system of equations <em>Ax</em> = <em>b</em>.
*
* @return a solution <em>x</em> to the linear system of equations
* <em>Ax</em> = <em>b</em>; {@code null} if no such solution
*/
public double[] primal() {
double[] x = new double[n];
for (int i = 0; i < n; i++) {
if (Math.abs(a[i][i]) > EPSILON)
x[i] = a[i][n+n] / a[i][i];
else if (Math.abs(a[i][n+n]) > EPSILON)
return null;
}
return x;
}
/**
* Returns a solution to the linear system of equations <em>yA</em> = 0,
* <em>yb</em> ≠ 0.
*
* @return a solution <em>y</em> to the linear system of equations
* <em>yA</em> = 0, <em>yb</em> ≠ 0; {@code null} if no such solution
*/
public double[] dual() {
double[] y = new double[n];
for (int i = 0; i < n; i++) {
if ((Math.abs(a[i][i]) <= EPSILON) && (Math.abs(a[i][n+n]) > EPSILON)) {
for (int j = 0; j < n; j++)
y[j] = a[i][n+j];
return y;
}
}
return null;
}
/**
* Returns true if there exists a solution to the linear system of
* equations <em>Ax</em> = <em>b</em>.
*
* @return {@code true} if there exists a solution to the linear system
* of equations <em>Ax</em> = <em>b</em>; {@code false} otherwise
*/
public boolean isFeasible() {
return primal() != null;
}
// print the tableaux
private void show() {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
StdOut.printf("%8.3f ", a[i][j]);
}
StdOut.printf("| ");
for (int j = n; j < n+n; j++) {
StdOut.printf("%8.3f ", a[i][j]);
}
StdOut.printf("| %8.3f\n", a[i][n+n]);
}
StdOut.println();
}
// check that Ax = b or yA = 0, yb != 0
private boolean certifySolution(double[][] A, double[] b) {
// check that Ax = b
if (isFeasible()) {
double[] x = primal();
for (int i = 0; i < n; i++) {
double sum = 0.0;
for (int j = 0; j < n; j++) {
sum += A[i][j] * x[j];
}
if (Math.abs(sum - b[i]) > EPSILON) {
StdOut.println("not feasible");
StdOut.printf("b[%d] = %8.3f, sum = %8.3f\n", i, b[i], sum);
return false;
}
}
return true;
}
// or that yA = 0, yb != 0
else {
double[] y = dual();
for (int j = 0; j < n; j++) {
double sum = 0.0;
for (int i = 0; i < n; i++) {
sum += A[i][j] * y[i];
}
if (Math.abs(sum) > EPSILON) {
StdOut.println("invalid certificate of infeasibility");
StdOut.printf("sum = %8.3f\n", sum);
return false;
}
}
double sum = 0.0;
for (int i = 0; i < n; i++) {
sum += y[i] * b[i];
}
if (Math.abs(sum) < EPSILON) {
StdOut.println("invalid certificate of infeasibility");
StdOut.printf("yb = %8.3f\n", sum);
return false;
}
return true;
}
}
private static void test(String name, double[][] A, double[] b) {
StdOut.println("----------------------------------------------------");
StdOut.println(name);
StdOut.println("----------------------------------------------------");
GaussJordanElimination gaussian = new GaussJordanElimination(A, b);
if (gaussian.isFeasible()) {
StdOut.println("Solution to Ax = b");
double[] x = gaussian.primal();
for (int i = 0; i < x.length; i++) {
StdOut.printf("%10.6f\n", x[i]);
}
}
else {
StdOut.println("Certificate of infeasibility");
double[] y = gaussian.dual();
for (int j = 0; j < y.length; j++) {
StdOut.printf("%10.6f\n", y[j]);
}
}
StdOut.println();
StdOut.println();
}
// 3-by-3 nonsingular system
private static void test1() {
double[][] A = {
{ 0, 1, 1 },
{ 2, 4, -2 },
{ 0, 3, 15 }
};
double[] b = { 4, 2, 36 };
test("test 1", A, b);
}
// 3-by-3 nonsingular system
private static void test2() {
double[][] A = {
{ 1, -3, 1 },
{ 2, -8, 8 },
{ -6, 3, -15 }
};
double[] b = { 4, -2, 9 };
test("test 2", A, b);
}
// 5-by-5 singular: no solutions
// y = [ -1, 0, 1, 1, 0 ]
private static void test3() {
double[][] A = {
{ 2, -3, -1, 2, 3 },
{ 4, -4, -1, 4, 11 },
{ 2, -5, -2, 2, -1 },
{ 0, 2, 1, 0, 4 },
{ -4, 6, 0, 0, 7 },
};
double[] b = { 4, 4, 9, -6, 5 };
test("test 3", A, b);
}
// 5-by-5 singluar: infinitely many solutions
private static void test4() {
double[][] A = {
{ 2, -3, -1, 2, 3 },
{ 4, -4, -1, 4, 11 },
{ 2, -5, -2, 2, -1 },
{ 0, 2, 1, 0, 4 },
{ -4, 6, 0, 0, 7 },
};
double[] b = { 4, 4, 9, -5, 5 };
test("test 4", A, b);
}
// 3-by-3 singular: no solutions
// y = [ 1, 0, 1/3 ]
private static void test5() {
double[][] A = {
{ 2, -1, 1 },
{ 3, 2, -4 },
{ -6, 3, -3 },
};
double[] b = { 1, 4, 2 };
test("test 5", A, b);
}
// 3-by-3 singular: infinitely many solutions
private static void test6() {
double[][] A = {
{ 1, -1, 2 },
{ 4, 4, -2 },
{ -2, 2, -4 },
};
double[] b = { -3, 1, 6 };
test("test 6 (infinitely many solutions)", A, b);
}
/**
* Unit tests the {@code GaussJordanElimination} data type.
*
* @param args the command-line arguments
*/
public static void main(String[] args) {
test1();
test2();
test3();
test4();
test5();
test6();
// n-by-n random system (likely full rank)
int n = Integer.parseInt(args[0]);
double[][] A = new double[n][n];
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
A[i][j] = StdRandom.uniform(1000);
double[] b = new double[n];
for (int i = 0; i < n; i++)
b[i] = StdRandom.uniform(1000);
test("random " + n + "-by-" + n + " (likely full rank)", A, b);
// n-by-n random system (likely infeasible)
A = new double[n][n];
for (int i = 0; i < n-1; i++)
for (int j = 0; j < n; j++)
A[i][j] = StdRandom.uniform(1000);
for (int i = 0; i < n-1; i++) {
double alpha = StdRandom.uniform(11) - 5.0;
for (int j = 0; j < n; j++) {
A[n-1][j] += alpha * A[i][j];
}
}
b = new double[n];
for (int i = 0; i < n; i++)
b[i] = StdRandom.uniform(1000);
test("random " + n + "-by-" + n + " (likely infeasible)", A, b);
}
}
/******************************************************************************
* Copyright 2002-2016, Robert Sedgewick and Kevin Wayne.
*
* This file is part of algs4.jar, which accompanies the textbook
*
* Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
* Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
* http://algs4.cs.princeton.edu
*
*
* algs4.jar is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* algs4.jar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with algs4.jar. If not, see http://www.gnu.org/licenses.
******************************************************************************/