AVLTreeST.java 26.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
/******************************************************************************
 *  Compilation:  javac AVLTreeST.java
 *  Execution:    java AVLTreeST < input.txt
 *  Dependencies: StdIn.java StdOut.java  
 *  Data files:   http://algs4.cs.princeton.edu/33balanced/tinyST.txt  
 *    
 *  A symbol table implemented using an AVL tree.
 *
 *  % more tinyST.txt
 *  S E A R C H E X A M P L E
 *  
 *  % java AVLTreeST < tinyST.txt
 *  A 8
 *  C 4
 *  E 12
 *  H 5
 *  L 11
 *  M 9
 *  P 10
 *  R 3
 *  S 0
 *  X 7
 *
 ******************************************************************************/

package edu.princeton.cs.algs4;

import java.util.NoSuchElementException;

/**
 *  The {@code AVLTreeST} class represents an ordered symbol table of
 *  generic key-value pairs. It supports the usual <em>put</em>, <em>get</em>,
 *  <em>contains</em>, <em>delete</em>, <em>size</em>, and <em>is-empty</em>
 *  methods. It also provides ordered methods for finding the <em>minimum</em>,
 *  <em>maximum</em>, <em>floor</em>, and <em>ceiling</em>. It also provides a
 *  <em>keys</em> method for iterating over all of the keys. A symbol table
 *  implements the <em>associative array</em> abstraction: when associating a
 *  value with a key that is already in the symbol table, the convention is to
 *  replace the old value with the new value. Unlike {@link java.util.Map}, this
 *  class uses the convention that values cannot be {@code null}
 *  —setting the value associated with a key to {@code null} is
 *  equivalent to deleting the key from the symbol table.
 *  <p>
 *  This symbol table implementation uses internally an
 *  <a href="https://en.wikipedia.org/wiki/AVL_tree"> AVL tree </a> (Georgy
 *  Adelson-Velsky and Evgenii Landis' tree) which is a self-balancing BST.
 *  In an AVL tree, the heights of the two child subtrees of any
 *  node differ by at most one; if at any time they differ by more than one,
 *  rebalancing is done to restore this property.
 *  <p>
 *  This implementation requires that the key type implements the
 *  {@code Comparable} interface and calls the {@code compareTo()} and
 *  method to compare two keys. It does not call either {@code equals()} or
 *  {@code hashCode()}. The <em>put</em>, <em>get</em>, <em>contains</em>,
 *  <em>delete</em>, <em>minimum</em>, <em>maximum</em>, <em>ceiling</em>, and
 *  <em>floor</em> operations each take logarithmic time in the worst case. The
 *  <em>size</em>, and <em>is-empty</em> operations take constant time.
 *  Construction also takes constant time.
 * 
 *  For other implementations of the same API, see {@link ST}, {@link BinarySearchST},
 *  {@link SequentialSearchST}, {@link BST}, {@link RedBlackBST},
 *  {@link SeparateChainingHashST}, and {@link LinearProbingHashST}.
 * 
 *  @author Marcelo Silva
 */

public class AVLTreeST<Key extends Comparable<Key>, Value> {

    /**
     * The root node.
     */
    private Node root;

    /**
     * This class represents an inner node of the AVL tree.
     */
    private class Node {
        private final Key key;   // the key
        private Value val;       // the associated value
        private int height;      // height of the subtree
        private int size;        // number of nodes in subtree
        private Node left;       // left subtree
        private Node right;      // right subtree

        public Node(Key key, Value val, int height, int size) {
            this.key = key;
            this.val = val;
            this.size = size;
            this.height = height;
        }
    }

    /**
     * Initializes an empty symbol table.
     */
    public AVLTreeST() {
    }

    /**
     * Checks if the symbol table is empty.
     * 
     * @return {@code true} if the symbol table is empty.
     */
    public boolean isEmpty() {
        return root == null;
    }

    /**
     * Returns the number key-value pairs in the symbol table.
     * 
     * @return the number key-value pairs in the symbol table
     */
    public int size() {
        return size(root);
    }

    /**
     * Returns the number of nodes in the subtree.
     * 
     * @param x the subtree
     * 
     * @return the number of nodes in the subtree
     */
    private int size(Node x) {
        if (x == null) return 0;
        return x.size;
    }

    /**
     * Returns the height of the internal AVL tree. It is assumed that the
     * height of an empty tree is -1 and the height of a tree with just one node
     * is 0.
     * 
     * @return the height of the internal AVL tree
     */
    public int height() {
        return height(root);
    }

    /**
     * Returns the height of the subtree.
     * 
     * @param x the subtree
     * 
     * @return the height of the subtree.
     */
    private int height(Node x) {
        if (x == null) return -1;
        return x.height;
    }

    /**
     * Returns the value associated with the given key.
     * 
     * @param key the key
     * @return the value associated with the given key if the key is in the
     *         symbol table and {@code null} if the key is not in the
     *         symbol table
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public Value get(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to get() is null");
        Node x = get(root, key);
        if (x == null) return null;
        return x.val;
    }

    /**
     * Returns value associated with the given key in the subtree or
     * {@code null} if no such key.
     * 
     * @param x the subtree
     * @param key the key
     * @return value associated with the given key in the subtree or
     *         {@code null} if no such key
     */
    private Node get(Node x, Key key) {
        if (x == null) return null;
        int cmp = key.compareTo(x.key);
        if (cmp < 0) return get(x.left, key);
        else if (cmp > 0) return get(x.right, key);
        else return x;
    }

    /**
     * Checks if the symbol table contains the given key.
     * 
     * @param key the key
     * @return {@code true} if the symbol table contains {@code key}
     *         and {@code false} otherwise
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public boolean contains(Key key) {
        return get(key) != null;
    }

    /**
     * Inserts the specified key-value pair into the symbol table, overwriting
     * the old value with the new value if the symbol table already contains the
     * specified key. Deletes the specified key (and its associated value) from
     * this symbol table if the specified value is {@code null}.
     * 
     * @param key the key
     * @param val the value
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public void put(Key key, Value val) {
        if (key == null) throw new IllegalArgumentException("first argument to put() is null");
        if (val == null) {
            delete(key);
            return;
        }
        root = put(root, key, val);
        assert check();
    }

    /**
     * Inserts the key-value pair in the subtree. It overrides the old value
     * with the new value if the symbol table already contains the specified key
     * and deletes the specified key (and its associated value) from this symbol
     * table if the specified value is {@code null}.
     * 
     * @param x the subtree
     * @param key the key
     * @param val the value
     * @return the subtree
     */
    private Node put(Node x, Key key, Value val) {
        if (x == null) return new Node(key, val, 0, 1);
        int cmp = key.compareTo(x.key);
        if (cmp < 0) {
            x.left = put(x.left, key, val);
        }
        else if (cmp > 0) {
            x.right = put(x.right, key, val);
        }
        else {
            x.val = val;
            return x;
        }
        x.size = 1 + size(x.left) + size(x.right);
        x.height = 1 + Math.max(height(x.left), height(x.right));
        return balance(x);
    }

    /**
     * Restores the AVL tree property of the subtree.
     * 
     * @param x the subtree
     * @return the subtree with restored AVL property
     */
    private Node balance(Node x) {
        if (balanceFactor(x) < -1) {
            if (balanceFactor(x.right) > 0) {
                x.right = rotateRight(x.right);
            }
            x = rotateLeft(x);
        }
        else if (balanceFactor(x) > 1) {
            if (balanceFactor(x.left) < 0) {
                x.left = rotateLeft(x.left);
            }
            x = rotateRight(x);
        }
        return x;
    }

    /**
     * Returns the balance factor of the subtree. The balance factor is defined
     * as the difference in height of the left subtree and right subtree, in
     * this order. Therefore, a subtree with a balance factor of -1, 0 or 1 has
     * the AVL property since the heights of the two child subtrees differ by at
     * most one.
     * 
     * @param x the subtree
     * @return the balance factor of the subtree
     */
    private int balanceFactor(Node x) {
        return height(x.left) - height(x.right);
    }

    /**
     * Rotates the given subtree to the right.
     * 
     * @param x the subtree
     * @return the right rotated subtree
     */
    private Node rotateRight(Node x) {
        Node y = x.left;
        x.left = y.right;
        y.right = x;
        y.size = x.size;
        x.size = 1 + size(x.left) + size(x.right);
        x.height = 1 + Math.max(height(x.left), height(x.right));
        y.height = 1 + Math.max(height(y.left), height(y.right));
        return y;
    }

    /**
     * Rotates the given subtree to the left.
     * 
     * @param x the subtree
     * @return the left rotated subtree
     */
    private Node rotateLeft(Node x) {
        Node y = x.right;
        x.right = y.left;
        y.left = x;
        y.size = x.size;
        x.size = 1 + size(x.left) + size(x.right);
        x.height = 1 + Math.max(height(x.left), height(x.right));
        y.height = 1 + Math.max(height(y.left), height(y.right));
        return y;
    }

    /**
     * Removes the specified key and its associated value from the symbol table
     * (if the key is in the symbol table).
     * 
     * @param key the key
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public void delete(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to delete() is null");
        if (!contains(key)) return;
        root = delete(root, key);
        assert check();
    }

    /**
     * Removes the specified key and its associated value from the given
     * subtree.
     * 
     * @param x the subtree
     * @param key the key
     * @return the updated subtree
     */
    private Node delete(Node x, Key key) {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) {
            x.left = delete(x.left, key);
        }
        else if (cmp > 0) {
            x.right = delete(x.right, key);
        }
        else {
            if (x.left == null) {
                return x.right;
            }
            else if (x.right == null) {
                return x.left;
            }
            else {
                Node y = x;
                x = min(y.right);
                x.right = deleteMin(y.right);
                x.left = y.left;
            }
        }
        x.size = 1 + size(x.left) + size(x.right);
        x.height = 1 + Math.max(height(x.left), height(x.right));
        return balance(x);
    }

    /**
     * Removes the smallest key and associated value from the symbol table.
     * 
     * @throws NoSuchElementException if the symbol table is empty
     */
    public void deleteMin() {
        if (isEmpty()) throw new NoSuchElementException("called deleteMin() with empty symbol table");
        root = deleteMin(root);
        assert check();
    }

    /**
     * Removes the smallest key and associated value from the given subtree.
     * 
     * @param x the subtree
     * @return the updated subtree
     */
    private Node deleteMin(Node x) {
        if (x.left == null) return x.right;
        x.left = deleteMin(x.left);
        x.size = 1 + size(x.left) + size(x.right);
        x.height = 1 + Math.max(height(x.left), height(x.right));
        return balance(x);
    }

    /**
     * Removes the largest key and associated value from the symbol table.
     * 
     * @throws NoSuchElementException if the symbol table is empty
     */
    public void deleteMax() {
        if (isEmpty()) throw new NoSuchElementException("called deleteMax() with empty symbol table");
        root = deleteMax(root);
        assert check();
    }

    /**
     * Removes the largest key and associated value from the given subtree.
     * 
     * @param x the subtree
     * @return the updated subtree
     */
    private Node deleteMax(Node x) {
        if (x.right == null) return x.left;
        x.right = deleteMax(x.right);
        x.size = 1 + size(x.left) + size(x.right);
        x.height = 1 + Math.max(height(x.left), height(x.right));
        return balance(x);
    }

    /**
     * Returns the smallest key in the symbol table.
     * 
     * @return the smallest key in the symbol table
     * @throws NoSuchElementException if the symbol table is empty
     */
    public Key min() {
        if (isEmpty()) throw new NoSuchElementException("called min() with empty symbol table");
        return min(root).key;
    }

    /**
     * Returns the node with the smallest key in the subtree.
     * 
     * @param x the subtree
     * @return the node with the smallest key in the subtree
     */
    private Node min(Node x) {
        if (x.left == null) return x;
        return min(x.left);
    }

    /**
     * Returns the largest key in the symbol table.
     * 
     * @return the largest key in the symbol table
     * @throws NoSuchElementException if the symbol table is empty
     */
    public Key max() {
        if (isEmpty()) throw new NoSuchElementException("called max() with empty symbol table");
        return max(root).key;
    }

    /**
     * Returns the node with the largest key in the subtree.
     * 
     * @param x the subtree
     * @return the node with the largest key in the subtree
     */
    private Node max(Node x) {
        if (x.right == null) return x;
        return max(x.right);
    }

    /**
     * Returns the largest key in the symbol table less than or equal to
     * {@code key}.
     * 
     * @param key the key
     * @return the largest key in the symbol table less than or equal to
     *         {@code key}
     * @throws NoSuchElementException if the symbol table is empty
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public Key floor(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to floor() is null");
        if (isEmpty()) throw new NoSuchElementException("called floor() with empty symbol table");
        Node x = floor(root, key);
        if (x == null) return null;
        else return x.key;
    }

    /**
     * Returns the node in the subtree with the largest key less than or equal
     * to the given key.
     * 
     * @param x the subtree
     * @param key the key
     * @return the node in the subtree with the largest key less than or equal
     *         to the given key
     */
    private Node floor(Node x, Key key) {
        if (x == null) return null;
        int cmp = key.compareTo(x.key);
        if (cmp == 0) return x;
        if (cmp < 0) return floor(x.left, key);
        Node y = floor(x.right, key);
        if (y != null) return y;
        else return x;
    }

    /**
     * Returns the smallest key in the symbol table greater than or equal to
     * {@code key}.
     * 
     * @param key the key
     * @return the smallest key in the symbol table greater than or equal to
     *         {@code key}
     * @throws NoSuchElementException if the symbol table is empty
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public Key ceiling(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to ceiling() is null");
        if (isEmpty()) throw new NoSuchElementException("called ceiling() with empty symbol table");
        Node x = ceiling(root, key);
        if (x == null) return null;
        else return x.key;
    }

    /**
     * Returns the node in the subtree with the smallest key greater than or
     * equal to the given key.
     * 
     * @param x the subtree
     * @param key the key
     * @return the node in the subtree with the smallest key greater than or
     *         equal to the given key
     */
    private Node ceiling(Node x, Key key) {
        if (x == null) return null;
        int cmp = key.compareTo(x.key);
        if (cmp == 0) return x;
        if (cmp > 0) return ceiling(x.right, key);
        Node y = ceiling(x.left, key);
        if (y != null) return y;
        else return x;
    }

    /**
     * Returns the kth smallest key in the symbol table.
     * 
     * @param k the order statistic
     * @return the kth smallest key in the symbol table
     * @throws IllegalArgumentException unless {@code k} is between 0 and
     *             {@code size() -1 }
     */
    public Key select(int k) {
        if (k < 0 || k >= size()) throw new IllegalArgumentException("k is not in range 0-" + (size() - 1));
        Node x = select(root, k);
        return x.key;
    }

    /**
     * Returns the node with key the kth smallest key in the subtree.
     * 
     * @param x the subtree
     * @param k the kth smallest key in the subtree
     * @return the node with key the kth smallest key in the subtree
     */
    private Node select(Node x, int k) {
        if (x == null) return null;
        int t = size(x.left);
        if (t > k) return select(x.left, k);
        else if (t < k) return select(x.right, k - t - 1);
        else return x;
    }

    /**
     * Returns the number of keys in the symbol table strictly less than
     * {@code key}.
     * 
     * @param key the key
     * @return the number of keys in the symbol table strictly less than
     *         {@code key}
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public int rank(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to rank() is null");
        return rank(key, root);
    }

    /**
     * Returns the number of keys in the subtree less than key.
     * 
     * @param key the key
     * @param x the subtree
     * @return the number of keys in the subtree less than key
     */
    private int rank(Key key, Node x) {
        if (x == null) return 0;
        int cmp = key.compareTo(x.key);
        if (cmp < 0) return rank(key, x.left);
        else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
        else return size(x.left);
    }

    /**
     * Returns all keys in the symbol table.
     * 
     * @return all keys in the symbol table
     */
    public Iterable<Key> keys() {
        return keysInOrder();
    }

    /**
     * Returns all keys in the symbol table following an in-order traversal.
     * 
     * @return all keys in the symbol table following an in-order traversal
     */
    public Iterable<Key> keysInOrder() {
        Queue<Key> queue = new Queue<Key>();
        keysInOrder(root, queue);
        return queue;
    }

    /**
     * Adds the keys in the subtree to queue following an in-order traversal.
     * 
     * @param x the subtree
     * @param queue the queue
     */
    private void keysInOrder(Node x, Queue<Key> queue) {
        if (x == null) return;
        keysInOrder(x.left, queue);
        queue.enqueue(x.key);
        keysInOrder(x.right, queue);
    }

    /**
     * Returns all keys in the symbol table following a level-order traversal.
     * 
     * @return all keys in the symbol table following a level-order traversal.
     */
    public Iterable<Key> keysLevelOrder() {
        Queue<Key> queue = new Queue<Key>();
        if (!isEmpty()) {
            Queue<Node> queue2 = new Queue<Node>();
            queue2.enqueue(root);
            while (!queue2.isEmpty()) {
                Node x = queue2.dequeue();
                queue.enqueue(x.key);
                if (x.left != null) {
                    queue2.enqueue(x.left);
                }
                if (x.right != null) {
                    queue2.enqueue(x.right);
                }
            }
        }
        return queue;
    }

    /**
     * Returns all keys in the symbol table in the given range.
     * 
     * @param lo the lowest key
     * @param hi the highest key
     * @return all keys in the symbol table between {@code lo} (inclusive)
     *         and {@code hi} (exclusive)
     * @throws IllegalArgumentException if either {@code lo} or {@code hi}
     *             is {@code null}
     */
    public Iterable<Key> keys(Key lo, Key hi) {
        if (lo == null) throw new IllegalArgumentException("first argument to keys() is null");
        if (hi == null) throw new IllegalArgumentException("second argument to keys() is null");
        Queue<Key> queue = new Queue<Key>();
        keys(root, queue, lo, hi);
        return queue;
    }

    /**
     * Adds the keys between {@code lo} and {@code hi} in the subtree
     * to the {@code queue}.
     * 
     * @param x the subtree
     * @param queue the queue
     * @param lo the lowest key
     * @param hi the highest key
     */
    private void keys(Node x, Queue<Key> queue, Key lo, Key hi) {
        if (x == null) return;
        int cmplo = lo.compareTo(x.key);
        int cmphi = hi.compareTo(x.key);
        if (cmplo < 0) keys(x.left, queue, lo, hi);
        if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key);
        if (cmphi > 0) keys(x.right, queue, lo, hi);
    }

    /**
     * Returns the number of keys in the symbol table in the given range.
     * 
     * @param lo minimum endpoint
     * @param hi maximum endpoint
     * @return the number of keys in the symbol table between {@code lo}
     *         (inclusive) and {@code hi} (exclusive)
     * @throws IllegalArgumentException if either {@code lo} or {@code hi}
     *             is {@code null}
     */
    public int size(Key lo, Key hi) {
        if (lo == null) throw new IllegalArgumentException("first argument to size() is null");
        if (hi == null) throw new IllegalArgumentException("second argument to size() is null");
        if (lo.compareTo(hi) > 0) return 0;
        if (contains(hi)) return rank(hi) - rank(lo) + 1;
        else return rank(hi) - rank(lo);
    }

    /**
     * Checks if the AVL tree invariants are fine.
     * 
     * @return {@code true} if the AVL tree invariants are fine
     */
    private boolean check() {
        if (!isBST()) StdOut.println("Symmetric order not consistent");
        if (!isAVL()) StdOut.println("AVL property not consistent");
        if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent");
        if (!isRankConsistent()) StdOut.println("Ranks not consistent");
        return isBST() && isAVL() && isSizeConsistent() && isRankConsistent();
    }

    /**
     * Checks if AVL property is consistent.
     * 
     * @return {@code true} if AVL property is consistent.
     */
    private boolean isAVL() {
        return isAVL(root);
    }

    /**
     * Checks if AVL property is consistent in the subtree.
     * 
     * @param x the subtree
     * @return {@code true} if AVL property is consistent in the subtree
     */
    private boolean isAVL(Node x) {
        if (x == null) return true;
        int bf = balanceFactor(x);
        if (bf > 1 || bf < -1) return false;
        return isAVL(x.left) && isAVL(x.right);
    }

    /**
     * Checks if the symmetric order is consistent.
     * 
     * @return {@code true} if the symmetric order is consistent
     */
    private boolean isBST() {
        return isBST(root, null, null);
    }

    /**
     * Checks if the tree rooted at x is a BST with all keys strictly between
     * min and max (if min or max is null, treat as empty constraint) Credit:
     * Bob Dondero's elegant solution
     * 
     * @param x the subtree
     * @param min the minimum key in subtree
     * @param max the maximum key in subtree
     * @return {@code true} if if the symmetric order is consistent
     */
    private boolean isBST(Node x, Key min, Key max) {
        if (x == null) return true;
        if (min != null && x.key.compareTo(min) <= 0) return false;
        if (max != null && x.key.compareTo(max) >= 0) return false;
        return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
    }

    /**
     * Checks if size is consistent.
     * 
     * @return {@code true} if size is consistent
     */
    private boolean isSizeConsistent() {
        return isSizeConsistent(root);
    }

    /**
     * Checks if the size of the subtree is consistent.
     * 
     * @return {@code true} if the size of the subtree is consistent
     */
    private boolean isSizeConsistent(Node x) {
        if (x == null) return true;
        if (x.size != size(x.left) + size(x.right) + 1) return false;
        return isSizeConsistent(x.left) && isSizeConsistent(x.right);
    }

    /**
     * Checks if rank is consistent.
     * 
     * @return {@code true} if rank is consistent
     */
    private boolean isRankConsistent() {
        for (int i = 0; i < size(); i++)
            if (i != rank(select(i))) return false;
        for (Key key : keys())
            if (key.compareTo(select(rank(key))) != 0) return false;
        return true;
    }

    /**
     * Unit tests the {@code AVLTreeST} data type.
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {
        AVLTreeST<String, Integer> st = new AVLTreeST<String, Integer>();
        for (int i = 0; !StdIn.isEmpty(); i++) {
            String key = StdIn.readString();
            st.put(key, i);
        }
        for (String s : st.keys())
            StdOut.println(s + " " + st.get(s));
        StdOut.println();
    }
}

/******************************************************************************
 *  Copyright 2002-2016, Robert Sedgewick and Kevin Wayne.
 *
 *  This file is part of algs4.jar, which accompanies the textbook
 *
 *      Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
 *      Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
 *      http://algs4.cs.princeton.edu
 *
 *
 *  algs4.jar is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  algs4.jar is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with algs4.jar.  If not, see http://www.gnu.org/licenses.
 ******************************************************************************/