Complex.java
8.97 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
/******************************************************************************
* Compilation: javac Complex.java
* Execution: java Complex
* Dependencies: StdOut.java
*
* Data type for complex numbers.
*
* The data type is "immutable" so once you create and initialize
* a Complex object, you cannot change it. The "final" keyword
* when declaring re and im enforces this rule, making it a
* compile-time error to change the .re or .im fields after
* they've been initialized.
*
* % java Complex
* a = 5.0 + 6.0i
* b = -3.0 + 4.0i
* Re(a) = 5.0
* Im(a) = 6.0
* b + a = 2.0 + 10.0i
* a - b = 8.0 + 2.0i
* a * b = -39.0 + 2.0i
* b * a = -39.0 + 2.0i
* a / b = 0.36 - 1.52i
* (a / b) * b = 5.0 + 6.0i
* conj(a) = 5.0 - 6.0i
* |a| = 7.810249675906654
* tan(a) = -6.685231390246571E-6 + 1.0000103108981198i
*
******************************************************************************/
package edu.princeton.cs.algs4;
/**
* The {@code Complex} class represents a complex number.
* Complex numbers are immutable: their values cannot be changed after they
* are created.
* It includes methods for addition, subtraction, multiplication, division,
* conjugation, and other common functions on complex numbers.
* <p>
* For additional documentation, see <a href="http://algs4.cs.princeton.edu/99scientific">Section 9.9</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class Complex {
private final double re; // the real part
private final double im; // the imaginary part
/**
* Initializes a complex number from the specified real and imaginary parts.
*
* @param real the real part
* @param imag the imaginary part
*/
public Complex(double real, double imag) {
re = real;
im = imag;
}
/**
* Returns a string representation of this complex number.
*
* @return a string representation of this complex number,
* of the form 34 - 56i.
*/
public String toString() {
if (im == 0) return re + "";
if (re == 0) return im + "i";
if (im < 0) return re + " - " + (-im) + "i";
return re + " + " + im + "i";
}
/**
* Returns the absolute value of this complex number.
* This quantity is also known as the <em>modulus</em> or <em>magnitude</em>.
*
* @return the absolute value of this complex number
*/
public double abs() {
return Math.hypot(re, im);
}
/**
* Returns the phase of this complex number.
* This quantity is also known as the <em>angle</em> or <em>argument</em>.
*
* @return the phase of this complex number, a real number between -pi and pi
*/
public double phase() {
return Math.atan2(im, re);
}
/**
* Returns the sum of this complex number and the specified complex number.
*
* @param that the other complex number
* @return the complex number whose value is {@code (this + that)}
*/
public Complex plus(Complex that) {
double real = this.re + that.re;
double imag = this.im + that.im;
return new Complex(real, imag);
}
/**
* Returns the result of subtracting the specified complex number from
* this complex number.
*
* @param that the other complex number
* @return the complex number whose value is {@code (this - that)}
*/
public Complex minus(Complex that) {
double real = this.re - that.re;
double imag = this.im - that.im;
return new Complex(real, imag);
}
/**
* Returns the product of this complex number and the specified complex number.
*
* @param that the other complex number
* @return the complex number whose value is {@code (this * that)}
*/
public Complex times(Complex that) {
double real = this.re * that.re - this.im * that.im;
double imag = this.re * that.im + this.im * that.re;
return new Complex(real, imag);
}
/**
* Returns the product of this complex number and the specified scalar.
*
* @param alpha the scalar
* @return the complex number whose value is {@code (alpha * this)}
*/
public Complex scale(double alpha) {
return new Complex(alpha * re, alpha * im);
}
/**
* Returns the product of this complex number and the specified scalar.
*
* @param alpha the scalar
* @return the complex number whose value is {@code (alpha * this)}
* @deprecated Replaced by {@link #scale(double)}.
*/
@Deprecated
public Complex times(double alpha) {
return new Complex(alpha * re, alpha * im);
}
/**
* Returns the complex conjugate of this complex number.
*
* @return the complex conjugate of this complex number
*/
public Complex conjugate() {
return new Complex(re, -im);
}
/**
* Returns the reciprocal of this complex number.
*
* @return the complex number whose value is {@code (1 / this)}
*/
public Complex reciprocal() {
double scale = re*re + im*im;
return new Complex(re / scale, -im / scale);
}
/**
* Returns the real part of this complex number.
*
* @return the real part of this complex number
*/
public double re() {
return re;
}
/**
* Returns the imaginary part of this complex number.
*
* @return the imaginary part of this complex number
*/
public double im() {
return im;
}
/**
* Returns the result of dividing the specified complex number into
* this complex number.
*
* @param that the other complex number
* @return the complex number whose value is {@code (this / that)}
*/
public Complex divides(Complex that) {
return this.times(that.reciprocal());
}
/**
* Returns the complex exponential of this complex number.
*
* @return the complex exponential of this complex number
*/
public Complex exp() {
return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re) * Math.sin(im));
}
/**
* Returns the complex sine of this complex number.
*
* @return the complex sine of this complex number
*/
public Complex sin() {
return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re) * Math.sinh(im));
}
/**
* Returns the complex cosine of this complex number.
*
* @return the complex cosine of this complex number
*/
public Complex cos() {
return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re) * Math.sinh(im));
}
/**
* Returns the complex tangent of this complex number.
*
* @return the complex tangent of this complex number
*/
public Complex tan() {
return sin().divides(cos());
}
/**
* Unit tests the {@code Complex} data type.
*
* @param args the command-line arguments
*/
public static void main(String[] args) {
Complex a = new Complex(5.0, 6.0);
Complex b = new Complex(-3.0, 4.0);
StdOut.println("a = " + a);
StdOut.println("b = " + b);
StdOut.println("Re(a) = " + a.re());
StdOut.println("Im(a) = " + a.im());
StdOut.println("b + a = " + b.plus(a));
StdOut.println("a - b = " + a.minus(b));
StdOut.println("a * b = " + a.times(b));
StdOut.println("b * a = " + b.times(a));
StdOut.println("a / b = " + a.divides(b));
StdOut.println("(a / b) * b = " + a.divides(b).times(b));
StdOut.println("conj(a) = " + a.conjugate());
StdOut.println("|a| = " + a.abs());
StdOut.println("tan(a) = " + a.tan());
}
}
/******************************************************************************
* Copyright 2002-2016, Robert Sedgewick and Kevin Wayne.
*
* This file is part of algs4.jar, which accompanies the textbook
*
* Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
* Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
* http://algs4.cs.princeton.edu
*
*
* algs4.jar is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* algs4.jar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with algs4.jar. If not, see http://www.gnu.org/licenses.
******************************************************************************/