DirectedCycleX.java
6.27 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
/******************************************************************************
* Compilation: javac DirectedCycleX.java
* Execution: java DirectedCycleX V E F
* Dependencies: Queue.java Digraph.java Stack.java
*
* Find a directed cycle in a digraph, using a nonrecursive, queue-based
* algorithm. Runs in O(E + V) time.
*
******************************************************************************/
package edu.princeton.cs.algs4;
/**
* The {@code DirectedCycleX} class represents a data type for
* determining whether a digraph has a directed cycle.
* The <em>hasCycle</em> operation determines whether the digraph has
* a directed cycle and, and of so, the <em>cycle</em> operation
* returns one.
* <p>
* This implementation uses a nonrecursive, queue-based algorithm.
* The constructor takes time proportional to <em>V</em> + <em>E</em>
* (in the worst case),
* where <em>V</em> is the number of vertices and <em>E</em> is the number of edges.
* Afterwards, the <em>hasCycle</em> operation takes constant time;
* the <em>cycle</em> operation takes time proportional
* to the length of the cycle.
* <p>
* See {@link DirectedCycle} for a recursive version that uses depth-first search.
* See {@link Topological} or {@link TopologicalX} to compute a topological order
* when the digraph is acyclic.
* <p>
* For additional documentation,
* see <a href="http://algs4.cs.princeton.edu/42digraph">Section 4.2</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class DirectedCycleX {
private Stack<Integer> cycle; // the directed cycle; null if digraph is acyclic
public DirectedCycleX(Digraph G) {
// indegrees of remaining vertices
int[] indegree = new int[G.V()];
for (int v = 0; v < G.V(); v++) {
indegree[v] = G.indegree(v);
}
// initialize queue to contain all vertices with indegree = 0
Queue<Integer> queue = new Queue<Integer>();
for (int v = 0; v < G.V(); v++)
if (indegree[v] == 0) queue.enqueue(v);
while(!queue.isEmpty()) {
int v = queue.dequeue();
for (int w : G.adj(v)) {
indegree[w]--;
if (indegree[w] == 0) queue.enqueue(w);
}
}
// there is a directed cycle in subgraph of vertices with indegree >= 1.
int[] edgeTo = new int[G.V()];
int root = -1; // any vertex with indegree >= -1
for (int v = 0; v < G.V(); v++) {
if (indegree[v] == 0) continue;
else root = v;
for (int w : G.adj(v)) {
if (indegree[w] > 0) {
edgeTo[w] = v;
}
}
}
if (root != -1) {
// find any vertex on cycle
boolean[] visited = new boolean[G.V()];
while (!visited[root]) {
visited[root] = true;
root = edgeTo[root];
}
// extract cycle
cycle = new Stack<Integer>();
int v = root;
do {
cycle.push(v);
v = edgeTo[v];
} while (v != root);
cycle.push(root);
}
assert check();
}
/**
* Returns a directed cycle if the digraph has a directed cycle, and {@code null} otherwise.
* @return a directed cycle (as an iterable) if the digraph has a directed cycle,
* and {@code null} otherwise
*/
public Iterable<Integer> cycle() {
return cycle;
}
/**
* Does the digraph have a directed cycle?
* @return {@code true} if the digraph has a directed cycle, {@code false} otherwise
*/
public boolean hasCycle() {
return cycle != null;
}
// certify that digraph has a directed cycle if it reports one
private boolean check() {
if (hasCycle()) {
// verify cycle
int first = -1, last = -1;
for (int v : cycle()) {
if (first == -1) first = v;
last = v;
}
if (first != last) {
System.err.printf("cycle begins with %d and ends with %d\n", first, last);
return false;
}
}
return true;
}
public static void main(String[] args) {
// create random DAG with V vertices and E edges; then add F random edges
int V = Integer.parseInt(args[0]);
int E = Integer.parseInt(args[1]);
int F = Integer.parseInt(args[2]);
Digraph G = DigraphGenerator.dag(V, E);
// add F extra edges
for (int i = 0; i < F; i++) {
int v = StdRandom.uniform(V);
int w = StdRandom.uniform(V);
G.addEdge(v, w);
}
StdOut.println(G);
DirectedCycleX finder = new DirectedCycleX(G);
if (finder.hasCycle()) {
StdOut.print("Directed cycle: ");
for (int v : finder.cycle()) {
StdOut.print(v + " ");
}
StdOut.println();
}
else {
StdOut.println("No directed cycle");
}
StdOut.println();
}
}
/******************************************************************************
* Copyright 2002-2016, Robert Sedgewick and Kevin Wayne.
*
* This file is part of algs4.jar, which accompanies the textbook
*
* Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
* Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
* http://algs4.cs.princeton.edu
*
*
* algs4.jar is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* algs4.jar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with algs4.jar. If not, see http://www.gnu.org/licenses.
******************************************************************************/