FarthestPair.java
6.96 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
/******************************************************************************
* Compilation: javac FarthestPair.java
* Execution: java FarthestPair < input.txt
* Dependencies: GrahamScan.java Point2D.java
* Data files: http://algs4.cs.princeton.edu/99hull/rs1423.txt
* http://algs4.cs.princeton.edu/99hull/kw1260.txt
*
* Given a set of n points in the plane, find the farthest pair
* (equivalently, compute the diameter of the set of points).
*
* Computes the convex hull of the set of points and using the
* rotating calipers method to find all antipodal point pairs
* and the farthest pair.
*
* % java FarthestPair < input100.txt
* 42697.98170874122 from (32011.0, 3140.0) to (822.0, 32301.0)
*
******************************************************************************/
package edu.princeton.cs.algs4;
/**
* The {@code FarthestPair} data type computes the farthest pair of points
* in a set of <em>n</em> points in the plane and provides accessor methods
* for getting the farthest pair of points and the distance between them.
* The distance between two points is their Euclidean distance.
* <p>
* This implementation computes the convex hull of the set of points and
* uses the rotating calipers method to find all antipodal point pairs
* and the farthest pair.
* It runs in O(<em>n</em> log <em>n</em>) time in the worst case and uses
* O(<em>N</em>) extra space.
* See also {@link ClosestPair} and {@link GrahamScan}.
* <p>
* For additional documentation, see <a href="http://algs4.cs.princeton.edu/99hull">Section 9.9</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class FarthestPair {
// farthest pair of points and distance
private Point2D best1, best2;
private double bestDistanceSquared = Double.NEGATIVE_INFINITY;
/**
* Computes the farthest pair of points in the specified array of points.
*
* @param points the array of points
* @throws NullPointerException if {@code points} is {@code null} or if any
* entry in {@code points[]} is {@code null}
*/
public FarthestPair(Point2D[] points) {
GrahamScan graham = new GrahamScan(points);
// single point
if (points.length <= 1) return;
// number of points on the hull
int m = 0;
for (Point2D p : graham.hull())
m++;
// the hull, in counterclockwise order hull[1] to hull[m]
Point2D[] hull = new Point2D[m+1];
m = 1;
for (Point2D p : graham.hull()) {
hull[m++] = p;
}
m--;
// all points are equal
if (m == 1) return;
// points are collinear
if (m == 2) {
best1 = hull[1];
best2 = hull[2];
bestDistanceSquared = best1.distanceSquaredTo(best2);
return;
}
// k = farthest vertex from edge from hull[1] to hull[m]
int k = 2;
while (Point2D.area2(hull[m], hull[1], hull[k+1]) > Point2D.area2(hull[m], hull[1], hull[k])) {
k++;
}
int j = k;
for (int i = 1; i <= k && j <= m; i++) {
// StdOut.println("hull[i] + " and " + hull[j] + " are antipodal");
if (hull[i].distanceSquaredTo(hull[j]) > bestDistanceSquared) {
best1 = hull[i];
best2 = hull[j];
bestDistanceSquared = hull[i].distanceSquaredTo(hull[j]);
}
while ((j < m) && Point2D.area2(hull[i], hull[i+1], hull[j+1]) > Point2D.area2(hull[i], hull[i+1], hull[j])) {
j++;
// StdOut.println(hull[i] + " and " + hull[j] + " are antipodal");
double distanceSquared = hull[i].distanceSquaredTo(hull[j]);
if (distanceSquared > bestDistanceSquared) {
best1 = hull[i];
best2 = hull[j];
bestDistanceSquared = hull[i].distanceSquaredTo(hull[j]);
}
}
}
}
/**
* Returns one of the points in the farthest pair of points.
*
* @return one of the two points in the farthest pair of points;
* {@code null} if no such point (because there are fewer than 2 points)
*/
public Point2D either() {
return best1;
}
/**
* Returns the other point in the farthest pair of points.
*
* @return the other point in the farthest pair of points
* {@code null} if no such point (because there are fewer than 2 points)
*/
public Point2D other() {
return best2;
}
/**
* Returns the Eucliden distance between the farthest pair of points.
* This quantity is also known as the <em>diameter</em> of the set of points.
*
* @return the Euclidean distance between the farthest pair of points
* {@code Double.POSITIVE_INFINITY} if no such pair of points
* exist (because there are fewer than 2 points)
*/
public double distance() {
return Math.sqrt(bestDistanceSquared);
}
/**
* Unit tests the {@code FarthestPair} data type.
* Reads in an integer {@code n} and {@code n} points (specified by
* their <em>x</em>- and <em>y</em>-coordinates) from standard input;
* computes a farthest pair of points; and prints the pair to standard
* output.
*
* @param args the command-line arguments
*/
public static void main(String[] args) {
int n = StdIn.readInt();
Point2D[] points = new Point2D[n];
for (int i = 0; i < n; i++) {
int x = StdIn.readInt();
int y = StdIn.readInt();
points[i] = new Point2D(x, y);
}
FarthestPair farthest = new FarthestPair(points);
StdOut.println(farthest.distance() + " from " + farthest.either() + " to " + farthest.other());
}
}
/******************************************************************************
* Copyright 2002-2016, Robert Sedgewick and Kevin Wayne.
*
* This file is part of algs4.jar, which accompanies the textbook
*
* Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
* Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
* http://algs4.cs.princeton.edu
*
*
* algs4.jar is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* algs4.jar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with algs4.jar. If not, see http://www.gnu.org/licenses.
******************************************************************************/