IndexBinomialMinPQ.java 17.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
/******************************************************************************
 *  Compilation: javac IndexBinomialMinPQ.java
 *  Execution:
 *  
 *  An index binomial heap.
 *  
 ******************************************************************************/

package edu.princeton.cs.algs4;

import java.util.Comparator;
import java.util.Iterator;
import java.util.NoSuchElementException;

/**
 *  The IndexBinomialMinPQ class represents an indexed priority queue of generic keys.
 *  It supports the usual insert and delete-the-minimum operations,
 *  along with delete and change-the-key methods. 
 *  In order to let the client refer to keys on the priority queue,
 *  an integer between 0 and N-1 is associated with each key ; the client
 *  uses this integer to specify which key to delete or change.
 *  It also supports methods for peeking at the minimum key,
 *  testing if the priority queue is empty, and iterating through
 *  the keys.
 *  
 *  This implementation uses a binomial heap along with an array to associate
 *  keys with integers in the given range.
 *  The insert, delete-the-minimum, delete, change-key, decrease-key,
 *  increase-key and size operations take logarithmic time.
 *  The is-empty, min-index, min-key, and key-of operations take constant time.
 *  Construction takes time proportional to the specified capacity.
 *
 *  @author Tristan Claverie
 */
public class IndexBinomialMinPQ<Key> implements Iterable<Integer> {
	private Node<Key> head;    			//Head of the list of roots
	private Node<Key>[] nodes; 			//Array of indexed Nodes of the heap
	private int n;			   		//Maximum size of the tree
	private final Comparator<Key> comparator;	//Comparator over the keys
	
	//Represents a node of a Binomial Tree
	private class Node<Key> {
		Key key;				//Key contained by the Node
		int order;				//The order of the Binomial Tree rooted by this Node
		int index;				//Index associated with the Key
		Node<Key> parent;			//parent of this Node
		Node<Key> child, sibling;		//child and sibling of this Node
	}
	
    /**
     * Initializes an empty indexed priority queue with indices between {@code 0} to {@code N-1}
     * Worst case is O(n)
     * @param N number of keys in the priority queue, index from {@code 0} to {@code N-1}
     * @throws java.lang.IllegalArgumentException if {@code N < 0}
     */
	public IndexBinomialMinPQ(int N) {
		if (N < 0) throw new IllegalArgumentException("Cannot create a priority queue of negative size");
		comparator = new MyComparator();
		nodes = (Node<Key>[]) new Node[N];
		this.n = N;
	}
	
    /**
     * Initializes an empty indexed priority queue with indices between {@code 0} to {@code N-1}
     * Worst case is O(n)
     * @param N number of keys in the priority queue, index from {@code 0} to {@code N-1}
     * @param comparator a Comparator over the keys
     * @throws java.lang.IllegalArgumentException if {@code N < 0}
     */
	public IndexBinomialMinPQ(int N, Comparator<Key> comparator) {
		if (N < 0) throw new IllegalArgumentException("Cannot create a priority queue of negative size");
		this.comparator = comparator;
		nodes = (Node<Key>[]) new Node[N];
		this.n = N;
	}

	/**
	 * Whether the priority queue is empty
	 * Worst case is O(1)
	 * @return true if the priority queue is empty, false if not
	 */
	public boolean isEmpty() {
		return head == null;
	}

	/**
	 * Does the priority queue contains the index i ?
	 * Worst case is O(1)
	 * @param i an index
	 * @throws java.lang.IndexOutOfBoundsException if the specified index is invalid
	 * @return true if i is on the priority queue, false if not
	 */
	public boolean contains(int i) {
		if (i < 0 || i >= n) throw new IndexOutOfBoundsException();
		else return nodes[i] != null;
	}

	/**
	 * Number of elements currently on the priority queue
	 * Worst case is O(log(n))
	 * @return the number of elements on the priority queue
	 */
	public int size() {
		int result = 0, tmp;
		for (Node<Key> node = head; node != null; node = node.sibling) {
			if (node.order > 30) { throw new ArithmeticException("The number of elements cannot be evaluated, but the priority queue is still valid."); }
			tmp =  1 << node.order;
			result |= tmp;
		}
		return result;
	}

	/**
	 * Associates a key with an index
	 * Worst case is O(log(n))
	 * @param i an index
	 * @param key a Key associated with i
	 * @throws java.lang.IndexOutOfBoundsException if the specified index is invalid
	 * @throws java.lang.IllegalArgumentException if the index is already in the queue
	 */
	public void insert(int i, Key key) {
		if (i < 0 || i >= n) throw new IndexOutOfBoundsException();
		if (contains(i)) throw new IllegalArgumentException("Specified index is already in the queue");
		Node<Key> x = new Node<Key>();
		x.key = key;
		x.index = i;
		x.order = 0;
		nodes[i] = x;
		IndexBinomialMinPQ<Key> H = new IndexBinomialMinPQ<Key>();
		H.head = x;
		head = union(H).head;
	}

	/**
	 * Gets the index associated with the minimum key
	 * Worst case is O(log(n))
	 * @throws java.util.NoSuchElementException if the priority queue is empty
	 * @return the index associated with the minimum key
	 */
	
	public int minIndex() {
		if (isEmpty()) throw new NoSuchElementException("Priority queue is empty");
		Node<Key> min = head;
		Node<Key> current = head;
		while (current.sibling != null) {
			min = (greater(min.key, current.sibling.key)) ? current.sibling : min;
			current = current.sibling;
		}
		return min.index;
	}

	/**
	 * Gets the minimum key currently in the queue
	 * Worst case is O(log(n))
	 * @throws java.util.NoSuchElementException if the priority queue is empty
	 * @return the minimum key currently in the priority queue
	 */
	
	public Key minKey() {
		if (isEmpty()) throw new NoSuchElementException("Priority queue is empty");
		Node<Key> min = head;
		Node<Key> current = head;
		while (current.sibling != null) {
			min = (greater(min.key, current.sibling.key)) ? current.sibling : min;
			current = current.sibling;
		}
		return min.key;
	}

	/**
	 * Deletes the minimum key
	 * Worst case is O(log(n))
	 * @throws java.util.NoSuchElementException if the priority queue is empty
	 * @return the index associated with the minimum key
	 */
	
	public int delMin() {
		if(isEmpty()) throw new NoSuchElementException("Priority queue is empty");
		Node<Key> min = eraseMin();
		Node<Key> x = (min.child == null) ? min : min.child;
		if (min.child != null) {
			min.child = null;
			Node<Key> prevx = null, nextx = x.sibling;
			while (nextx != null) {
				x.parent = null; // for garbage collection
				x.sibling = prevx;
				prevx = x;
				x = nextx;nextx = nextx.sibling;
			}
			x.parent = null;
			x.sibling = prevx;
			IndexBinomialMinPQ<Key> H = new IndexBinomialMinPQ<Key>();
			H.head = x;
			head = union(H).head;
		}
		return min.index;
	}

	/**
	 * Gets the key associated with index i
	 * Worst case is O(1)
	 * @param i an index
	 * @throws java.lang.IndexOutOfBoundsException if the specified index is invalid
	 * @throws java.lang.IllegalArgumentException if the index is not in the queue
	 * @return the key associated with index i
	 */
	
	public Key keyOf(int i) {
		if (i < 0 || i >= n) throw new IndexOutOfBoundsException();
		if (!contains(i)) throw new IllegalArgumentException("Specified index is not in the queue");
		return nodes[i].key;
	}

	/**
	 * Changes the key associated with index i to the given key
	 * Worst case is O(log(n))
	 * @param i an index
	 * @param key the key to associate with i
	 * @throws java.lang.IndexOutOfBoundsException if the specified index is invalid
	 * @throws java.lang.IllegalArgumentException if the index has no key associated with
	 */
	
	public void changeKey(int i, Key key) {
		if (i < 0 || i >= n) 		throw new IndexOutOfBoundsException();
		if (!contains(i))			throw new IllegalArgumentException("Specified index is not in the queue");
		if (greater(nodes[i].key, key))  decreaseKey(i, key);
		else 							 increaseKey(i, key);
	}

	/**
	 * Decreases the key associated with index i to the given key
	 * Worst case is O(log(n))
	 * @param i an index
	 * @param key the key to associate with i
	 * @throws java.lang.IndexOutOfBoundsException if the specified index is invalid
	 * @throws java.util.NoSuchElementException if the index has no key associated with
	 * @throws java.lang.IllegalArgumentException if the given key is greater than the current key
	 */
	
	public void decreaseKey(int i, Key key) {
		if (i < 0 || i >= n) 		throw new IndexOutOfBoundsException();
		if (!contains(i))			throw new NoSuchElementException("Specified index is not in the queue");
		if (greater(key, nodes[i].key))  throw new IllegalArgumentException("Calling with this argument would not decrease the key");
		Node<Key> x = nodes[i];
		x.key = key;
		swim(i);
	}

	/**
	 * Increases the key associated with index i to the given key
	 * Worst case is O(log(n))
	 * @param i an index
	 * @param key the key to associate with i
	 * @throws java.lang.IndexOutOfBoundsException if the specified index is invalid
	 * @throws java.util.NoSuchElementException if the index has no key associated with
	 * @throws java.lang.IllegalArgumentException if the given key is lower than the current key
	 */
	
	public void increaseKey(int i, Key key) {
		if (i < 0 || i >= n) 		throw new IndexOutOfBoundsException();
		if (!contains(i))			throw new NoSuchElementException("Specified index is not in the queue");
		if (greater(nodes[i].key, key))  throw new IllegalArgumentException("Calling with this argument would not increase the key");
		delete(i);
		insert(i, key);
	}

	/**
	 * Deletes the key associated the given index
	 * Worst case is O(log(n))
	 * @param i an index
	 * @throws java.lang.IndexOutOfBoundsException if the specified index is invalid
	 * @throws java.util.NoSuchElementException if the given index has no key associated with
	 */
	
	public void delete(int i) {
		if (i < 0 || i >= n) 		throw new IndexOutOfBoundsException();
		if (!contains(i))			throw new NoSuchElementException("Specified index is not in the queue");
		toTheRoot(i);
		Node<Key> x = erase(i);
		if (x.child != null) {
			Node<Key> y = x;
			x = x.child;
			y.child = null;
			Node<Key> prevx = null, nextx = x.sibling;
			while (nextx != null) {
				x.parent = null;
				x.sibling = prevx;
				prevx = x;
				x = nextx; nextx = nextx.sibling;
			}
			x.parent = null;
			x.sibling = prevx;
			IndexBinomialMinPQ<Key> H = new IndexBinomialMinPQ<Key>();
			H.head = x;
			head = union(H).head;
		}
	}
	
	/*************************************************
	 * General helper functions
	 ************************************************/
	
	//Compares two keys
	private boolean greater(Key n, Key m) {
		if (n == null) return false;
		if (m == null) return true;
		return comparator.compare(n, m) > 0;
	}
	
	//Exchanges the positions of two nodes
	private void exchange(Node<Key> x, Node<Key> y) {
		Key tempKey = x.key; x.key = y.key; y.key = tempKey;
		int tempInt = x.index; x.index = y.index; y.index = tempInt;
		nodes[x.index] = x;
		nodes[y.index] = y;
	}
	
	//Assuming root1 holds a greater key than root2, root2 becomes the new root
	private void link(Node<Key> root1, Node<Key> root2) {
		root1.sibling = root2.child;
		root1.parent = root2;
		root2.child = root1;
		root2.order++;
	}
	
	/*************************************************
	 * Functions for moving upward
	 ************************************************/
	
	//Moves a Node upward
	private void swim(int i) {
		Node<Key> x = nodes[i];
		Node<Key> parent = x.parent;
		if (parent != null && greater(parent.key, x.key)) {
			exchange(x, parent);
			swim(i);
		}
	}
	
	//The key associated with i becomes the root of its Binomial Tree,
	//regardless of the order relation defined for the keys
	private void toTheRoot(int i) {
		Node<Key> x = nodes[i];
		Node<Key> parent = x.parent;
		if (parent != null) {
			exchange(x, parent);
			toTheRoot(i);
		}
	}
	
	/**************************************************
	 * Functions for deleting a key
	 *************************************************/
	
	//Assuming the key associated with i is in the root list,
	//deletes and return the node of index i
	private Node<Key> erase(int i) {
		Node<Key> reference = nodes[i];
		Node<Key> x = head;
		Node<Key> previous = null;
		while (x != reference) {
			previous = x;
			x = x.sibling;
		}
		previous.sibling = x.sibling;
		if (x == head) head = head.sibling;
		nodes[i] = null;
		return x;
	}
	
	//Deletes and return the node containing the minimum key
	private Node<Key> eraseMin() {
		Node<Key> min = head;
		Node<Key> previous = null;
		Node<Key> current = head;
		while (current.sibling != null) {
			if (greater(min.key, current.sibling.key)) {
				previous = current;
				min = current.sibling;
			}
			current = current.sibling;
		}
		previous.sibling = min.sibling;
		if (min == head) head = min.sibling;
		nodes[min.index] = null;
		return min;
	}
	
	/**************************************************
	 * Functions for inserting a key in the heap
	 *************************************************/
	
	//Merges two root lists into one, there can be up to 2 Binomial Trees of same order
	private Node<Key> merge(Node<Key> h, Node<Key> x, Node<Key> y) {
		if (x == null && y == null) return h;
		else if (x == null) 		h.sibling = merge(y, null, y.sibling);
		else if (y == null) 		h.sibling = merge(x, x.sibling, null);
		else if (x.order < y.order) h.sibling = merge(x, x.sibling, y);
		else 						h.sibling = merge(y, x, y.sibling);
		return h;
	}
	
	//Merges two Binomial Heaps together and returns the resulting Binomial Heap
	//It destroys the two Heaps in parameter, which should not be used any after.
	//To guarantee logarithmic time, this function assumes the arrays are up-to-date
	private IndexBinomialMinPQ<Key> union(IndexBinomialMinPQ<Key> heap) {
		this.head = merge(new Node<Key>(), this.head, heap.head).sibling;
		Node<Key> x = this.head;
		Node<Key> prevx = null, nextx = x.sibling;
		while (nextx != null) {
			if (x.order < nextx.order ||
			   (nextx.sibling != null && nextx.sibling.order == x.order)) {
				prevx = x; x = nextx;
			} else if (greater(nextx.key, x.key)) {
				x.sibling = nextx.sibling;
				link(nextx, x);
			} else {
				if (prevx == null) { this.head = nextx; }
				else { prevx.sibling = nextx; }
				link(x, nextx);
				x = nextx;
			}
			nextx = x.sibling;
		}
		return this;
	}
	
	/******************************************************************
	 * Constructor
	 *****************************************************************/
	
	//Creates an empty heap
	//The comparator is instanciated because it needs to,
	//but won't be used by any heap created by this constructor
	private IndexBinomialMinPQ() { comparator = null; }
	
	/******************************************************************
	 * Iterator
	 *****************************************************************/
	
	/**
	 * Gets an Iterator over the indexes in the priority queue in ascending order
	 * The Iterator does not implement the remove() method
	 * iterator() : Worst case is O(n)
	 * next() : 	Worst case is O(log(n))
	 * hasNext() : 	Worst case is O(1)
	 * @return an Iterator over the indexes in the priority queue in ascending order
	 */
	
	public Iterator<Integer> iterator() {
		return new MyIterator();
	}
	
	private class MyIterator implements Iterator<Integer> {
		IndexBinomialMinPQ<Key> data;
		
		//Constructor clones recursively the elements in the queue
		//It takes linear time
		public MyIterator() {
			data = new IndexBinomialMinPQ<Key>(n, comparator);
			data.head = clone(head, false, false, null);
		}
		
		private Node<Key> clone(Node<Key> x, boolean isParent, boolean isChild, Node<Key> parent) {
			if (x == null) return null;
			Node<Key> node = new Node<Key>();
			node.index = x.index;
			node.key = x.key;
			data.nodes[node.index] = node;
			node.parent = parent;
			node.sibling = clone(x.sibling, false, false, parent);
			node.child = clone(x.child, false, true, node);
			return node;
		}
		
		public boolean hasNext() {
			return !data.isEmpty();
		}
		
		public Integer next() {
                        if (!hasNext()) throw new NoSuchElementException();
			return data.delMin();
		}
		
		public void remove() {
			throw new UnsupportedOperationException();
		}
	}
	
	/***************************
	 * Comparator
	 **************************/
	
	//default Comparator
	private class MyComparator implements Comparator<Key> {
		@Override
		public int compare(Key key1, Key key2) {
			return ((Comparable<Key>) key1).compareTo(key2);
		}
	}
	
}

/******************************************************************************
 *  Copyright 2002-2016, Robert Sedgewick and Kevin Wayne.
 *
 *  This file is part of algs4.jar, which accompanies the textbook
 *
 *      Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
 *      Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
 *      http://algs4.cs.princeton.edu
 *
 *
 *  algs4.jar is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  algs4.jar is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with algs4.jar.  If not, see http://www.gnu.org/licenses.
 ******************************************************************************/