IndexFibonacciMinPQ.java 15.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
/******************************************************************************
 *  Compilation: javac IndexFibonacciMinPQ.java
 *  Execution:
 *  
 *  An index Fibonacci heap.
 *  
 ******************************************************************************/

package edu.princeton.cs.algs4;

import java.util.Comparator;
import java.util.Iterator;
import java.util.HashMap;
import java.util.NoSuchElementException;

/*
 *  The IndexFibonacciMinPQ class represents an indexed priority queue of generic keys.
 *  It supports the usual insert and delete-the-minimum operations,
 *  along with delete and change-the-key methods. 
 *  In order to let the client refer to keys on the priority queue,
 *  an integer between 0 and N-1 is associated with each key ; the client
 *  uses this integer to specify which key to delete or change.
 *  It also supports methods for peeking at the minimum key,
 *  testing if the priority queue is empty, and iterating through
 *  the keys.
 *  
 *  This implementation uses a Fibonacci heap along with an array to associate
 *  keys with integers in the given range.
 *  The insert, size, is-empty, contains, minimum-index, minimum-key
 *  and key-of take constant time.
 *  The decrease-key operation takes amortized constant time.
 *  The delete, increase-key, delete-the-minimum, change-key take amortized logarithmic time.
 *  Construction takes time proportional to the specified capacity
 *
 *  @author Tristan Claverie
 */
public class IndexFibonacciMinPQ<Key> implements Iterable<Integer> {
	private Node<Key>[] nodes;			//Array of Nodes in the heap
	private Node<Key> head;				//Head of the circular root list
	private Node<Key> min;				//Minimum Node in the heap
	private int size;					//Number of keys in the heap
	private int n;						//Maximum number of elements in the heap
	private final Comparator<Key> comp; //Comparator over the keys
	private HashMap<Integer, Node<Key>> table = new HashMap<Integer, Node<Key>>(); //Used for the consolidate operation
	
	//Represents a Node of a tree
	private class Node<Key> {
		Key key;						//Key of the Node
		int order;						//The order of the tree rooted by this Node
		int index;						//Index associated with the key
		Node<Key> prev, next;			//siblings of the Node
		Node<Key> parent, child;		//parent and child of this Node
		boolean mark;					//Indicates if this Node already lost a child
	}
	
    /**
     * Initializes an empty indexed priority queue with indices between {@code 0} and {@code N-1}
     * Worst case is O(n)
     * @param N number of keys in the priority queue, index from {@code 0} to {@code N-1}
     * @throws java.lang.IllegalArgumentException if {@code N < 0}
     */
	public IndexFibonacciMinPQ(int N) {
		if (N < 0) throw new IllegalArgumentException("Cannot create a priority queue of negative size");
		n = N;
		nodes = (Node<Key>[]) new Node[n];
		comp = new MyComparator();
	}
	
    /**
     * Initializes an empty indexed priority queue with indices between {@code 0} and {@code N-1}
     * Worst case is O(n)
     * @param N number of keys in the priority queue, index from {@code 0} to {@code N-1}
     * @param C a Comparator over the keys
     * @throws java.lang.IllegalArgumentException if {@code N < 0}
     */
	public IndexFibonacciMinPQ(Comparator<Key> C, int N) {
		if (N < 0) throw new IllegalArgumentException("Cannot create a priority queue of negative size");
		n = N;
		nodes = (Node<Key>[]) new Node[n];
		comp = C;
	}

	/**
	 * Whether the priority queue is empty
	 * Worst case is O(1)
	 * @return true if the priority queue is empty, false if not
	 */
	
	public boolean isEmpty() {
		return size == 0;
	}

	/**
	 * Does the priority queue contains the index i ?
	 * Worst case is O(1)
	 * @param i an index
	 * @throws java.lang.IndexOutOfBoundsException if the specified index is invalid
	 * @return true if i is on the priority queue, false if not
	 */
	
	public boolean contains(int i) {
		if (i < 0 || i >= n) throw new IndexOutOfBoundsException();
		else 				 return nodes[i] != null;
	}

	/**
	 * Number of elements currently on the priority queue
	 * Worst case is O(1)
	 * @return the number of elements on the priority queue
	 */
	
	public int size() {
		return size;
	}

	/**
	 * Associates a key with an index
	 * Worst case is O(1)
	 * @param i an index
	 * @param key a Key associated with i
	 * @throws java.lang.IndexOutOfBoundsException if the specified index is invalid
	 * @throws java.lang.IllegalArgumentException if the index is already in the queue
	 */
	
	public void insert(int i, Key key) {
		if (i < 0 || i >= n) throw new IndexOutOfBoundsException();
		if (contains(i)) throw new IllegalArgumentException("Specified index is already in the queue");
		Node<Key> x = new Node<Key>();
		x.key = key;
		x.index = i;
		nodes[i] = x;
		size++;
		head = insert(x, head);
		if (min == null) min = head;
		else 			 min = (greater(min.key, key)) ? head : min;
	}

	/**
	 * Get the index associated with the minimum key
	 * Worst case is O(1)
	 * @throws java.util.NoSuchElementException if the priority queue is empty
	 * @return the index associated with the minimum key
	 */
	
	public int minIndex() {
		if (isEmpty()) throw new NoSuchElementException("Priority queue is empty");
		return min.index;
	}

	/**
	 * Get the minimum key currently in the queue
	 * Worst case is O(1)
	 * @throws java.util.NoSuchElementException if the priority queue is empty
	 * @return the minimum key currently in the priority queue
	 */
	
	public Key minKey() {
		if (isEmpty()) throw new NoSuchElementException("Priority queue is empty");
		return min.key;
	}

	/**
	 * Delete the minimum key
	 * Worst case is O(log(n)) (amortized)
	 * @throws java.util.NoSuchElementException if the priority queue is empty
	 * @return the index associated with the minimum key
	 */
	
	public int delMin() {
		if (isEmpty()) throw new NoSuchElementException("Priority queue is empty");
		head = cut(min, head);
		Node<Key> x = min.child;
		int index = min.index;
		min.key = null;					//For garbage collection
		if (x != null) {
			do {
				x.parent = null;
				x = x.next;
			} while (x != min.child);
			head = meld(head, x);
			min.child = null;			//For garbage collection
		}
		size--;
		if (!isEmpty()) consolidate();
		else 			min = null;
		nodes[index] = null;
		return index;
	}

	/**
	 * Get the key associated with index i
	 * Worst case is O(1)
	 * @param i an index
	 * @throws java.lang.IndexOutOfBoundsException if the specified index is invalid
	 * @throws java.util.NoSuchElementException if the index is not in the queue
	 * @return the key associated with index i
	 */
	
	public Key keyOf(int i) {
		if (i < 0 || i >= n) throw new IndexOutOfBoundsException();
		if (!contains(i)) throw new NoSuchElementException("Specified index is not in the queue");
		return nodes[i].key;
	}

	/**
	 * Changes the key associated with index i to the given key
	 * If the given key is greater, Worst case is O(log(n))
	 * If the given key is lower, Worst case is O(1) (amortized)
	 * @param i an index
	 * @param key the key to associate with i
	 * @throws java.lang.IndexOutOfBoundsException if the specified index is invalid
	 * @throws java.util.NoSuchElementException if the index has no key associated with
	 */
	
	public void changeKey(int i, Key key) {
		if (i < 0 || i >= n) 		throw new IndexOutOfBoundsException();
		if (!contains(i))			throw new NoSuchElementException("Specified index is not in the queue");
		if (greater(key, nodes[i].key))  increaseKey(i, key);
		else 							 decreaseKey(i, key);
	}

	/**
	 * Decreases the key associated with index i to the given key
	 * Worst case is O(1) (amortized).
	 * @param i an index
	 * @param key the key to associate with i
	 * @throws java.lang.IndexOutOfBoundsException if the specified index is invalid
	 * @throws java.util.NoSuchElementException if the index has no key associated with
	 * @throws java.lang.IllegalArgumentException if the given key is greater than the current key
	 */
	
	public void decreaseKey(int i, Key key) {
		if (i < 0 || i >= n) 		throw new IndexOutOfBoundsException();
		if (!contains(i))			throw new NoSuchElementException("Specified index is not in the queue");
		if (greater(key, nodes[i].key))  throw new IllegalArgumentException("Calling with this argument would not decrease the key");
		Node<Key> x = nodes[i];
		x.key = key;
		if (greater(min.key, key)) min = x;
		if (x.parent != null && greater(x.parent.key, key)) {
			cut(i);
		}
	}

	/**
	 * Increases the key associated with index i to the given key
	 * Worst case is O(log(n))
	 * @param i an index
	 * @param key the key to associate with i
	 * @throws java.lang.IndexOutOfBoundsException if the specified index is invalid
	 * @throws java.util.NoSuchElementException if the index has no key associated with
	 * @throws java.lang.IllegalArgumentException if the given key is lower than the current key
	 */
	
	public void increaseKey(int i, Key key) {
		if (i < 0 || i >= n) 		throw new IndexOutOfBoundsException();
		if (!contains(i))			throw new NoSuchElementException("Specified index is not in the queue");
		if (greater(nodes[i].key, key))  throw new IllegalArgumentException("Calling with this argument would not increase the key");
		delete(i);
		insert(i, key);
	}

	/**
	 * Deletes the key associated the given index
	 * Worst case is O(log(n)) (amortized)
	 * @param i an index
	 * @throws java.lang.IndexOutOfBoundsException if the specified index is invalid
	 * @throws java.util.NoSuchElementException if the given index has no key associated with
	 */
	
	public void delete(int i) {
		if (i < 0 || i >= n) 		throw new IndexOutOfBoundsException();
		if (!contains(i))			throw new NoSuchElementException("Specified index is not in the queue");
		Node<Key> x = nodes[i];
		x.key = null;				//For garbage collection
		if (x.parent != null) {
			cut(i);
		}
		head = cut(x, head);
		if (x.child != null) {
			Node<Key> child = x.child;
			x.child = null;			//For garbage collection
			x = child;
			do {
				child.parent = null;
				child = child.next;
			} while (child != x);
			head = meld(head, child);
		}
		if (!isEmpty()) consolidate();
		else 			min = null;
		nodes[i] = null;
		size--;
	}
	
	/*************************************
	 * General helper functions
	 ************************************/
	
	//Compares two keys
	private boolean greater(Key n, Key m) {
		if (n == null) return false;
		if (m == null) return true;
		return comp.compare(n,  m) > 0;
	}
	
	//Assuming root1 holds a greater key than root2, root2 becomes the new root
	private void link(Node<Key> root1, Node<Key> root2) {
		root1.parent = root2;
		root2.child = insert(root1, root2.child);
		root2.order++;
	}
	
	/*************************************
	 * Function for decreasing a key
	 ************************************/
	
	//Removes a Node from its parent's child list and insert it in the root list
	//If the parent Node already lost a child, reshapes the heap accordingly
	private void cut(int i) {
		Node<Key> x = nodes[i];
		Node<Key> parent = x.parent;
		parent.child = cut(x, parent.child);
		x.parent = null;
		parent.order--;
		head = insert(x, head);
		parent.mark = !parent.mark;
		if (!parent.mark && parent.parent != null) {
			cut(parent.index);}
	}
	
	/*************************************
	 * Function for consolidating all trees in the root list
	 ************************************/
	
	//Coalesces the roots, thus reshapes the heap
	//Caching a HashMap improves greatly performances
	private void consolidate() {
		table.clear();
		Node<Key> x = head;
		int maxOrder = 0;
		min = head;
		Node<Key> y = null, z = null;
		do {
			y = x;
			x = x.next;
			z = table.get(y.order);
			while (z != null) {
				table.remove(y.order);
				if (greater(y.key, z.key)) {
					link(y, z);
					y = z;
				} else {
					link(z, y);
				}
				z = table.get(y.order);
			}
			table.put(y.order, y);
			if (y.order > maxOrder) maxOrder = y.order;
		} while (x != head);
		head = null;
		for (Node<Key> n : table.values()) {
			min = greater(min.key, n.key) ? n : min;
			head = insert(n, head);
		}
	}
	
	/*************************************
	 * General helper functions for manipulating circular lists
	 ************************************/
	
	//Inserts a Node in a circular list containing head, returns a new head
	private Node<Key> insert(Node<Key> x, Node<Key> head) {
		if (head == null) {
			x.prev = x;
			x.next = x;
		} else {
			head.prev.next = x;
			x.next = head;
			x.prev = head.prev;
			head.prev = x;
		}
		return x;
	}
	
	//Removes a tree from the list defined by the head pointer
	private Node<Key> cut(Node<Key> x, Node<Key> head) {
		if (x.next == x) {
			x.next = null;
			x.prev = null;
			return null;
		} else {
			x.next.prev = x.prev;
			x.prev.next = x.next;
			Node<Key> res = x.next;
			x.next = null;
			x.prev = null;
			if (head == x)  return res;
			else 			return head;
		}
	}
	
	//Merges two lists together.
	private Node<Key> meld(Node<Key> x, Node<Key> y) {
		if (x == null) return y;
		if (y == null) return x;
		x.prev.next = y.next;
		y.next.prev = x.prev;
		x.prev = y;
		y.next = x;
		return x;
	}
	
	/*************************************
	 * Iterator
	 ************************************/
	
	/**
	 * Get an Iterator over the indexes in the priority queue in ascending order
	 * The Iterator does not implement the remove() method
	 * iterator() : Worst case is O(n)
	 * next() : 	Worst case is O(log(n)) (amortized)
	 * hasNext() : 	Worst case is O(1)
	 * @return an Iterator over the indexes in the priority queue in ascending order
	 */
	
	public Iterator<Integer> iterator() {
		return new MyIterator();
	}
	
	private class MyIterator implements Iterator<Integer> {
		private IndexFibonacciMinPQ<Key> copy;
		
		
		//Constructor takes linear time
		public MyIterator() {
			copy = new IndexFibonacciMinPQ<Key>(comp, n);
			for (Node<Key> x : nodes) {
				if (x != null) copy.insert(x.index, x.key);
			}
		}
		
		public void remove() {
			throw new UnsupportedOperationException();
		}
		
		public boolean hasNext() {
			return !copy.isEmpty();
		}
		
		//Takes amortized logarithmic time
		public Integer next() {
			if (!hasNext()) throw new NoSuchElementException();
			return copy.delMin();
		}
	}
	
	/***************************
	 * Comparator
	 **************************/
	
	//default Comparator
	private class MyComparator implements Comparator<Key> {
		@Override
		public int compare(Key key1, Key key2) {
			return ((Comparable<Key>) key1).compareTo(key2);
		}
	}
	
}

/******************************************************************************
 *  Copyright 2002-2016, Robert Sedgewick and Kevin Wayne.
 *
 *  This file is part of algs4.jar, which accompanies the textbook
 *
 *      Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
 *      Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
 *      http://algs4.cs.princeton.edu
 *
 *
 *  algs4.jar is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  algs4.jar is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with algs4.jar.  If not, see http://www.gnu.org/licenses.
 ******************************************************************************/