MaxPQ.java
10.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
/******************************************************************************
* Compilation: javac MaxPQ.java
* Execution: java MaxPQ < input.txt
* Dependencies: StdIn.java StdOut.java
* Data files: http://algs4.cs.princeton.edu/24pq/tinyPQ.txt
*
* Generic max priority queue implementation with a binary heap.
* Can be used with a comparator instead of the natural order,
* but the generic Key type must still be Comparable.
*
* % java MaxPQ < tinyPQ.txt
* Q X P (6 left on pq)
*
* We use a one-based array to simplify parent and child calculations.
*
* Can be optimized by replacing full exchanges with half exchanges
* (ala insertion sort).
*
******************************************************************************/
package edu.princeton.cs.algs4;
import java.util.Comparator;
import java.util.Iterator;
import java.util.NoSuchElementException;
/**
* The {@code MaxPQ} class represents a priority queue of generic keys.
* It supports the usual <em>insert</em> and <em>delete-the-maximum</em>
* operations, along with methods for peeking at the maximum key,
* testing if the priority queue is empty, and iterating through
* the keys.
* <p>
* This implementation uses a binary heap.
* The <em>insert</em> and <em>delete-the-maximum</em> operations take
* logarithmic amortized time.
* The <em>max</em>, <em>size</em>, and <em>is-empty</em> operations take constant time.
* Construction takes time proportional to the specified capacity or the number of
* items used to initialize the data structure.
* <p>
* For additional documentation, see <a href="http://algs4.cs.princeton.edu/24pq">Section 2.4</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*
* @param <Key> the generic type of key on this priority queue
*/
public class MaxPQ<Key> implements Iterable<Key> {
private Key[] pq; // store items at indices 1 to n
private int n; // number of items on priority queue
private Comparator<Key> comparator; // optional Comparator
/**
* Initializes an empty priority queue with the given initial capacity.
*
* @param initCapacity the initial capacity of this priority queue
*/
public MaxPQ(int initCapacity) {
pq = (Key[]) new Object[initCapacity + 1];
n = 0;
}
/**
* Initializes an empty priority queue.
*/
public MaxPQ() {
this(1);
}
/**
* Initializes an empty priority queue with the given initial capacity,
* using the given comparator.
*
* @param initCapacity the initial capacity of this priority queue
* @param comparator the order in which to compare the keys
*/
public MaxPQ(int initCapacity, Comparator<Key> comparator) {
this.comparator = comparator;
pq = (Key[]) new Object[initCapacity + 1];
n = 0;
}
/**
* Initializes an empty priority queue using the given comparator.
*
* @param comparator the order in which to compare the keys
*/
public MaxPQ(Comparator<Key> comparator) {
this(1, comparator);
}
/**
* Initializes a priority queue from the array of keys.
* Takes time proportional to the number of keys, using sink-based heap construction.
*
* @param keys the array of keys
*/
public MaxPQ(Key[] keys) {
n = keys.length;
pq = (Key[]) new Object[keys.length + 1];
for (int i = 0; i < n; i++)
pq[i+1] = keys[i];
for (int k = n/2; k >= 1; k--)
sink(k);
assert isMaxHeap();
}
/**
* Returns true if this priority queue is empty.
*
* @return {@code true} if this priority queue is empty;
* {@code false} otherwise
*/
public boolean isEmpty() {
return n == 0;
}
/**
* Returns the number of keys on this priority queue.
*
* @return the number of keys on this priority queue
*/
public int size() {
return n;
}
/**
* Returns a largest key on this priority queue.
*
* @return a largest key on this priority queue
* @throws NoSuchElementException if this priority queue is empty
*/
public Key max() {
if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");
return pq[1];
}
// helper function to double the size of the heap array
private void resize(int capacity) {
assert capacity > n;
Key[] temp = (Key[]) new Object[capacity];
for (int i = 1; i <= n; i++) {
temp[i] = pq[i];
}
pq = temp;
}
/**
* Adds a new key to this priority queue.
*
* @param x the new key to add to this priority queue
*/
public void insert(Key x) {
// double size of array if necessary
if (n >= pq.length - 1) resize(2 * pq.length);
// add x, and percolate it up to maintain heap invariant
pq[++n] = x;
swim(n);
assert isMaxHeap();
}
/**
* Removes and returns a largest key on this priority queue.
*
* @return a largest key on this priority queue
* @throws NoSuchElementException if this priority queue is empty
*/
public Key delMax() {
if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");
Key max = pq[1];
exch(1, n--);
sink(1);
pq[n+1] = null; // to avoid loiterig and help with garbage collection
if ((n > 0) && (n == (pq.length - 1) / 4)) resize(pq.length / 2);
assert isMaxHeap();
return max;
}
/***************************************************************************
* Helper functions to restore the heap invariant.
***************************************************************************/
private void swim(int k) {
while (k > 1 && less(k/2, k)) {
exch(k, k/2);
k = k/2;
}
}
private void sink(int k) {
while (2*k <= n) {
int j = 2*k;
if (j < n && less(j, j+1)) j++;
if (!less(k, j)) break;
exch(k, j);
k = j;
}
}
/***************************************************************************
* Helper functions for compares and swaps.
***************************************************************************/
private boolean less(int i, int j) {
if (comparator == null) {
return ((Comparable<Key>) pq[i]).compareTo(pq[j]) < 0;
}
else {
return comparator.compare(pq[i], pq[j]) < 0;
}
}
private void exch(int i, int j) {
Key swap = pq[i];
pq[i] = pq[j];
pq[j] = swap;
}
// is pq[1..N] a max heap?
private boolean isMaxHeap() {
return isMaxHeap(1);
}
// is subtree of pq[1..n] rooted at k a max heap?
private boolean isMaxHeap(int k) {
if (k > n) return true;
int left = 2*k;
int right = 2*k + 1;
if (left <= n && less(k, left)) return false;
if (right <= n && less(k, right)) return false;
return isMaxHeap(left) && isMaxHeap(right);
}
/***************************************************************************
* Iterator.
***************************************************************************/
/**
* Returns an iterator that iterates over the keys on this priority queue
* in descending order.
* The iterator doesn't implement {@code remove()} since it's optional.
*
* @return an iterator that iterates over the keys in descending order
*/
public Iterator<Key> iterator() {
return new HeapIterator();
}
private class HeapIterator implements Iterator<Key> {
// create a new pq
private MaxPQ<Key> copy;
// add all items to copy of heap
// takes linear time since already in heap order so no keys move
public HeapIterator() {
if (comparator == null) copy = new MaxPQ<Key>(size());
else copy = new MaxPQ<Key>(size(), comparator);
for (int i = 1; i <= n; i++)
copy.insert(pq[i]);
}
public boolean hasNext() { return !copy.isEmpty(); }
public void remove() { throw new UnsupportedOperationException(); }
public Key next() {
if (!hasNext()) throw new NoSuchElementException();
return copy.delMax();
}
}
/**
* Unit tests the {@code MaxPQ} data type.
*
* @param args the command-line arguments
*/
public static void main(String[] args) {
MaxPQ<String> pq = new MaxPQ<String>();
while (!StdIn.isEmpty()) {
String item = StdIn.readString();
if (!item.equals("-")) pq.insert(item);
else if (!pq.isEmpty()) StdOut.print(pq.delMax() + " ");
}
StdOut.println("(" + pq.size() + " left on pq)");
}
}
/******************************************************************************
* Copyright 2002-2016, Robert Sedgewick and Kevin Wayne.
*
* This file is part of algs4.jar, which accompanies the textbook
*
* Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
* Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
* http://algs4.cs.princeton.edu
*
*
* algs4.jar is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* algs4.jar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with algs4.jar. If not, see http://www.gnu.org/licenses.
******************************************************************************/