PatriciaSET.java
18.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
/******************************************************************************
* Compilation: javac PatriciaSET.java
* Execution: java PatriciaSET
* Dependencies: StdOut.java StdRandom.java Queue.java
* Data files: n/a
*
* A set implementation based on PATRICIA.
*
* % java PatriciaSET 1000000 1
* Creating dataset (1000000 items)...
* Shuffling...
* Adding (1000000 items)...
* Iterating...
* 1000000 items iterated
* Shuffling...
* Deleting (500000 items)...
* Iterating...
* 500000 items iterated
* Checking...
* 500000 items found and 500000 (deleted) items missing
* Deleting the rest (500000 items)...
* PASS 1 TESTS SUCCEEDED
* %
*
******************************************************************************/
package edu.princeton.cs.algs4;
import java.util.Iterator;
/**
* The {@code PatriciaSET} class provides an implementation of an
* unordered set, with the restriction that the items (keys) are of class
* {@link java.lang.String}. It supports the usual <em>add</em>,
* <em>contains</em>, <em>delete</em>, <em>size</em>, and <em>is-empty</em>
* methods. It also provides an <em>iterator</em> method for iterating over all
* the elements in the set.
* <p>
* This unordered set class implements PATRICIA (Practical Algorithm to
* Retrieve Information Coded In Alphanumeric). In spite of the acronym, string
* keys are not limited to alphanumeric content. A key may possess any string
* value, with one exception: a zero-length string is not permitted.
* <p>
* Unlike other generic set implementations that can accept a parameterized key
* type, this set class can only accommodate keys of class
* {@link java.lang.String}. This unfortunate restriction stems from a
* limitation in Java. Although Java provides excellent support for generic
* programming, the current infrastructure somewhat limits generic collection
* implementations to those that employ comparison-based or hash-based methods.
* PATRICIA does not employ comparisons or hashing; instead, it relies on
* bit-test operations. Because Java does not furnish any generic abstractions
* (or implementations) for bit-testing the contents of an object, providing
* support for generic keys using PATRICIA does not seem practical.
* <p>
* PATRICIA is a variation of a trie, and it is often classified as a
* space-optimized trie. In a classical trie, each level represents a
* subsequent digit in a key. In PATRICIA, nodes only exist to identify the
* digits (bits) that distinguish the individual keys within the trie. Because
* PATRICIA uses a radix of two, each node has only two children, like a binary
* tree. Also like a binary tree, the number of nodes, within the trie, equals
* the number of keys. Consequently, some classify PATRICIA as a tree.
* <p>
* The analysis of PATRICIA is complicated. The theoretical wost-case
* performance for an <em>add</em>, <em>contains</em>, or <em>delete</em>
* operation is <strong>O(N)</strong>, when <strong>N</strong> is less than
* <strong>W</strong> (where <strong>W</strong> is the length in bits of the
* longest key), and <strong>O(W)</strong>, when <strong>N</strong> is greater
* than <strong>W</strong>. However, the worst case is unlikely to occur with
* typical use. The average (and usual) performance of PATRICIA is
* approximately <strong>~lg N</strong> for each <em>add</em>,
* <em>contains</em>, or <em>delete</em> operation. Although this appears to
* put PATRICIA on the same footing as binary trees, this time complexity
* represents the number of single-bit test operations (under PATRICIA), and
* not full-key comparisons (as required by binary trees). After the single-bit
* tests conclude, PATRICIA requires just one full-key comparison to confirm
* the existence (or absence) of the key (per <em>add</em>, <em>contains</em>,
* or <em>delete</em> operation).
* <p>
* In practice, decent implementations of PATRICIA can often outperform
* balanced binary trees, and even hash tables. Although this particular
* implementation performs well, the source code was written with an emphasis
* on clarity, and not performance. PATRICIA performs admirably when its
* bit-testing loops are well tuned. Consider using the source code as a guide,
* should you need to produce an optimized implementation, for anther key type,
* or in another programming language.
* <p>
* Other resources for PATRICIA:<br>
* Sedgewick, R. (1990) <i>Algorithms in C</i>, Addison-Wesley<br>
* Knuth, D. (1973) <i>The Art of Computer Programming</i>, Addison-Wesley<br>
*
* @author John Hentosh (based on an implementation by Robert Sedgewick)
*/
public class PatriciaSET implements Iterable<String> {
private Node head;
private int count;
/* An inner Node class specifies the objects that hold each key. The b
* value indicates the relevant bit position.
*/
private class Node {
private Node left, right;
private String key;
private int b;
public Node(String key, int b) {
this.key = key;
this.b = b;
}
};
/**
* Initializes an empty PATRICIA-based set.
*/
/* The constructor creates a head (sentinel) node that contains a
* zero-length string.
*/
public PatriciaSET() {
head = new Node("", 0);
head.left = head;
head.right = head;
count = 0;
}
/**
* Adds the key to the set if it is not already present.
* @param key the key to add
* @throws IllegalArgumentException if {@code key} is {@code null}
* @throws IllegalArgumentException if {@code key} is the empty string.
*/
public void add(String key) {
if (key == null) throw new IllegalArgumentException("called add(null)");
if (key.length() == 0) throw new IllegalArgumentException("invalid key");
Node p;
Node x = head;
do {
p = x;
if (safeBitTest(key, x.b)) x = x.right;
else x = x.left;
} while (p.b < x.b);
if (!x.key.equals(key)) {
int b = firstDifferingBit(x.key, key);
x = head;
do {
p = x;
if (safeBitTest(key, x.b)) x = x.right;
else x = x.left;
} while (p.b < x.b && x.b < b);
Node t = new Node(key, b);
if (safeBitTest(key, b)) {
t.left = x;
t.right = t;
}
else {
t.left = t;
t.right = x;
}
if (safeBitTest(key, p.b)) p.right = t;
else p.left = t;
count++;
}
}
/**
* Does the set contain the given key?
* @param key the key
* @return {@code true} if the set contains {@code key} and
* {@code false} otherwise
* @throws IllegalArgumentException if {@code key} is {@code null}
* @throws IllegalArgumentException if {@code key} is the empty string.
*/
public boolean contains(String key) {
if (key == null) throw new IllegalArgumentException("called contains(null)");
if (key.length() == 0) throw new IllegalArgumentException("invalid key");
Node p;
Node x = head;
do {
p = x;
if (safeBitTest(key, x.b)) x = x.right;
else x = x.left;
} while (p.b < x.b);
return x.key.equals(key);
}
/**
* Removes the key from the set if the key is present.
* @param key the key
* @throws IllegalArgumentException if {@code key} is {@code null}
* @throws IllegalArgumentException if {@code key} is the empty string.
*/
public void delete(String key) {
if (key == null) throw new IllegalArgumentException("called delete(null)");
if (key.length() == 0) throw new IllegalArgumentException("invalid key");
Node g; // previous previous (grandparent)
Node p = head; // previous (parent)
Node x = head; // node to delete
do {
g = p;
p = x;
if (safeBitTest(key, x.b)) x = x.right;
else x = x.left;
} while (p.b < x.b);
if (x.key.equals(key)) {
Node z;
Node y = head;
do { // find the true parent (z) of x
z = y;
if (safeBitTest(key, y.b)) y = y.right;
else y = y.left;
} while (y != x);
if (x == p) { // case 1: remove (leaf node) x
Node c; // child of x
if (safeBitTest(key, x.b)) c = x.left;
else c = x.right;
if (safeBitTest(key, z.b)) z.right = c;
else z.left = c;
}
else { // case 2: p replaces (internal node) x
Node c; // child of p
if (safeBitTest(key, p.b)) c = p.left;
else c = p.right;
if (safeBitTest(key, g.b)) g.right = c;
else g.left = c;
if (safeBitTest(key, z.b)) z.right = p;
else z.left = p;
p.left = x.left;
p.right = x.right;
p.b = x.b;
}
count--;
}
}
/**
* Is the set empty?
* @return {@code true} if the set is empty, and {@code false}
* otherwise
*/
boolean isEmpty() {
return count == 0;
}
/**
* Returns the number of keys in the set.
* @return the number of keys in the set
*/
int size() {
return count;
}
/**
* Returns all of the keys in the set, as an iterator.
* To iterate over all of the keys in a set named {@code set}, use the
* foreach notation: {@code for (Key key : set)}.
* @return an iterator to all of the keys in the set
*/
public Iterator<String> iterator() {
Queue<String> queue = new Queue<String>();
if (head.left != head) collect(head.left, 0, queue);
if (head.right != head) collect(head.right, 0, queue);
return queue.iterator();
}
private void collect(Node x, int b, Queue<String> queue) {
if (x.b > b) {
collect(x.left, x.b, queue);
queue.enqueue(x.key);
collect(x.right, x.b, queue);
}
}
/**
* Returns a string representation of this set.
* @return a string representation of this set, with the keys separated
* by single spaces
*/
public String toString() {
StringBuilder s = new StringBuilder();
for (String key : this) s.append(key + " ");
if (s.length() > 0) s.deleteCharAt(s.length() - 1);
return s.toString();
}
/* The safeBitTest function logically appends a terminating sequence (when
* required) to extend (logically) the string beyond its length.
*
* The inner loops of the get and put methods flow much better when they
* are not concerned with the lengths of strings, so a trick is employed to
* allow the get and put methods to view every string as an "infinite"
* sequence of bits. Logically, every string gets a '\uffff' character,
* followed by an "infinite" sequence of '\u0000' characters, appended to
* the end.
*
* Note that the '\uffff' character serves to mark the end of the string,
* and it is necessary. Simply padding with '\u0000' is insufficient to
* make all unique Unicode strings "look" unique to the get and put methods
* (because these methods do not regard string lengths).
*/
private static boolean safeBitTest(String key, int b) {
if (b < key.length() * 16) return bitTest(key, b) != 0;
if (b > key.length() * 16 + 15) return false; // padding
/* 16 bits of 0xffff */ return true; // end marker
}
private static int bitTest(String key, int b) {
return (key.charAt(b >>> 4) >>> (b & 0xf)) & 1;
}
/* Like the safeBitTest function, the safeCharAt function makes every
* string look like an "infinite" sequence of characters. Logically, every
* string gets a '\uffff' character, followed by an "infinite" sequence of
* '\u0000' characters, appended to the end.
*/
private static int safeCharAt(String key, int i) {
if (i < key.length()) return key.charAt(i);
if (i > key.length()) return 0x0000; // padding
else return 0xffff; // end marker
}
/* For efficiency's sake, the firstDifferingBit function compares entire
* characters first, and then considers the individual bits (once it finds
* two characters that do not match). Also, the least significant bits of
* an individual character are examined first. There are many Unicode
* alphabets where most (if not all) of the "action" occurs in the least
* significant bits.
*
* Notice that the very first character comparison excludes the
* least-significant bit. The firstDifferingBit function must never return
* zero; otherwise, a node would become created as a child to the head
* (sentinel) node that matches the bit-index value (zero) stored in the
* head node. This would violate the invariant that bit-index values
* increase as you descend into the trie.
*/
private static int firstDifferingBit(String k1, String k2) {
int i = 0;
int c1 = safeCharAt(k1, 0) & ~1;
int c2 = safeCharAt(k2, 0) & ~1;
if (c1 == c2) {
i = 1;
while (safeCharAt(k1, i) == safeCharAt(k2, i)) i++;
c1 = safeCharAt(k1, i);
c2 = safeCharAt(k2, i);
}
int b = 0;
while (((c1 >>> b) & 1) == ((c2 >>> b) & 1)) b++;
return i * 16 + b;
}
/**
* Unit tests the {@code PatriciaSET} data type.
* This test fixture runs a series of tests on a randomly generated dataset.
* You may specify up to two integer parameters on the command line. The
* first parameter indicates the size of the dataset. The second parameter
* controls the number of passes (a new random dataset becomes generated at
* the start of each pass).
*
* @param args the command-line arguments
*/
public static void main(String[] args) {
PatriciaSET set = new PatriciaSET();
int limitItem = 1000000;
int limitPass = 1;
int countPass = 0;
boolean ok = true;
if (args.length > 0) limitItem = Integer.parseInt(args[0]);
if (args.length > 1) limitPass = Integer.parseInt(args[1]);
do {
String[] a = new String[limitItem];
StdOut.printf("Creating dataset (%d items)...\n", limitItem);
for (int i = 0; i < limitItem; i++)
a[i] = Integer.toString(i, 16);
StdOut.printf("Shuffling...\n");
StdRandom.shuffle(a);
StdOut.printf("Adding (%d items)...\n", limitItem);
for (int i = 0; i < limitItem; i++)
set.add(a[i]);
int countItems = 0;
StdOut.printf("Iterating...\n");
for (String key : set) countItems++;
StdOut.printf("%d items iterated\n", countItems);
if (countItems != limitItem) ok = false;
if (countItems != set.size()) ok = false;
StdOut.printf("Shuffling...\n");
StdRandom.shuffle(a);
int limitDelete = limitItem / 2;
StdOut.printf("Deleting (%d items)...\n", limitDelete);
for (int i = 0; i < limitDelete; i++)
set.delete(a[i]);
countItems = 0;
StdOut.printf("Iterating...\n");
for (String key : set) countItems++;
StdOut.printf("%d items iterated\n", countItems);
if (countItems != limitItem - limitDelete) ok = false;
if (countItems != set.size()) ok = false;
int countDelete = 0;
int countRemain = 0;
StdOut.printf("Checking...\n");
for (int i = 0; i < limitItem; i++) {
if (i < limitDelete) {
if (!set.contains(a[i])) countDelete++;
}
else {
if (set.contains(a[i])) countRemain++;
}
}
StdOut.printf("%d items found and %d (deleted) items missing\n",
countRemain, countDelete);
if (countRemain + countDelete != limitItem) ok = false;
if (countRemain != set.size()) ok = false;
if (set.isEmpty()) ok = false;
StdOut.printf("Deleting the rest (%d items)...\n",
limitItem - countDelete);
for (int i = countDelete; i < limitItem; i++)
set.delete(a[i]);
if (!set.isEmpty()) ok = false;
countPass++;
if (ok) StdOut.printf("PASS %d TESTS SUCCEEDED\n", countPass);
else StdOut.printf("PASS %d TESTS FAILED\n", countPass);
} while (ok && countPass < limitPass);
if (!ok) throw new java.lang.RuntimeException("TESTS FAILED");
}
}
/******************************************************************************
* Copyright 2002-2016, Robert Sedgewick and Kevin Wayne.
*
* This file is part of algs4.jar, which accompanies the textbook
*
* Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
* Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
* http://algs4.cs.princeton.edu
*
*
* algs4.jar is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* algs4.jar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with algs4.jar. If not, see http://www.gnu.org/licenses.
******************************************************************************/