PatriciaST.java 19.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
/******************************************************************************
 *  Compilation:  javac PatriciaST.java
 *  Execution:    java PatriciaST
 *  Dependencies: StdOut.java StdRandom.java Queue.java
 *  Data files:   n/a
 *
 *  A symbol table implementation based on PATRICIA.
 *
 *  % java PatriciaST 1000000 1
 *  Creating dataset (1000000 items)...
 *  Shuffling...
 *  Adding (1000000 items)...
 *  Iterating...
 *  1000000 items iterated
 *  Shuffling...
 *  Deleting (500000 items)...
 *  Iterating...
 *  500000 items iterated
 *  Checking...
 *  500000 items found and 500000 (deleted) items missing
 *  Deleting the rest (500000 items)...
 *  PASS 1 TESTS SUCCEEDED
 *  %
 *
 ******************************************************************************/

package edu.princeton.cs.algs4;

/**
 *  The {@code PatriciaST} class provides an implementation of an unordered
 *  symbol table of key-value pairs, with the restriction that the key is of
 *  class {@link java.lang.String}. It supports the usual <em>put</em>,
 *  <em>get</em>, <em>contains</em>, <em>delete</em>, <em>size</em>, and
 *  <em>is-empty</em> methods. It also provides a <em>keys</em> method for
 *  iterating over all of the keys. A symbol table implements the
 *  <em>associative array</em> abstraction: when associating a value with a key
 *  that is already in the symbol table, the convention is to replace the old
 *  value with the new value. Unlike {@link java.util.Map}, this class uses the
 *  convention that values cannot be {@code null}—setting the value
 *  associated with a key to {@code null} is equivalent to deleting the key
 *  from the symbol table.
 *  <p>
 *  This unordered symbol table class implements PATRICIA (Practical Algorithm
 *  to Retrieve Information Coded In Alphanumeric). In spite of the acronym,
 *  string keys are not limited to alphanumeric content. A key may possess any
 *  string value, except for the string of zero length (the empty string).
 *  <p>
 *  Unlike other generic symbol table implementations that can accept a
 *  parameterized key type, this symbol table class can only accommodate keys
 *  of class {@link java.lang.String}. This unfortunate restriction stems from a
 *  limitation in Java. Although Java provides excellent support for generic
 *  programming, the current infrastructure somewhat limits generic collection
 *  implementations to those that employ comparison-based or hash-based methods.
 *  PATRICIA does not employ comparisons or hashing; instead, it relies on
 *  bit-test operations. Because Java does not furnish any generic abstractions
 *  (or implementations) for bit-testing the contents of an object, providing
 *  support for generic keys using PATRICIA does not seem practical.
 *  <p>
 *  PATRICIA is a variation of a trie, and it is often classified as a
 *  space-optimized trie. In a classical trie, each level represents a
 *  subsequent digit in a key. In PATRICIA, nodes only exist to identify the
 *  digits (bits) that distinguish the individual keys within the trie. Because
 *  PATRICIA uses a radix of two, each node has only two children, like a binary
 *  tree. Also like a binary tree, the number of nodes, within the trie, equals
 *  the number of keys. Consequently, some classify PATRICIA as a tree.
 *  <p>
 *  The analysis of PATRICIA is complicated. The theoretical wost-case
 *  performance for a <em>get</em>, <em>put</em>, or <em>delete</em> operation
 *  is <strong>O(N)</strong>, when <strong>N</strong> is less than
 *  <strong>W</strong> (where <strong>W</strong> is the length in bits of the
 *  longest key), and <strong>O(W)</strong>, when <strong>N</strong> is greater
 *  than <strong>W</strong>. However, the worst case is unlikely to occur with
 *  typical use. The average (and usual) performance of PATRICIA is
 *  approximately <strong>~lg N</strong> for each <em>get</em>, <em>put</em>, or
 *  <em>delete</em> operation. Although this appears to put PATRICIA on the same
 *  footing as binary trees, this time complexity represents the number of
 *  single-bit test operations (under PATRICIA), and not full-key comparisons
 *  (as required by binary trees). After the single-bit tests conclude, PATRICIA
 *  requires just one full-key comparison to confirm the existence (or absence)
 *  of the key (per <em>get</em>, <em>put</em>, or <em>delete</em> operation).
 *  <p>
 *  In practice, decent implementations of PATRICIA can often outperform
 *  balanced binary trees, and even hash tables. Although this particular
 *  implementation performs well, the source code was written with an emphasis
 *  on clarity, and not performance. PATRICIA performs admirably when its
 *  bit-testing loops are well tuned. Consider using the source code as a guide,
 *  should you need to produce an optimized implementation, for anther key type,
 *  or in another programming language.
 *  <p>
 *  Other resources for PATRICIA:<br>
 *  Sedgewick, R. (1990) <i>Algorithms in C</i>, Addison-Wesley<br>
 *  Knuth, D. (1973) <i>The Art of Computer Programming</i>, Addison-Wesley<br>
 *
 *  @author John Hentosh (based on an implementation by Robert Sedgewick)
 */
public class PatriciaST<Value> {
    private Node head;
    private int count;

    /* An inner Node class specifies the objects that hold each key-value pair.
     * The b value indicates the relevant bit position.
     */
    private class Node {
        private Node left, right;
        private String key;
        private Value val;
        private int b;

        public Node(String key, Value val, int b) {
            this.key = key;
            this.val = val;
            this.b = b;
        }
    };

    /**
     * Initializes an empty PATRICIA-based symbol table.
     */
    /* The constructor creates a head (sentinel) node that contains a
     * zero-length string.
     */
    public PatriciaST() {
        head = new Node("", null, 0);
        head.left = head;
        head.right = head;
        count = 0;
    }

    /**
     * Places a key-value pair into the symbol table. If the table already
     * contains the specified key, then its associated value becomes updated.
     * If the value provided is {@code null}, then the key becomes removed
     * from the symbol table.
     * @param key the key
     * @param val the value
     * @throws IllegalArgumentException if {@code key} is {@code null}
     * @throws IllegalArgumentException if {@code key} is the empty string.
     */
    public void put(String key, Value val) {
        if (key == null) throw new IllegalArgumentException("called put(null)");
        if (key.length() == 0) throw new IllegalArgumentException("invalid key");
        if (val == null) delete(key);
        Node p;
        Node x = head;
        do {
            p = x;
            if (safeBitTest(key, x.b)) x = x.right;
            else                       x = x.left;
        } while (p.b < x.b);
        if (!x.key.equals(key)) {
            int b = firstDifferingBit(x.key, key);
            x = head;
            do {
                p = x;
                if (safeBitTest(key, x.b)) x = x.right;
                else                       x = x.left;
            } while (p.b < x.b && x.b < b);
            Node t = new Node(key, val, b);
            if (safeBitTest(key, b)) {
                t.left  = x;
                t.right = t;
            }
            else {
                t.left  = t;
                t.right = x;
            }
            if (safeBitTest(key, p.b)) p.right = t;
            else                       p.left  = t;
            count++;
        }
        else x.val = val;
    }

    /**
     * Retrieves the value associated with the given key.
     * @param key the key
     * @return the value associated with the given key if the key is in the
     * symbol table and {@code null} if the key is not in the symbol table
     * @throws IllegalArgumentException if {@code key} is {@code null}
     * @throws IllegalArgumentException if {@code key} is the empty string.
     */
    public Value get(String key) {
        if (key == null) throw new IllegalArgumentException("called get(null)");
        if (key.length() == 0) throw new IllegalArgumentException("invalid key");
        Node p;
        Node x = head;
        do {
            p = x;
            if (safeBitTest(key, x.b)) x = x.right;
            else                       x = x.left;
        } while (p.b < x.b);
        if (x.key.equals(key)) return x.val;
        else                   return null;
    }

    /**
     * Removes a key and its associated value from the symbol table, if it
     * exists.
     * @param key the key
     * @throws IllegalArgumentException if {@code key} is {@code null}
     * @throws IllegalArgumentException if {@code key} is the empty string.
     */
    public void delete(String key) {
        if (key == null) throw new IllegalArgumentException("called delete(null)");
        if (key.length() == 0) throw new IllegalArgumentException("invalid key");
        Node g;             // previous previous (grandparent)
        Node p = head;      // previous (parent)
        Node x = head;      // node to delete
        do {
            g = p;
            p = x;
            if (safeBitTest(key, x.b)) x = x.right;
            else                       x = x.left;
        } while (p.b < x.b);
        if (x.key.equals(key)) {
            Node z;
            Node y = head;
            do {            // find the true parent (z) of x
                z = y;
                if (safeBitTest(key, y.b)) y = y.right;
                else                       y = y.left;
            } while (y != x);
            if (x == p) {   // case 1: remove (leaf node) x
                Node c;     // child of x
                if (safeBitTest(key, x.b)) c = x.left;
                else                       c = x.right;
                if (safeBitTest(key, z.b)) z.right = c;
                else                       z.left  = c;
            }
            else {          // case 2: p replaces (internal node) x
                Node c;     // child of p
                if (safeBitTest(key, p.b)) c = p.left;
                else                       c = p.right;
                if (safeBitTest(key, g.b)) g.right = c;
                else                       g.left  = c;
                if (safeBitTest(key, z.b)) z.right = p;
                else                       z.left  = p;
                p.left = x.left;
                p.right = x.right;
                p.b = x.b;
            }
            count--;
        }
    }

    /**
     * Returns {@code true} if the key-value pair, specified by the given
     * key, exists within the symbol table.
     * @param key the key
     * @return {@code true} if this symbol table contains the given
     * {@code key} and {@code false} otherwise
     * @throws IllegalArgumentException if {@code key} is {@code null}
     * @throws IllegalArgumentException if {@code key} is the empty string.
     */
    public boolean contains(String key) {
        return get(key) != null;
    }

    /**
     * Returns {@code true} if the symbol table is empty.
     * @return {@code true} if this symbol table is empty and
     * {@code false} otherwise
     */
    boolean isEmpty() {
        return count == 0;
    }

    /**
     * Returns the number of key-value pairs within the symbol table.
     * @return the number of key-value pairs within this symbol table
     */
    int size() {
        return count;
    }

    /**
     * Returns all keys in the symbol table as an {@code Iterable}.
     * To iterate over all of the keys in the symbol table named
     * {@code st}, use the foreach notation:
     * {@code for (Key key : st.keys())}.
     * @return all keys in the symbol table as an {@code Iterable}
     */
    public Iterable<String> keys() {
        Queue<String> queue = new Queue<String>();
        if (head.left  != head) keys(head.left,  0, queue);
        if (head.right != head) keys(head.right, 0, queue);
        return queue;
    }

    private void keys(Node x, int b, Queue<String> queue) {
        if (x.b > b) {
            keys(x.left, x.b, queue);
            queue.enqueue(x.key);
            keys(x.right, x.b, queue);
        }
    }

    /* The safeBitTest function logically appends a terminating sequence (when
     * required) to extend (logically) the string beyond its length.
     *
     * The inner loops of the get and put methods flow much better when they
     * are not concerned with the lengths of strings, so a trick is employed to
     * allow the get and put methods to view every string as an "infinite"
     * sequence of bits. Logically, every string gets a '\uffff' character,
     * followed by an "infinite" sequence of '\u0000' characters, appended to
     * the end.
     *
     * Note that the '\uffff' character serves to mark the end of the string,
     * and it is necessary. Simply padding with '\u0000' is insufficient to
     * make all unique Unicode strings "look" unique to the get and put methods
     * (because these methods do not regard string lengths).
     */
    private static boolean safeBitTest(String key, int b) {
        if (b < key.length() * 16)      return bitTest(key, b) != 0;
        if (b > key.length() * 16 + 15) return false;   // padding
        /* 16 bits of 0xffff */         return true;    // end marker
    }

    private static int bitTest(String key, int b) {
        return (key.charAt(b >>> 4) >>> (b & 0xf)) & 1;
    }

    /* Like the safeBitTest function, the safeCharAt function makes every
     * string look like an "infinite" sequence of characters. Logically, every
     * string gets a '\uffff' character, followed by an "infinite" sequence of
     * '\u0000' characters, appended to the end.
     */
    private static int safeCharAt(String key, int i) {
        if (i < key.length()) return key.charAt(i);
        if (i > key.length()) return 0x0000;            // padding
        else                  return 0xffff;            // end marker
    }

    /* For efficiency's sake, the firstDifferingBit function compares entire
     * characters first, and then considers the individual bits (once it finds
     * two characters that do not match). Also, the least significant bits of
     * an individual character are examined first. There are many Unicode
     * alphabets where most (if not all) of the "action" occurs in the least
     * significant bits.
     *
     * Notice that the very first character comparison excludes the
     * least-significant bit. The firstDifferingBit function must never return
     * zero; otherwise, a node would become created as a child to the head
     * (sentinel) node that matches the bit-index value (zero) stored in the
     * head node. This would violate the invariant that bit-index values
     * increase as you descend into the trie.
     */
    private static int firstDifferingBit(String k1, String k2) {
        int i = 0;
        int c1 = safeCharAt(k1, 0) & ~1;
        int c2 = safeCharAt(k2, 0) & ~1;
        if (c1 == c2) {
            i = 1;
            while (safeCharAt(k1, i) == safeCharAt(k2, i)) i++;
            c1 = safeCharAt(k1, i);
            c2 = safeCharAt(k2, i);
        }
        int b = 0;
        while (((c1 >>> b) & 1) == ((c2 >>> b) & 1)) b++;
        return i * 16 + b;
    }

    /**
     * Unit tests the {@code PatriciaST} data type.
     * This test fixture runs a series of tests on a randomly generated dataset.
     * You may specify up to two integer parameters on the command line. The
     * first parameter indicates the size of the dataset. The second parameter
     * controls the number of passes (a new random dataset becomes generated at
     * the start of each pass).
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {
        PatriciaST<Integer> st = new PatriciaST<Integer>();
        int limitItem = 1000000;
        int limitPass = 1;
        int countPass = 0;
        boolean ok = true;

        if (args.length > 0) limitItem = Integer.parseInt(args[0]);
        if (args.length > 1) limitPass = Integer.parseInt(args[1]);

        do {
            String[] a = new String[limitItem];
            int[]    v = new int[limitItem];

            StdOut.printf("Creating dataset (%d items)...\n", limitItem);
            for (int i = 0; i < limitItem; i++) {
                a[i] = Integer.toString(i, 16);
                v[i] = i;
            }

            StdOut.printf("Shuffling...\n");
            StdRandom.shuffle(v);

            StdOut.printf("Adding (%d items)...\n", limitItem);
            for (int i = 0; i < limitItem; i++)
                st.put(a[v[i]], v[i]);

            int countKeys = 0;
            StdOut.printf("Iterating...\n");
            for (String key : st.keys()) countKeys++;
            StdOut.printf("%d items iterated\n", countKeys);
            if (countKeys != limitItem) ok = false;
            if (countKeys != st.size()) ok = false;

            StdOut.printf("Shuffling...\n");
            StdRandom.shuffle(v);

            int limitDelete = limitItem / 2;
            StdOut.printf("Deleting (%d items)...\n", limitDelete);
            for (int i = 0; i < limitDelete; i++)
                st.delete(a[v[i]]);

            countKeys = 0;
            StdOut.printf("Iterating...\n");
            for (String key : st.keys()) countKeys++;
            StdOut.printf("%d items iterated\n", countKeys);
            if (countKeys != limitItem - limitDelete) ok = false;
            if (countKeys != st.size())               ok = false;

            int countDelete = 0;
            int countRemain = 0;
            StdOut.printf("Checking...\n");
            for (int i = 0; i < limitItem; i++) {
                if (i < limitDelete) {
                    if (!st.contains(a[v[i]])) countDelete++;
                }
                else {
                    int val = st.get(a[v[i]]);
                    if (val == v[i]) countRemain++;
                }
            }
            StdOut.printf("%d items found and %d (deleted) items missing\n",
                countRemain, countDelete);
            if (countRemain + countDelete != limitItem) ok = false;
            if (countRemain               != st.size()) ok = false;
            if (st.isEmpty())                           ok = false;

            StdOut.printf("Deleting the rest (%d items)...\n",
                limitItem - countDelete);
            for (int i = countDelete; i < limitItem; i++)
                st.delete(a[v[i]]);
            if (!st.isEmpty()) ok = false;

            countPass++;
            if (ok) StdOut.printf("PASS %d TESTS SUCCEEDED\n", countPass);
            else    StdOut.printf("PASS %d TESTS FAILED\n",    countPass);
        } while (ok && countPass < limitPass);

        if (!ok) throw new java.lang.RuntimeException("TESTS FAILED");
    }
}

/******************************************************************************
 *  Copyright 2002-2016, Robert Sedgewick and Kevin Wayne.
 *
 *  This file is part of algs4.jar, which accompanies the textbook
 *
 *      Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
 *      Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
 *      http://algs4.cs.princeton.edu
 *
 *
 *  algs4.jar is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  algs4.jar is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with algs4.jar.  If not, see http://www.gnu.org/licenses.
 ******************************************************************************/