BipartiteX.java
8.64 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/******************************************************************************
* Compilation: javac BipartiteX.java
* Execution: java Bipartite V E F
* Dependencies: Graph.java
*
* Given a graph, find either (i) a bipartition or (ii) an odd-length cycle.
* Runs in O(E + V) time.
*
*
******************************************************************************/
package edu.princeton.cs.algs4;
/**
* The {@code BipartiteX} class represents a data type for
* determining whether an undirected graph is bipartite or whether
* it has an odd-length cycle.
* The <em>isBipartite</em> operation determines whether the graph is
* bipartite. If so, the <em>color</em> operation determines a
* bipartition; if not, the <em>oddCycle</em> operation determines a
* cycle with an odd number of edges.
* <p>
* This implementation uses breadth-first search and is nonrecursive.
* The constructor takes time proportional to <em>V</em> + <em>E</em>
* (in the worst case),
* where <em>V</em> is the number of vertices and <em>E</em> is the number of edges.
* Afterwards, the <em>isBipartite</em> and <em>color</em> operations
* take constant time; the <em>oddCycle</em> operation takes time proportional
* to the length of the cycle.
* See {@link Bipartite} for a recursive version that uses depth-first search.
* <p>
* For additional documentation,
* see <a href="http://algs4.cs.princeton.edu/41graph">Section 4.1</a>
* of <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class BipartiteX {
private static final boolean WHITE = false;
private static final boolean BLACK = true;
private boolean isBipartite; // is the graph bipartite?
private boolean[] color; // color[v] gives vertices on one side of bipartition
private boolean[] marked; // marked[v] = true if v has been visited in DFS
private int[] edgeTo; // edgeTo[v] = last edge on path to v
private Queue<Integer> cycle; // odd-length cycle
/**
* Determines whether an undirected graph is bipartite and finds either a
* bipartition or an odd-length cycle.
*
* @param G the graph
*/
public BipartiteX(Graph G) {
isBipartite = true;
color = new boolean[G.V()];
marked = new boolean[G.V()];
edgeTo = new int[G.V()];
for (int v = 0; v < G.V() && isBipartite; v++) {
if (!marked[v]) {
bfs(G, v);
}
}
assert check(G);
}
private void bfs(Graph G, int s) {
Queue<Integer> q = new Queue<Integer>();
color[s] = WHITE;
marked[s] = true;
q.enqueue(s);
while (!q.isEmpty()) {
int v = q.dequeue();
for (int w : G.adj(v)) {
if (!marked[w]) {
marked[w] = true;
edgeTo[w] = v;
color[w] = !color[v];
q.enqueue(w);
}
else if (color[w] == color[v]) {
isBipartite = false;
// to form odd cycle, consider s-v path and s-w path
// and let x be closest node to v and w common to two paths
// then (w-x path) + (x-v path) + (edge v-w) is an odd-length cycle
// Note: distTo[v] == distTo[w];
cycle = new Queue<Integer>();
Stack<Integer> stack = new Stack<Integer>();
int x = v, y = w;
while (x != y) {
stack.push(x);
cycle.enqueue(y);
x = edgeTo[x];
y = edgeTo[y];
}
stack.push(x);
while (!stack.isEmpty())
cycle.enqueue(stack.pop());
cycle.enqueue(w);
return;
}
}
}
}
/**
* Returns true if the graph is bipartite.
*
* @return {@code true} if the graph is bipartite; {@code false} otherwise
*/
public boolean isBipartite() {
return isBipartite;
}
/**
* Returns the side of the bipartite that vertex {@code v} is on.
*
* @param v the vertex
* @return the side of the bipartition that vertex {@code v} is on; two vertices
* are in the same side of the bipartition if and only if they have the
* same color
* @throws IllegalArgumentException unless {@code 0 <= v < V}
* @throws UnsupportedOperationException if this method is called when the graph
* is not bipartite
*/
public boolean color(int v) {
validateVertex(v);
if (!isBipartite)
throw new UnsupportedOperationException("Graph is not bipartite");
return color[v];
}
/**
* Returns an odd-length cycle if the graph is not bipartite, and
* {@code null} otherwise.
*
* @return an odd-length cycle if the graph is not bipartite
* (and hence has an odd-length cycle), and {@code null}
* otherwise
*/
public Iterable<Integer> oddCycle() {
return cycle;
}
private boolean check(Graph G) {
// graph is bipartite
if (isBipartite) {
for (int v = 0; v < G.V(); v++) {
for (int w : G.adj(v)) {
if (color[v] == color[w]) {
System.err.printf("edge %d-%d with %d and %d in same side of bipartition\n", v, w, v, w);
return false;
}
}
}
}
// graph has an odd-length cycle
else {
// verify cycle
int first = -1, last = -1;
for (int v : oddCycle()) {
if (first == -1) first = v;
last = v;
}
if (first != last) {
System.err.printf("cycle begins with %d and ends with %d\n", first, last);
return false;
}
}
return true;
}
// throw an IllegalArgumentException unless {@code 0 <= v < V}
private void validateVertex(int v) {
int V = marked.length;
if (v < 0 || v >= V)
throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1));
}
/**
* Unit tests the {@code BipartiteX} data type.
*
* @param args the command-line arguments
*/
public static void main(String[] args) {
int V1 = Integer.parseInt(args[0]);
int V2 = Integer.parseInt(args[1]);
int E = Integer.parseInt(args[2]);
int F = Integer.parseInt(args[3]);
// create random bipartite graph with V1 vertices on left side,
// V2 vertices on right side, and E edges; then add F random edges
Graph G = GraphGenerator.bipartite(V1, V2, E);
for (int i = 0; i < F; i++) {
int v = StdRandom.uniform(V1 + V2);
int w = StdRandom.uniform(V1 + V2);
G.addEdge(v, w);
}
StdOut.println(G);
BipartiteX b = new BipartiteX(G);
if (b.isBipartite()) {
StdOut.println("Graph is bipartite");
for (int v = 0; v < G.V(); v++) {
StdOut.println(v + ": " + b.color(v));
}
}
else {
StdOut.print("Graph has an odd-length cycle: ");
for (int x : b.oddCycle()) {
StdOut.print(x + " ");
}
StdOut.println();
}
}
}
/******************************************************************************
* Copyright 2002-2016, Robert Sedgewick and Kevin Wayne.
*
* This file is part of algs4.jar, which accompanies the textbook
*
* Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
* Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
* http://algs4.cs.princeton.edu
*
*
* algs4.jar is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* algs4.jar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with algs4.jar. If not, see http://www.gnu.org/licenses.
******************************************************************************/