DigraphGenerator.java 18.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
/******************************************************************************
 *  Compilation:  javac DigraphGenerator.java
 *  Execution:    java DigraphGenerator V E
 *  Dependencies: Digraph.java
 *
 *  A digraph generator.
 *  
 ******************************************************************************/

package edu.princeton.cs.algs4;

/**
 *  The {@code DigraphGenerator} class provides static methods for creating
 *  various digraphs, including Erdos-Renyi random digraphs, random DAGs,
 *  random rooted trees, random rooted DAGs, random tournaments, path digraphs,
 *  cycle digraphs, and the complete digraph.
 *  <p>
 *  For additional documentation, see <a href="http://algs4.cs.princeton.edu/42digraph">Section 4.2</a> of
 *  <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
 *
 *  @author Robert Sedgewick
 *  @author Kevin Wayne
 */
public class DigraphGenerator {
    private static final class Edge implements Comparable<Edge> {
        private final int v;
        private final int w;

        private Edge(int v, int w) {
            this.v = v;
            this.w = w;
        }

        public int compareTo(Edge that) {
            if (this.v < that.v) return -1;
            if (this.v > that.v) return +1;
            if (this.w < that.w) return -1;
            if (this.w > that.w) return +1;
            return 0;
        }
    }

    // this class cannot be instantiated
    private DigraphGenerator() { }

    /**
     * Returns a random simple digraph containing {@code V} vertices and {@code E} edges.
     * @param V the number of vertices
     * @param E the number of vertices
     * @return a random simple digraph on {@code V} vertices, containing a total
     *     of {@code E} edges
     * @throws IllegalArgumentException if no such simple digraph exists
     */
    public static Digraph simple(int V, int E) {
        if (E > (long) V*(V-1)) throw new IllegalArgumentException("Too many edges");
        if (E < 0)              throw new IllegalArgumentException("Too few edges");
        Digraph G = new Digraph(V);
        SET<Edge> set = new SET<Edge>();
        while (G.E() < E) {
            int v = StdRandom.uniform(V);
            int w = StdRandom.uniform(V);
            Edge e = new Edge(v, w);
            if ((v != w) && !set.contains(e)) {
                set.add(e);
                G.addEdge(v, w);
            }
        }
        return G;
    }

   /**
     * Returns a random simple digraph on {@code V} vertices, with an 
     * edge between any two vertices with probability {@code p}. This is sometimes
     * referred to as the Erdos-Renyi random digraph model.
     * This implementations takes time propotional to V^2 (even if {@code p} is small).
     * @param V the number of vertices
     * @param p the probability of choosing an edge
     * @return a random simple digraph on {@code V} vertices, with an edge between
     *     any two vertices with probability {@code p}
     * @throws IllegalArgumentException if probability is not between 0 and 1
     */
    public static Digraph simple(int V, double p) {
        if (p < 0.0 || p > 1.0)
            throw new IllegalArgumentException("Probability must be between 0 and 1");
        Digraph G = new Digraph(V);
        for (int v = 0; v < V; v++)
            for (int w = 0; w < V; w++)
                if (v != w)
                    if (StdRandom.bernoulli(p))
                        G.addEdge(v, w);
        return G;
    }

    /**
     * Returns the complete digraph on {@code V} vertices.
     * @param V the number of vertices
     * @return the complete digraph on {@code V} vertices
     */
    public static Digraph complete(int V) {
        return simple(V, V*(V-1));
    }

    /**
     * Returns a random simple DAG containing {@code V} vertices and {@code E} edges.
     * Note: it is not uniformly selected at random among all such DAGs.
     * @param V the number of vertices
     * @param E the number of vertices
     * @return a random simple DAG on {@code V} vertices, containing a total
     *     of {@code E} edges
     * @throws IllegalArgumentException if no such simple DAG exists
     */
    public static Digraph dag(int V, int E) {
        if (E > (long) V*(V-1) / 2) throw new IllegalArgumentException("Too many edges");
        if (E < 0)                  throw new IllegalArgumentException("Too few edges");
        Digraph G = new Digraph(V);
        SET<Edge> set = new SET<Edge>();
        int[] vertices = new int[V];
        for (int i = 0; i < V; i++)
            vertices[i] = i;
        StdRandom.shuffle(vertices);
        while (G.E() < E) {
            int v = StdRandom.uniform(V);
            int w = StdRandom.uniform(V);
            Edge e = new Edge(v, w);
            if ((v < w) && !set.contains(e)) {
                set.add(e);
                G.addEdge(vertices[v], vertices[w]);
            }
        }
        return G;
    }

    // tournament
    /**
     * Returns a random tournament digraph on {@code V} vertices. A tournament digraph
     * is a DAG in which for every two vertices, there is one directed edge.
     * A tournament is an oriented complete graph.
     * @param V the number of vertices
     * @return a random tournament digraph on {@code V} vertices
     */
    public static Digraph tournament(int V) {
        Digraph G = new Digraph(V);
        for (int v = 0; v < G.V(); v++) {
            for (int w = v+1; w < G.V(); w++) {
                if (StdRandom.bernoulli(0.5)) G.addEdge(v, w);
                else                          G.addEdge(w, v);
            }
        }
        return G;
    }

    /**
     * Returns a random rooted-in DAG on {@code V} vertices and {@code E} edges.
     * A rooted in-tree is a DAG in which there is a single vertex
     * reachable from every other vertex.
     * The DAG returned is not chosen uniformly at random among all such DAGs.
     * @param V the number of vertices
     * @param E the number of edges
     * @return a random rooted-in DAG on {@code V} vertices and {@code E} edges
     */
    public static Digraph rootedInDAG(int V, int E) {
        if (E > (long) V*(V-1) / 2) throw new IllegalArgumentException("Too many edges");
        if (E < V-1)                throw new IllegalArgumentException("Too few edges");
        Digraph G = new Digraph(V);
        SET<Edge> set = new SET<Edge>();

        // fix a topological order
        int[] vertices = new int[V];
        for (int i = 0; i < V; i++)
            vertices[i] = i;
        StdRandom.shuffle(vertices);

        // one edge pointing from each vertex, other than the root = vertices[V-1]
        for (int v = 0; v < V-1; v++) {
            int w = StdRandom.uniform(v+1, V);
            Edge e = new Edge(v, w);
            set.add(e);
            G.addEdge(vertices[v], vertices[w]);
        }

        while (G.E() < E) {
            int v = StdRandom.uniform(V);
            int w = StdRandom.uniform(V);
            Edge e = new Edge(v, w);
            if ((v < w) && !set.contains(e)) {
                set.add(e);
                G.addEdge(vertices[v], vertices[w]);
            }
        }
        return G;
    }

    /**
     * Returns a random rooted-out DAG on {@code V} vertices and {@code E} edges.
     * A rooted out-tree is a DAG in which every vertex is reachable from a
     * single vertex.
     * The DAG returned is not chosen uniformly at random among all such DAGs.
     * @param V the number of vertices
     * @param E the number of edges
     * @return a random rooted-out DAG on {@code V} vertices and {@code E} edges
     */
    public static Digraph rootedOutDAG(int V, int E) {
        if (E > (long) V*(V-1) / 2) throw new IllegalArgumentException("Too many edges");
        if (E < V-1)                throw new IllegalArgumentException("Too few edges");
        Digraph G = new Digraph(V);
        SET<Edge> set = new SET<Edge>();

        // fix a topological order
        int[] vertices = new int[V];
        for (int i = 0; i < V; i++)
            vertices[i] = i;
        StdRandom.shuffle(vertices);

        // one edge pointing from each vertex, other than the root = vertices[V-1]
        for (int v = 0; v < V-1; v++) {
            int w = StdRandom.uniform(v+1, V);
            Edge e = new Edge(w, v);
            set.add(e);
            G.addEdge(vertices[w], vertices[v]);
        }

        while (G.E() < E) {
            int v = StdRandom.uniform(V);
            int w = StdRandom.uniform(V);
            Edge e = new Edge(w, v);
            if ((v < w) && !set.contains(e)) {
                set.add(e);
                G.addEdge(vertices[w], vertices[v]);
            }
        }
        return G;
    }

    /**
     * Returns a random rooted-in tree on {@code V} vertices.
     * A rooted in-tree is an oriented tree in which there is a single vertex
     * reachable from every other vertex.
     * The tree returned is not chosen uniformly at random among all such trees.
     * @param V the number of vertices
     * @return a random rooted-in tree on {@code V} vertices
     */
    public static Digraph rootedInTree(int V) {
        return rootedInDAG(V, V-1);
    }

    /**
     * Returns a random rooted-out tree on {@code V} vertices. A rooted out-tree
     * is an oriented tree in which each vertex is reachable from a single vertex.
     * It is also known as a <em>arborescence</em> or <em>branching</em>.
     * The tree returned is not chosen uniformly at random among all such trees.
     * @param V the number of vertices
     * @return a random rooted-out tree on {@code V} vertices
     */
    public static Digraph rootedOutTree(int V) {
        return rootedOutDAG(V, V-1);
    }

    /**
     * Returns a path digraph on {@code V} vertices.
     * @param V the number of vertices in the path
     * @return a digraph that is a directed path on {@code V} vertices
     */
    public static Digraph path(int V) {
        Digraph G = new Digraph(V);
        int[] vertices = new int[V];
        for (int i = 0; i < V; i++)
            vertices[i] = i;
        StdRandom.shuffle(vertices);
        for (int i = 0; i < V-1; i++) {
            G.addEdge(vertices[i], vertices[i+1]);
        }
        return G;
    }

    /**
     * Returns a complete binary tree digraph on {@code V} vertices.
     * @param V the number of vertices in the binary tree
     * @return a digraph that is a complete binary tree on {@code V} vertices
     */
    public static Digraph binaryTree(int V) {
        Digraph G = new Digraph(V);
        int[] vertices = new int[V];
        for (int i = 0; i < V; i++)
            vertices[i] = i;
        StdRandom.shuffle(vertices);
        for (int i = 1; i < V; i++) {
            G.addEdge(vertices[i], vertices[(i-1)/2]);
        }
        return G;
    }

    /**
     * Returns a cycle digraph on {@code V} vertices.
     * @param V the number of vertices in the cycle
     * @return a digraph that is a directed cycle on {@code V} vertices
     */
    public static Digraph cycle(int V) {
        Digraph G = new Digraph(V);
        int[] vertices = new int[V];
        for (int i = 0; i < V; i++)
            vertices[i] = i;
        StdRandom.shuffle(vertices);
        for (int i = 0; i < V-1; i++) {
            G.addEdge(vertices[i], vertices[i+1]);
        }
        G.addEdge(vertices[V-1], vertices[0]);
        return G;
    }

    /**
     * Returns an Eulerian cycle digraph on {@code V} vertices.
     *
     * @param  V the number of vertices in the cycle
     * @param  E the number of edges in the cycle
     * @return a digraph that is a directed Eulerian cycle on {@code V} vertices
     *         and {@code E} edges
     * @throws IllegalArgumentException if either {@code V <= 0} or {@code E <= 0}
     */
    public static Digraph eulerianCycle(int V, int E) {
        if (E <= 0)
            throw new IllegalArgumentException("An Eulerian cycle must have at least one edge");
        if (V <= 0)
            throw new IllegalArgumentException("An Eulerian cycle must have at least one vertex");
        Digraph G = new Digraph(V);
        int[] vertices = new int[E];
        for (int i = 0; i < E; i++)
            vertices[i] = StdRandom.uniform(V);
        for (int i = 0; i < E-1; i++) {
            G.addEdge(vertices[i], vertices[i+1]);
        }
        G.addEdge(vertices[E-1], vertices[0]);
        return G;
    }

    /**
     * Returns an Eulerian path digraph on {@code V} vertices.
     *
     * @param  V the number of vertices in the path
     * @param  E the number of edges in the path
     * @return a digraph that is a directed Eulerian path on {@code V} vertices
     *         and {@code E} edges
     * @throws IllegalArgumentException if either {@code V <= 0} or {@code E < 0}
     */
    public static Digraph eulerianPath(int V, int E) {
        if (E < 0)
            throw new IllegalArgumentException("negative number of edges");
        if (V <= 0)
            throw new IllegalArgumentException("An Eulerian path must have at least one vertex");
        Digraph G = new Digraph(V);
        int[] vertices = new int[E+1];
        for (int i = 0; i < E+1; i++)
            vertices[i] = StdRandom.uniform(V);
        for (int i = 0; i < E; i++) {
            G.addEdge(vertices[i], vertices[i+1]);
        }
        return G;
    }

   /**
     * Returns a random simple digraph on {@code V} vertices, {@code E}
     * edges and (at least) {@code c} strong components. The vertices are randomly
     * assigned integer labels between {@code 0} and {@code c-1} (corresponding to 
     * strong components). Then, a strong component is creates among the vertices
     * with the same label. Next, random edges (either between two vertices with
     * the same labels or from a vetex with a smaller label to a vertex with a 
     * larger label). The number of components will be equal to the number of
     * distinct labels that are assigned to vertices.
     *
     * @param V the number of vertices
     * @param E the number of edges
     * @param c the (maximum) number of strong components
     * @return a random simple digraph on {@code V} vertices and
               {@code E} edges, with (at most) {@code c} strong components
     * @throws IllegalArgumentException if {@code c} is larger than {@code V}
     */
    public static Digraph strong(int V, int E, int c) {
        if (c >= V || c <= 0)
            throw new IllegalArgumentException("Number of components must be between 1 and V");
        if (E <= 2*(V-c))
            throw new IllegalArgumentException("Number of edges must be at least 2(V-c)");
        if (E > (long) V*(V-1) / 2)
            throw new IllegalArgumentException("Too many edges");

        // the digraph
        Digraph G = new Digraph(V);

        // edges added to G (to avoid duplicate edges)
        SET<Edge> set = new SET<Edge>();

        int[] label = new int[V];
        for (int v = 0; v < V; v++)
            label[v] = StdRandom.uniform(c);

        // make all vertices with label c a strong component by
        // combining a rooted in-tree and a rooted out-tree
        for (int i = 0; i < c; i++) {
            // how many vertices in component c
            int count = 0;
            for (int v = 0; v < G.V(); v++) {
                if (label[v] == i) count++;
            }

            // if (count == 0) System.err.println("less than desired number of strong components");

            int[] vertices = new int[count];
            int j = 0;
            for (int v = 0; v < V; v++) {
                if (label[v] == i) vertices[j++] = v;
            }
            StdRandom.shuffle(vertices);

            // rooted-in tree with root = vertices[count-1]
            for (int v = 0; v < count-1; v++) {
                int w = StdRandom.uniform(v+1, count);
                Edge e = new Edge(w, v);
                set.add(e);
                G.addEdge(vertices[w], vertices[v]);
            }

            // rooted-out tree with root = vertices[count-1]
            for (int v = 0; v < count-1; v++) {
                int w = StdRandom.uniform(v+1, count);
                Edge e = new Edge(v, w);
                set.add(e);
                G.addEdge(vertices[v], vertices[w]);
            }
        }

        while (G.E() < E) {
            int v = StdRandom.uniform(V);
            int w = StdRandom.uniform(V);
            Edge e = new Edge(v, w);
            if (!set.contains(e) && v != w && label[v] <= label[w]) {
                set.add(e);
                G.addEdge(v, w);
            }
        }

        return G;
    }

    /**
     * Unit tests the {@code DigraphGenerator} library.
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {
        int V = Integer.parseInt(args[0]);
        int E = Integer.parseInt(args[1]);
        StdOut.println("complete graph");
        StdOut.println(complete(V));
        StdOut.println();

        StdOut.println("simple");
        StdOut.println(simple(V, E));
        StdOut.println();

        StdOut.println("path");
        StdOut.println(path(V));
        StdOut.println();

        StdOut.println("cycle");
        StdOut.println(cycle(V));
        StdOut.println();

        StdOut.println("Eulierian path");
        StdOut.println(eulerianPath(V, E));
        StdOut.println();

        StdOut.println("Eulierian cycle");
        StdOut.println(eulerianCycle(V, E));
        StdOut.println();

        StdOut.println("binary tree");
        StdOut.println(binaryTree(V));
        StdOut.println();

        StdOut.println("tournament");
        StdOut.println(tournament(V));
        StdOut.println();

        StdOut.println("DAG");
        StdOut.println(dag(V, E));
        StdOut.println();

        StdOut.println("rooted-in DAG");
        StdOut.println(rootedInDAG(V, E));
        StdOut.println();

        StdOut.println("rooted-out DAG");
        StdOut.println(rootedOutDAG(V, E));
        StdOut.println();

        StdOut.println("rooted-in tree");
        StdOut.println(rootedInTree(V));
        StdOut.println();

        StdOut.println("rooted-out DAG");
        StdOut.println(rootedOutTree(V));
        StdOut.println();
    }

}

/******************************************************************************
 *  Copyright 2002-2016, Robert Sedgewick and Kevin Wayne.
 *
 *  This file is part of algs4.jar, which accompanies the textbook
 *
 *      Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
 *      Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
 *      http://algs4.cs.princeton.edu
 *
 *
 *  algs4.jar is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  algs4.jar is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with algs4.jar.  If not, see http://www.gnu.org/licenses.
 ******************************************************************************/