DijkstraUndirectedSP.java
10.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
/******************************************************************************
* Compilation: javac DijkstraUndirectedSP.java
* Execution: java DijkstraUndirectedSP input.txt s
* Dependencies: EdgeWeightedGraph.java IndexMinPQ.java Stack.java Edge.java
* Data files: http://algs4.cs.princeton.edu/43mst/tinyEWG.txt
* http://algs4.cs.princeton.edu/43mst/mediumEWG.txt
* http://algs4.cs.princeton.edu/43mst/largeEWG.txt
*
* Dijkstra's algorithm. Computes the shortest path tree.
* Assumes all weights are nonnegative.
*
* % java DijkstraUndirectedSP tinyEWG.txt 6
* 6 to 0 (0.58) 6-0 0.58000
* 6 to 1 (0.76) 6-2 0.40000 1-2 0.36000
* 6 to 2 (0.40) 6-2 0.40000
* 6 to 3 (0.52) 3-6 0.52000
* 6 to 4 (0.93) 6-4 0.93000
* 6 to 5 (1.02) 6-2 0.40000 2-7 0.34000 5-7 0.28000
* 6 to 6 (0.00)
* 6 to 7 (0.74) 6-2 0.40000 2-7 0.34000
*
* % java DijkstraUndirectedSP mediumEWG.txt 0
* 0 to 0 (0.00)
* 0 to 1 (0.71) 0-44 0.06471 44-93 0.06793 ... 1-107 0.07484
* 0 to 2 (0.65) 0-44 0.06471 44-231 0.10384 ... 2-42 0.11456
* 0 to 3 (0.46) 0-97 0.07705 97-248 0.08598 ... 3-45 0.11902
* ...
*
* % java DijkstraUndirectedSP largeEWG.txt 0
* 0 to 0 (0.00)
* 0 to 1 (0.78) 0-460790 0.00190 460790-696678 0.00173 ... 1-826350 0.00191
* 0 to 2 (0.61) 0-15786 0.00130 15786-53370 0.00113 ... 2-793420 0.00040
* 0 to 3 (0.31) 0-460790 0.00190 460790-752483 0.00194 ... 3-698373 0.00172
*
******************************************************************************/
package edu.princeton.cs.algs4;
/**
* The {@code DijkstraUndirectedSP} class represents a data type for solving
* the single-source shortest paths problem in edge-weighted graphs
* where the edge weights are nonnegative.
* <p>
* This implementation uses Dijkstra's algorithm with a binary heap.
* The constructor takes time proportional to <em>E</em> log <em>V</em>,
* where <em>V</em> is the number of vertices and <em>E</em> is the number of edges.
* Afterwards, the {@code distTo()} and {@code hasPathTo()} methods take
* constant time and the {@code pathTo()} method takes time proportional to the
* number of edges in the shortest path returned.
* <p>
* For additional documentation,
* see <a href="http://algs4.cs.princeton.edu/44sp">Section 4.4</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
* See {@link DijkstraSP} for a version on edge-weighted digraphs.
*
* @author Robert Sedgewick
* @author Kevin Wayne
* @author Nate Liu
*/
public class DijkstraUndirectedSP {
private double[] distTo; // distTo[v] = distance of shortest s->v path
private Edge[] edgeTo; // edgeTo[v] = last edge on shortest s->v path
private IndexMinPQ<Double> pq; // priority queue of vertices
/**
* Computes a shortest-paths tree from the source vertex {@code s} to every
* other vertex in the edge-weighted graph {@code G}.
*
* @param G the edge-weighted digraph
* @param s the source vertex
* @throws IllegalArgumentException if an edge weight is negative
* @throws IllegalArgumentException unless {@code 0 <= s < V}
*/
public DijkstraUndirectedSP(EdgeWeightedGraph G, int s) {
for (Edge e : G.edges()) {
if (e.weight() < 0)
throw new IllegalArgumentException("edge " + e + " has negative weight");
}
distTo = new double[G.V()];
edgeTo = new Edge[G.V()];
validateVertex(s);
for (int v = 0; v < G.V(); v++)
distTo[v] = Double.POSITIVE_INFINITY;
distTo[s] = 0.0;
// relax vertices in order of distance from s
pq = new IndexMinPQ<Double>(G.V());
pq.insert(s, distTo[s]);
while (!pq.isEmpty()) {
int v = pq.delMin();
for (Edge e : G.adj(v))
relax(e, v);
}
// check optimality conditions
assert check(G, s);
}
// relax edge e and update pq if changed
private void relax(Edge e, int v) {
int w = e.other(v);
if (distTo[w] > distTo[v] + e.weight()) {
distTo[w] = distTo[v] + e.weight();
edgeTo[w] = e;
if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
else pq.insert(w, distTo[w]);
}
}
/**
* Returns the length of a shortest path between the source vertex {@code s} and
* vertex {@code v}.
*
* @param v the destination vertex
* @return the length of a shortest path between the source vertex {@code s} and
* the vertex {@code v}; {@code Double.POSITIVE_INFINITY} if no such path
* @throws IllegalArgumentException unless {@code 0 <= v < V}
*/
public double distTo(int v) {
validateVertex(v);
return distTo[v];
}
/**
* Returns true if there is a path between the source vertex {@code s} and
* vertex {@code v}.
*
* @param v the destination vertex
* @return {@code true} if there is a path between the source vertex
* {@code s} to vertex {@code v}; {@code false} otherwise
* @throws IllegalArgumentException unless {@code 0 <= v < V}
*/
public boolean hasPathTo(int v) {
validateVertex(v);
return distTo[v] < Double.POSITIVE_INFINITY;
}
/**
* Returns a shortest path between the source vertex {@code s} and vertex {@code v}.
*
* @param v the destination vertex
* @return a shortest path between the source vertex {@code s} and vertex {@code v};
* {@code null} if no such path
* @throws IllegalArgumentException unless {@code 0 <= v < V}
*/
public Iterable<Edge> pathTo(int v) {
validateVertex(v);
if (!hasPathTo(v)) return null;
Stack<Edge> path = new Stack<Edge>();
int x = v;
for (Edge e = edgeTo[v]; e != null; e = edgeTo[x]) {
path.push(e);
x = e.other(x);
}
return path;
}
// check optimality conditions:
// (i) for all edges e = v-w: distTo[w] <= distTo[v] + e.weight()
// (ii) for all edge e = v-w on the SPT: distTo[w] == distTo[v] + e.weight()
private boolean check(EdgeWeightedGraph G, int s) {
// check that edge weights are nonnegative
for (Edge e : G.edges()) {
if (e.weight() < 0) {
System.err.println("negative edge weight detected");
return false;
}
}
// check that distTo[v] and edgeTo[v] are consistent
if (distTo[s] != 0.0 || edgeTo[s] != null) {
System.err.println("distTo[s] and edgeTo[s] inconsistent");
return false;
}
for (int v = 0; v < G.V(); v++) {
if (v == s) continue;
if (edgeTo[v] == null && distTo[v] != Double.POSITIVE_INFINITY) {
System.err.println("distTo[] and edgeTo[] inconsistent");
return false;
}
}
// check that all edges e = v-w satisfy distTo[w] <= distTo[v] + e.weight()
for (int v = 0; v < G.V(); v++) {
for (Edge e : G.adj(v)) {
int w = e.other(v);
if (distTo[v] + e.weight() < distTo[w]) {
System.err.println("edge " + e + " not relaxed");
return false;
}
}
}
// check that all edges e = v-w on SPT satisfy distTo[w] == distTo[v] + e.weight()
for (int w = 0; w < G.V(); w++) {
if (edgeTo[w] == null) continue;
Edge e = edgeTo[w];
if (w != e.either() && w != e.other(e.either())) return false;
int v = e.other(w);
if (distTo[v] + e.weight() != distTo[w]) {
System.err.println("edge " + e + " on shortest path not tight");
return false;
}
}
return true;
}
// throw an IllegalArgumentException unless {@code 0 <= v < V}
private void validateVertex(int v) {
int V = distTo.length;
if (v < 0 || v >= V)
throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1));
}
/**
* Unit tests the {@code DijkstraUndirectedSP} data type.
*
* @param args the command-line arguments
*/
public static void main(String[] args) {
In in = new In(args[0]);
EdgeWeightedGraph G = new EdgeWeightedGraph(in);
int s = Integer.parseInt(args[1]);
// compute shortest paths
DijkstraUndirectedSP sp = new DijkstraUndirectedSP(G, s);
// print shortest path
for (int t = 0; t < G.V(); t++) {
if (sp.hasPathTo(t)) {
StdOut.printf("%d to %d (%.2f) ", s, t, sp.distTo(t));
for (Edge e : sp.pathTo(t)) {
StdOut.print(e + " ");
}
StdOut.println();
}
else {
StdOut.printf("%d to %d no path\n", s, t);
}
}
}
}
/******************************************************************************
* Copyright 2002-2016, Robert Sedgewick and Kevin Wayne.
*
* This file is part of algs4.jar, which accompanies the textbook
*
* Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
* Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
* http://algs4.cs.princeton.edu
*
*
* algs4.jar is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* algs4.jar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with algs4.jar. If not, see http://www.gnu.org/licenses.
******************************************************************************/