GraphGenerator.java 17.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
/******************************************************************************
 *  Compilation:  javac GraphGenerator.java
 *  Execution:    java GraphGenerator V E
 *  Dependencies: Graph.java
 *
 *  A graph generator.
 *
 *  For many more graph generators, see
 *  http://networkx.github.io/documentation/latest/reference/generators.html
 *
 ******************************************************************************/

package edu.princeton.cs.algs4;

/**
 *  The {@code GraphGenerator} class provides static methods for creating
 *  various graphs, including Erdos-Renyi random graphs, random bipartite
 *  graphs, random k-regular graphs, and random rooted trees.
 *  <p>
 *  For additional documentation, see <a href="http://algs4.cs.princeton.edu/41graph">Section 4.1</a> of
 *  <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
 *
 *  @author Robert Sedgewick
 *  @author Kevin Wayne
 */
public class GraphGenerator {
    private static final class Edge implements Comparable<Edge> {
        private int v;
        private int w;

        private Edge(int v, int w) {
            if (v < w) {
                this.v = v;
                this.w = w;
            }
            else {
                this.v = w;
                this.w = v;
            }
        }

        public int compareTo(Edge that) {
            if (this.v < that.v) return -1;
            if (this.v > that.v) return +1;
            if (this.w < that.w) return -1;
            if (this.w > that.w) return +1;
            return 0;
        }
    }

    // this class cannot be instantiated
    private GraphGenerator() { }

    /**
     * Returns a random simple graph containing {@code V} vertices and {@code E} edges.
     * @param V the number of vertices
     * @param E the number of vertices
     * @return a random simple graph on {@code V} vertices, containing a total
     *     of {@code E} edges
     * @throws IllegalArgumentException if no such simple graph exists
     */
    public static Graph simple(int V, int E) {
        if (E > (long) V*(V-1)/2) throw new IllegalArgumentException("Too many edges");
        if (E < 0)                throw new IllegalArgumentException("Too few edges");
        Graph G = new Graph(V);
        SET<Edge> set = new SET<Edge>();
        while (G.E() < E) {
            int v = StdRandom.uniform(V);
            int w = StdRandom.uniform(V);
            Edge e = new Edge(v, w);
            if ((v != w) && !set.contains(e)) {
                set.add(e);
                G.addEdge(v, w);
            }
        }
        return G;
    }

    /**
     * Returns a random simple graph on {@code V} vertices, with an 
     * edge between any two vertices with probability {@code p}. This is sometimes
     * referred to as the Erdos-Renyi random graph model.
     * @param V the number of vertices
     * @param p the probability of choosing an edge
     * @return a random simple graph on {@code V} vertices, with an edge between
     *     any two vertices with probability {@code p}
     * @throws IllegalArgumentException if probability is not between 0 and 1
     */
    public static Graph simple(int V, double p) {
        if (p < 0.0 || p > 1.0)
            throw new IllegalArgumentException("Probability must be between 0 and 1");
        Graph G = new Graph(V);
        for (int v = 0; v < V; v++)
            for (int w = v+1; w < V; w++)
                if (StdRandom.bernoulli(p))
                    G.addEdge(v, w);
        return G;
    }

    /**
     * Returns the complete graph on {@code V} vertices.
     * @param V the number of vertices
     * @return the complete graph on {@code V} vertices
     */
    public static Graph complete(int V) {
        return simple(V, 1.0);
    }

    /**
     * Returns a complete bipartite graph on {@code V1} and {@code V2} vertices.
     * @param V1 the number of vertices in one partition
     * @param V2 the number of vertices in the other partition
     * @return a complete bipartite graph on {@code V1} and {@code V2} vertices
     * @throws IllegalArgumentException if probability is not between 0 and 1
     */
    public static Graph completeBipartite(int V1, int V2) {
        return bipartite(V1, V2, V1*V2);
    }

    /**
     * Returns a random simple bipartite graph on {@code V1} and {@code V2} vertices
     * with {@code E} edges.
     * @param V1 the number of vertices in one partition
     * @param V2 the number of vertices in the other partition
     * @param E the number of edges
     * @return a random simple bipartite graph on {@code V1} and {@code V2} vertices,
     *    containing a total of {@code E} edges
     * @throws IllegalArgumentException if no such simple bipartite graph exists
     */
    public static Graph bipartite(int V1, int V2, int E) {
        if (E > (long) V1*V2) throw new IllegalArgumentException("Too many edges");
        if (E < 0)            throw new IllegalArgumentException("Too few edges");
        Graph G = new Graph(V1 + V2);

        int[] vertices = new int[V1 + V2];
        for (int i = 0; i < V1 + V2; i++)
            vertices[i] = i;
        StdRandom.shuffle(vertices);

        SET<Edge> set = new SET<Edge>();
        while (G.E() < E) {
            int i = StdRandom.uniform(V1);
            int j = V1 + StdRandom.uniform(V2);
            Edge e = new Edge(vertices[i], vertices[j]);
            if (!set.contains(e)) {
                set.add(e);
                G.addEdge(vertices[i], vertices[j]);
            }
        }
        return G;
    }

    /**
     * Returns a random simple bipartite graph on {@code V1} and {@code V2} vertices,
     * containing each possible edge with probability {@code p}.
     * @param V1 the number of vertices in one partition
     * @param V2 the number of vertices in the other partition
     * @param p the probability that the graph contains an edge with one endpoint in either side
     * @return a random simple bipartite graph on {@code V1} and {@code V2} vertices,
     *    containing each possible edge with probability {@code p}
     * @throws IllegalArgumentException if probability is not between 0 and 1
     */
    public static Graph bipartite(int V1, int V2, double p) {
        if (p < 0.0 || p > 1.0)
            throw new IllegalArgumentException("Probability must be between 0 and 1");
        int[] vertices = new int[V1 + V2];
        for (int i = 0; i < V1 + V2; i++)
            vertices[i] = i;
        StdRandom.shuffle(vertices);
        Graph G = new Graph(V1 + V2);
        for (int i = 0; i < V1; i++)
            for (int j = 0; j < V2; j++)
                if (StdRandom.bernoulli(p))
                    G.addEdge(vertices[i], vertices[V1+j]);
        return G;
    }

    /**
     * Returns a path graph on {@code V} vertices.
     * @param V the number of vertices in the path
     * @return a path graph on {@code V} vertices
     */
    public static Graph path(int V) {
        Graph G = new Graph(V);
        int[] vertices = new int[V];
        for (int i = 0; i < V; i++)
            vertices[i] = i;
        StdRandom.shuffle(vertices);
        for (int i = 0; i < V-1; i++) {
            G.addEdge(vertices[i], vertices[i+1]);
        }
        return G;
    }

    /**
     * Returns a complete binary tree graph on {@code V} vertices.
     * @param V the number of vertices in the binary tree
     * @return a complete binary tree graph on {@code V} vertices
     */
    public static Graph binaryTree(int V) {
        Graph G = new Graph(V);
        int[] vertices = new int[V];
        for (int i = 0; i < V; i++)
            vertices[i] = i;
        StdRandom.shuffle(vertices);
        for (int i = 1; i < V; i++) {
            G.addEdge(vertices[i], vertices[(i-1)/2]);
        }
        return G;
    }

    /**
     * Returns a cycle graph on {@code V} vertices.
     * @param V the number of vertices in the cycle
     * @return a cycle graph on {@code V} vertices
     */
    public static Graph cycle(int V) {
        Graph G = new Graph(V);
        int[] vertices = new int[V];
        for (int i = 0; i < V; i++)
            vertices[i] = i;
        StdRandom.shuffle(vertices);
        for (int i = 0; i < V-1; i++) {
            G.addEdge(vertices[i], vertices[i+1]);
        }
        G.addEdge(vertices[V-1], vertices[0]);
        return G;
    }

    /**
     * Returns an Eulerian cycle graph on {@code V} vertices.
     *
     * @param  V the number of vertices in the cycle
     * @param  E the number of edges in the cycle
     * @return a graph that is an Eulerian cycle on {@code V} vertices
     *         and {@code E} edges
     * @throws IllegalArgumentException if either {@code V <= 0} or {@code E <= 0}
     */
    public static Graph eulerianCycle(int V, int E) {
        if (E <= 0)
            throw new IllegalArgumentException("An Eulerian cycle must have at least one edge");
        if (V <= 0)
            throw new IllegalArgumentException("An Eulerian cycle must have at least one vertex");
        Graph G = new Graph(V);
        int[] vertices = new int[E];
        for (int i = 0; i < E; i++)
            vertices[i] = StdRandom.uniform(V);
        for (int i = 0; i < E-1; i++) {
            G.addEdge(vertices[i], vertices[i+1]);
        }
        G.addEdge(vertices[E-1], vertices[0]);
        return G;
    }

    /**
     * Returns an Eulerian path graph on {@code V} vertices.
     *
     * @param  V the number of vertices in the path
     * @param  E the number of edges in the path
     * @return a graph that is an Eulerian path on {@code V} vertices
     *         and {@code E} edges
     * @throws IllegalArgumentException if either {@code V <= 0} or {@code E < 0}
     */
    public static Graph eulerianPath(int V, int E) {
        if (E < 0)
            throw new IllegalArgumentException("negative number of edges");
        if (V <= 0)
            throw new IllegalArgumentException("An Eulerian path must have at least one vertex");
        Graph G = new Graph(V);
        int[] vertices = new int[E+1];
        for (int i = 0; i < E+1; i++)
            vertices[i] = StdRandom.uniform(V);
        for (int i = 0; i < E; i++) {
            G.addEdge(vertices[i], vertices[i+1]);
        }
        return G;
    }

    /**
     * Returns a wheel graph on {@code V} vertices.
     * @param V the number of vertices in the wheel
     * @return a wheel graph on {@code V} vertices: a single vertex connected to
     *     every vertex in a cycle on {@code V-1} vertices
     */
    public static Graph wheel(int V) {
        if (V <= 1) throw new IllegalArgumentException("Number of vertices must be at least 2");
        Graph G = new Graph(V);
        int[] vertices = new int[V];
        for (int i = 0; i < V; i++)
            vertices[i] = i;
        StdRandom.shuffle(vertices);

        // simple cycle on V-1 vertices
        for (int i = 1; i < V-1; i++) {
            G.addEdge(vertices[i], vertices[i+1]);
        }
        G.addEdge(vertices[V-1], vertices[1]);

        // connect vertices[0] to every vertex on cycle
        for (int i = 1; i < V; i++) {
            G.addEdge(vertices[0], vertices[i]);
        }

        return G;
    }

    /**
     * Returns a star graph on {@code V} vertices.
     * @param V the number of vertices in the star
     * @return a star graph on {@code V} vertices: a single vertex connected to
     *     every other vertex
     */
    public static Graph star(int V) {
        if (V <= 0) throw new IllegalArgumentException("Number of vertices must be at least 1");
        Graph G = new Graph(V);
        int[] vertices = new int[V];
        for (int i = 0; i < V; i++)
            vertices[i] = i;
        StdRandom.shuffle(vertices);

        // connect vertices[0] to every other vertex
        for (int i = 1; i < V; i++) {
            G.addEdge(vertices[0], vertices[i]);
        }

        return G;
    }

    /**
     * Returns a uniformly random {@code k}-regular graph on {@code V} vertices
     * (not necessarily simple). The graph is simple with probability only about e^(-k^2/4),
     * which is tiny when k = 14.
     *
     * @param V the number of vertices in the graph
     * @param k degree of each vertex
     * @return a uniformly random {@code k}-regular graph on {@code V} vertices.
     */
    public static Graph regular(int V, int k) {
        if (V*k % 2 != 0) throw new IllegalArgumentException("Number of vertices * k must be even");
        Graph G = new Graph(V);

        // create k copies of each vertex
        int[] vertices = new int[V*k];
        for (int v = 0; v < V; v++) {
            for (int j = 0; j < k; j++) {
                vertices[v + V*j] = v;
            }
        }

        // pick a random perfect matching
        StdRandom.shuffle(vertices);
        for (int i = 0; i < V*k/2; i++) {
            G.addEdge(vertices[2*i], vertices[2*i + 1]);
        }
        return G;
    }

    // http://www.proofwiki.org/wiki/Labeled_Tree_from_Prüfer_Sequence
    // http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.6484&rep=rep1&type=pdf
    /**
     * Returns a uniformly random tree on {@code V} vertices.
     * This algorithm uses a Prufer sequence and takes time proportional to <em>V log V</em>.
     * @param V the number of vertices in the tree
     * @return a uniformly random tree on {@code V} vertices
     */
    public static Graph tree(int V) {
        Graph G = new Graph(V);

        // special case
        if (V == 1) return G;

        // Cayley's theorem: there are V^(V-2) labeled trees on V vertices
        // Prufer sequence: sequence of V-2 values between 0 and V-1
        // Prufer's proof of Cayley's theorem: Prufer sequences are in 1-1
        // with labeled trees on V vertices
        int[] prufer = new int[V-2];
        for (int i = 0; i < V-2; i++)
            prufer[i] = StdRandom.uniform(V);

        // degree of vertex v = 1 + number of times it appers in Prufer sequence
        int[] degree = new int[V];
        for (int v = 0; v < V; v++)
            degree[v] = 1;
        for (int i = 0; i < V-2; i++)
            degree[prufer[i]]++;

        // pq contains all vertices of degree 1
        MinPQ<Integer> pq = new MinPQ<Integer>();
        for (int v = 0; v < V; v++)
            if (degree[v] == 1) pq.insert(v);

        // repeatedly delMin() degree 1 vertex that has the minimum index
        for (int i = 0; i < V-2; i++) {
            int v = pq.delMin();
            G.addEdge(v, prufer[i]);
            degree[v]--;
            degree[prufer[i]]--;
            if (degree[prufer[i]] == 1) pq.insert(prufer[i]);
        }
        G.addEdge(pq.delMin(), pq.delMin());
        return G;
    }

    /**
     * Unit tests the {@code GraphGenerator} library.
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {
        int V = Integer.parseInt(args[0]);
        int E = Integer.parseInt(args[1]);
        int V1 = V/2;
        int V2 = V - V1;

        StdOut.println("complete graph");
        StdOut.println(complete(V));
        StdOut.println();

        StdOut.println("simple");
        StdOut.println(simple(V, E));
        StdOut.println();

        StdOut.println("Erdos-Renyi");
        double p = (double) E / (V*(V-1)/2.0);
        StdOut.println(simple(V, p));
        StdOut.println();

        StdOut.println("complete bipartite");
        StdOut.println(completeBipartite(V1, V2));
        StdOut.println();

        StdOut.println("bipartite");
        StdOut.println(bipartite(V1, V2, E));
        StdOut.println();

        StdOut.println("Erdos Renyi bipartite");
        double q = (double) E / (V1*V2);
        StdOut.println(bipartite(V1, V2, q));
        StdOut.println();

        StdOut.println("path");
        StdOut.println(path(V));
        StdOut.println();

        StdOut.println("cycle");
        StdOut.println(cycle(V));
        StdOut.println();

        StdOut.println("binary tree");
        StdOut.println(binaryTree(V));
        StdOut.println();

        StdOut.println("tree");
        StdOut.println(tree(V));
        StdOut.println();

        StdOut.println("4-regular");
        StdOut.println(regular(V, 4));
        StdOut.println();

        StdOut.println("star");
        StdOut.println(star(V));
        StdOut.println();

        StdOut.println("wheel");
        StdOut.println(wheel(V));
        StdOut.println();
    }

}

/******************************************************************************
 *  Copyright 2002-2016, Robert Sedgewick and Kevin Wayne.
 *
 *  This file is part of algs4.jar, which accompanies the textbook
 *
 *      Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
 *      Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
 *      http://algs4.cs.princeton.edu
 *
 *
 *  algs4.jar is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  algs4.jar is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with algs4.jar.  If not, see http://www.gnu.org/licenses.
 ******************************************************************************/