LinearProgramming.java
13 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
/******************************************************************************
* Compilation: javac LinearProgramming.java
* Execution: java LinearProgramming m n
* Dependencies: StdOut.java
*
* Given an m-by-n matrix A, an m-length vector b, and an
* n-length vector c, solve the LP { max cx : Ax <= b, x >= 0 }.
* Assumes that b >= 0 so that x = 0 is a basic feasible solution.
*
* Creates an (m+1)-by-(n+m+1) simplex tableaux with the
* RHS in column m+n, the objective function in row m, and
* slack variables in columns m through m+n-1.
*
******************************************************************************/
package edu.princeton.cs.algs4;
/**
* The {@code LinearProgramming} class represents a data type for solving a
* linear program of the form { max cx : Ax ≤ b, x ≥ 0 }, where A is a m-by-n
* matrix, b is an m-length vector, and c is an n-length vector. For simplicity,
* we assume that A is of full rank and that b ≥ 0 so that x = 0 is a basic
* feasible soution.
* <p>
* The data type supplies methods for determining the optimal primal and
* dual solutions.
* <p>
* This is a bare-bones implementation of the <em>simplex algorithm</em>.
* It uses Bland's rule to determing the entering and leaving variables.
* It is not suitable for use on large inputs. It is also not robust
* in the presence of floating-point roundoff error.
* <p>
* For additional documentation, see
* <a href="http://algs4.cs.princeton.edu/65reductions">Section 6.5</a>
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class LinearProgramming {
private static final double EPSILON = 1.0E-10;
private double[][] a; // tableaux
private int m; // number of constraints
private int n; // number of original variables
private int[] basis; // basis[i] = basic variable corresponding to row i
// only needed to print out solution, not book
/**
* Determines an optimal solution to the linear program
* { max cx : Ax ≤ b, x ≥ 0 }, where A is a m-by-n
* matrix, b is an m-length vector, and c is an n-length vector.
*
* @param A the <em>m</em>-by-<em>b</em> matrix
* @param b the <em>m</em>-length RHS vector
* @param c the <em>n</em>-length cost vector
* @throws IllegalArgumentException unless {@code b[i] >= 0} for each {@code i}
* @throws ArithmeticException if the linear program is unbounded
*/
public LinearProgramming(double[][] A, double[] b, double[] c) {
m = b.length;
n = c.length;
for (int i = 0; i < m; i++)
if (!(b[i] >= 0)) throw new IllegalArgumentException("RHS must be nonnegative");
a = new double[m+1][n+m+1];
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
a[i][j] = A[i][j];
for (int i = 0; i < m; i++)
a[i][n+i] = 1.0;
for (int j = 0; j < n; j++)
a[m][j] = c[j];
for (int i = 0; i < m; i++)
a[i][m+n] = b[i];
basis = new int[m];
for (int i = 0; i < m; i++)
basis[i] = n + i;
solve();
// check optimality conditions
assert check(A, b, c);
}
// run simplex algorithm starting from initial BFS
private void solve() {
while (true) {
// find entering column q
int q = bland();
if (q == -1) break; // optimal
// find leaving row p
int p = minRatioRule(q);
if (p == -1) throw new ArithmeticException("Linear program is unbounded");
// pivot
pivot(p, q);
// update basis
basis[p] = q;
}
}
// lowest index of a non-basic column with a positive cost
private int bland() {
for (int j = 0; j < m+n; j++)
if (a[m][j] > 0) return j;
return -1; // optimal
}
// index of a non-basic column with most positive cost
private int dantzig() {
int q = 0;
for (int j = 1; j < m+n; j++)
if (a[m][j] > a[m][q]) q = j;
if (a[m][q] <= 0) return -1; // optimal
else return q;
}
// find row p using min ratio rule (-1 if no such row)
// (smallest such index if there is a tie)
private int minRatioRule(int q) {
int p = -1;
for (int i = 0; i < m; i++) {
// if (a[i][q] <= 0) continue;
if (a[i][q] <= EPSILON) continue;
else if (p == -1) p = i;
else if ((a[i][m+n] / a[i][q]) < (a[p][m+n] / a[p][q])) p = i;
}
return p;
}
// pivot on entry (p, q) using Gauss-Jordan elimination
private void pivot(int p, int q) {
// everything but row p and column q
for (int i = 0; i <= m; i++)
for (int j = 0; j <= m+n; j++)
if (i != p && j != q) a[i][j] -= a[p][j] * a[i][q] / a[p][q];
// zero out column q
for (int i = 0; i <= m; i++)
if (i != p) a[i][q] = 0.0;
// scale row p
for (int j = 0; j <= m+n; j++)
if (j != q) a[p][j] /= a[p][q];
a[p][q] = 1.0;
}
/**
* Returns the optimal value of this linear program.
*
* @return the optimal value of this linear program
*
*/
public double value() {
return -a[m][m+n];
}
/**
* Returns the optimal primal solution to this linear program.
*
* @return the optimal primal solution to this linear program
*/
public double[] primal() {
double[] x = new double[n];
for (int i = 0; i < m; i++)
if (basis[i] < n) x[basis[i]] = a[i][m+n];
return x;
}
/**
* Returns the optimal dual solution to this linear program
*
* @return the optimal dual solution to this linear program
*/
public double[] dual() {
double[] y = new double[m];
for (int i = 0; i < m; i++)
y[i] = -a[m][n+i];
return y;
}
// is the solution primal feasible?
private boolean isPrimalFeasible(double[][] A, double[] b) {
double[] x = primal();
// check that x >= 0
for (int j = 0; j < x.length; j++) {
if (x[j] < 0.0) {
StdOut.println("x[" + j + "] = " + x[j] + " is negative");
return false;
}
}
// check that Ax <= b
for (int i = 0; i < m; i++) {
double sum = 0.0;
for (int j = 0; j < n; j++) {
sum += A[i][j] * x[j];
}
if (sum > b[i] + EPSILON) {
StdOut.println("not primal feasible");
StdOut.println("b[" + i + "] = " + b[i] + ", sum = " + sum);
return false;
}
}
return true;
}
// is the solution dual feasible?
private boolean isDualFeasible(double[][] A, double[] c) {
double[] y = dual();
// check that y >= 0
for (int i = 0; i < y.length; i++) {
if (y[i] < 0.0) {
StdOut.println("y[" + i + "] = " + y[i] + " is negative");
return false;
}
}
// check that yA >= c
for (int j = 0; j < n; j++) {
double sum = 0.0;
for (int i = 0; i < m; i++) {
sum += A[i][j] * y[i];
}
if (sum < c[j] - EPSILON) {
StdOut.println("not dual feasible");
StdOut.println("c[" + j + "] = " + c[j] + ", sum = " + sum);
return false;
}
}
return true;
}
// check that optimal value = cx = yb
private boolean isOptimal(double[] b, double[] c) {
double[] x = primal();
double[] y = dual();
double value = value();
// check that value = cx = yb
double value1 = 0.0;
for (int j = 0; j < x.length; j++)
value1 += c[j] * x[j];
double value2 = 0.0;
for (int i = 0; i < y.length; i++)
value2 += y[i] * b[i];
if (Math.abs(value - value1) > EPSILON || Math.abs(value - value2) > EPSILON) {
StdOut.println("value = " + value + ", cx = " + value1 + ", yb = " + value2);
return false;
}
return true;
}
private boolean check(double[][]A, double[] b, double[] c) {
return isPrimalFeasible(A, b) && isDualFeasible(A, c) && isOptimal(b, c);
}
// print tableaux
private void show() {
StdOut.println("m = " + m);
StdOut.println("n = " + n);
for (int i = 0; i <= m; i++) {
for (int j = 0; j <= m+n; j++) {
StdOut.printf("%7.2f ", a[i][j]);
// StdOut.printf("%10.7f ", a[i][j]);
}
StdOut.println();
}
StdOut.println("value = " + value());
for (int i = 0; i < m; i++)
if (basis[i] < n) StdOut.println("x_" + basis[i] + " = " + a[i][m+n]);
StdOut.println();
}
private static void test(double[][] A, double[] b, double[] c) {
LinearProgramming lp = new LinearProgramming(A, b, c);
StdOut.println("value = " + lp.value());
double[] x = lp.primal();
for (int i = 0; i < x.length; i++)
StdOut.println("x[" + i + "] = " + x[i]);
double[] y = lp.dual();
for (int j = 0; j < y.length; j++)
StdOut.println("y[" + j + "] = " + y[j]);
}
private static void test1() {
double[][] A = {
{ -1, 1, 0 },
{ 1, 4, 0 },
{ 2, 1, 0 },
{ 3, -4, 0 },
{ 0, 0, 1 },
};
double[] c = { 1, 1, 1 };
double[] b = { 5, 45, 27, 24, 4 };
test(A, b, c);
}
// x0 = 12, x1 = 28, opt = 800
private static void test2() {
double[] c = { 13.0, 23.0 };
double[] b = { 480.0, 160.0, 1190.0 };
double[][] A = {
{ 5.0, 15.0 },
{ 4.0, 4.0 },
{ 35.0, 20.0 },
};
test(A, b, c);
}
// unbounded
private static void test3() {
double[] c = { 2.0, 3.0, -1.0, -12.0 };
double[] b = { 3.0, 2.0 };
double[][] A = {
{ -2.0, -9.0, 1.0, 9.0 },
{ 1.0, 1.0, -1.0, -2.0 },
};
test(A, b, c);
}
// degenerate - cycles if you choose most positive objective function coefficient
private static void test4() {
double[] c = { 10.0, -57.0, -9.0, -24.0 };
double[] b = { 0.0, 0.0, 1.0 };
double[][] A = {
{ 0.5, -5.5, -2.5, 9.0 },
{ 0.5, -1.5, -0.5, 1.0 },
{ 1.0, 0.0, 0.0, 0.0 },
};
test(A, b, c);
}
/**
* Unit tests the {@code LinearProgramming} data type.
*
* @param args the command-line arguments
*/
public static void main(String[] args) {
StdOut.println("----- test 1 --------------------");
test1();
StdOut.println("----- test 2 --------------------");
test2();
StdOut.println("----- test 3 --------------------");
try {
test3();
}
catch (ArithmeticException e) {
e.printStackTrace();
}
StdOut.println("----- test 4 --------------------");
test4();
StdOut.println("----- test random ---------------");
int m = Integer.parseInt(args[0]);
int n = Integer.parseInt(args[1]);
double[] c = new double[n];
double[] b = new double[m];
double[][] A = new double[m][n];
for (int j = 0; j < n; j++)
c[j] = StdRandom.uniform(1000);
for (int i = 0; i < m; i++)
b[i] = StdRandom.uniform(1000);
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
A[i][j] = StdRandom.uniform(100);
LinearProgramming lp = new LinearProgramming(A, b, c);
StdOut.println(lp.value());
}
}
/******************************************************************************
* Copyright 2002-2016, Robert Sedgewick and Kevin Wayne.
*
* This file is part of algs4.jar, which accompanies the textbook
*
* Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
* Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
* http://algs4.cs.princeton.edu
*
*
* algs4.jar is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* algs4.jar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with algs4.jar. If not, see http://www.gnu.org/licenses.
******************************************************************************/