MinPQ.java
9.84 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/******************************************************************************
* Compilation: javac MinPQ.java
* Execution: java MinPQ < input.txt
* Dependencies: StdIn.java StdOut.java
* Data files: http://algs4.cs.princeton.edu/24pq/tinyPQ.txt
*
* Generic min priority queue implementation with a binary heap.
* Can be used with a comparator instead of the natural order.
*
* % java MinPQ < tinyPQ.txt
* E A E (6 left on pq)
*
* We use a one-based array to simplify parent and child calculations.
*
* Can be optimized by replacing full exchanges with half exchanges
* (ala insertion sort).
*
******************************************************************************/
package edu.princeton.cs.algs4;
import java.util.Comparator;
import java.util.Iterator;
import java.util.NoSuchElementException;
/**
* The {@code MinPQ} class represents a priority queue of generic keys.
* It supports the usual <em>insert</em> and <em>delete-the-minimum</em>
* operations, along with methods for peeking at the minimum key,
* testing if the priority queue is empty, and iterating through
* the keys.
* <p>
* This implementation uses a binary heap.
* The <em>insert</em> and <em>delete-the-minimum</em> operations take
* logarithmic amortized time.
* The <em>min</em>, <em>size</em>, and <em>is-empty</em> operations take constant time.
* Construction takes time proportional to the specified capacity or the number of
* items used to initialize the data structure.
* <p>
* For additional documentation, see <a href="http://algs4.cs.princeton.edu/24pq">Section 2.4</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*
* @param <Key> the generic type of key on this priority queue
*/
public class MinPQ<Key> implements Iterable<Key> {
private Key[] pq; // store items at indices 1 to n
private int n; // number of items on priority queue
private Comparator<Key> comparator; // optional comparator
/**
* Initializes an empty priority queue with the given initial capacity.
*
* @param initCapacity the initial capacity of this priority queue
*/
public MinPQ(int initCapacity) {
pq = (Key[]) new Object[initCapacity + 1];
n = 0;
}
/**
* Initializes an empty priority queue.
*/
public MinPQ() {
this(1);
}
/**
* Initializes an empty priority queue with the given initial capacity,
* using the given comparator.
*
* @param initCapacity the initial capacity of this priority queue
* @param comparator the order to use when comparing keys
*/
public MinPQ(int initCapacity, Comparator<Key> comparator) {
this.comparator = comparator;
pq = (Key[]) new Object[initCapacity + 1];
n = 0;
}
/**
* Initializes an empty priority queue using the given comparator.
*
* @param comparator the order to use when comparing keys
*/
public MinPQ(Comparator<Key> comparator) {
this(1, comparator);
}
/**
* Initializes a priority queue from the array of keys.
* <p>
* Takes time proportional to the number of keys, using sink-based heap construction.
*
* @param keys the array of keys
*/
public MinPQ(Key[] keys) {
n = keys.length;
pq = (Key[]) new Object[keys.length + 1];
for (int i = 0; i < n; i++)
pq[i+1] = keys[i];
for (int k = n/2; k >= 1; k--)
sink(k);
assert isMinHeap();
}
/**
* Returns true if this priority queue is empty.
*
* @return {@code true} if this priority queue is empty;
* {@code false} otherwise
*/
public boolean isEmpty() {
return n == 0;
}
/**
* Returns the number of keys on this priority queue.
*
* @return the number of keys on this priority queue
*/
public int size() {
return n;
}
/**
* Returns a smallest key on this priority queue.
*
* @return a smallest key on this priority queue
* @throws NoSuchElementException if this priority queue is empty
*/
public Key min() {
if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");
return pq[1];
}
// helper function to double the size of the heap array
private void resize(int capacity) {
assert capacity > n;
Key[] temp = (Key[]) new Object[capacity];
for (int i = 1; i <= n; i++) {
temp[i] = pq[i];
}
pq = temp;
}
/**
* Adds a new key to this priority queue.
*
* @param x the key to add to this priority queue
*/
public void insert(Key x) {
// double size of array if necessary
if (n == pq.length - 1) resize(2 * pq.length);
// add x, and percolate it up to maintain heap invariant
pq[++n] = x;
swim(n);
assert isMinHeap();
}
/**
* Removes and returns a smallest key on this priority queue.
*
* @return a smallest key on this priority queue
* @throws NoSuchElementException if this priority queue is empty
*/
public Key delMin() {
if (isEmpty()) throw new NoSuchElementException("Priority queue underflow");
exch(1, n);
Key min = pq[n--];
sink(1);
pq[n+1] = null; // avoid loitering and help with garbage collection
if ((n > 0) && (n == (pq.length - 1) / 4)) resize(pq.length / 2);
assert isMinHeap();
return min;
}
/***************************************************************************
* Helper functions to restore the heap invariant.
***************************************************************************/
private void swim(int k) {
while (k > 1 && greater(k/2, k)) {
exch(k, k/2);
k = k/2;
}
}
private void sink(int k) {
while (2*k <= n) {
int j = 2*k;
if (j < n && greater(j, j+1)) j++;
if (!greater(k, j)) break;
exch(k, j);
k = j;
}
}
/***************************************************************************
* Helper functions for compares and swaps.
***************************************************************************/
private boolean greater(int i, int j) {
if (comparator == null) {
return ((Comparable<Key>) pq[i]).compareTo(pq[j]) > 0;
}
else {
return comparator.compare(pq[i], pq[j]) > 0;
}
}
private void exch(int i, int j) {
Key swap = pq[i];
pq[i] = pq[j];
pq[j] = swap;
}
// is pq[1..N] a min heap?
private boolean isMinHeap() {
return isMinHeap(1);
}
// is subtree of pq[1..n] rooted at k a min heap?
private boolean isMinHeap(int k) {
if (k > n) return true;
int left = 2*k;
int right = 2*k + 1;
if (left <= n && greater(k, left)) return false;
if (right <= n && greater(k, right)) return false;
return isMinHeap(left) && isMinHeap(right);
}
/**
* Returns an iterator that iterates over the keys on this priority queue
* in ascending order.
* <p>
* The iterator doesn't implement {@code remove()} since it's optional.
*
* @return an iterator that iterates over the keys in ascending order
*/
public Iterator<Key> iterator() { return new HeapIterator(); }
private class HeapIterator implements Iterator<Key> {
// create a new pq
private MinPQ<Key> copy;
// add all items to copy of heap
// takes linear time since already in heap order so no keys move
public HeapIterator() {
if (comparator == null) copy = new MinPQ<Key>(size());
else copy = new MinPQ<Key>(size(), comparator);
for (int i = 1; i <= n; i++)
copy.insert(pq[i]);
}
public boolean hasNext() { return !copy.isEmpty(); }
public void remove() { throw new UnsupportedOperationException(); }
public Key next() {
if (!hasNext()) throw new NoSuchElementException();
return copy.delMin();
}
}
/**
* Unit tests the {@code MinPQ} data type.
*
* @param args the command-line arguments
*/
public static void main(String[] args) {
MinPQ<String> pq = new MinPQ<String>();
while (!StdIn.isEmpty()) {
String item = StdIn.readString();
if (!item.equals("-")) pq.insert(item);
else if (!pq.isEmpty()) StdOut.print(pq.delMin() + " ");
}
StdOut.println("(" + pq.size() + " left on pq)");
}
}
/******************************************************************************
* Copyright 2002-2016, Robert Sedgewick and Kevin Wayne.
*
* This file is part of algs4.jar, which accompanies the textbook
*
* Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
* Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
* http://algs4.cs.princeton.edu
*
*
* algs4.jar is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* algs4.jar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with algs4.jar. If not, see http://www.gnu.org/licenses.
******************************************************************************/