PrimMST.java
8.25 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
/******************************************************************************
* Compilation: javac PrimMST.java
* Execution: java PrimMST filename.txt
* Dependencies: EdgeWeightedGraph.java Edge.java Queue.java
* IndexMinPQ.java UF.java In.java StdOut.java
* Data files: http://algs4.cs.princeton.edu/43mst/tinyEWG.txt
* http://algs4.cs.princeton.edu/43mst/mediumEWG.txt
* http://algs4.cs.princeton.edu/43mst/largeEWG.txt
*
* Compute a minimum spanning forest using Prim's algorithm.
*
* % java PrimMST tinyEWG.txt
* 1-7 0.19000
* 0-2 0.26000
* 2-3 0.17000
* 4-5 0.35000
* 5-7 0.28000
* 6-2 0.40000
* 0-7 0.16000
* 1.81000
*
* % java PrimMST mediumEWG.txt
* 1-72 0.06506
* 2-86 0.05980
* 3-67 0.09725
* 4-55 0.06425
* 5-102 0.03834
* 6-129 0.05363
* 7-157 0.00516
* ...
* 10.46351
*
* % java PrimMST largeEWG.txt
* ...
* 647.66307
*
******************************************************************************/
package edu.princeton.cs.algs4;
/**
* The {@code PrimMST} class represents a data type for computing a
* <em>minimum spanning tree</em> in an edge-weighted graph.
* The edge weights can be positive, zero, or negative and need not
* be distinct. If the graph is not connected, it computes a <em>minimum
* spanning forest</em>, which is the union of minimum spanning trees
* in each connected component. The {@code weight()} method returns the
* weight of a minimum spanning tree and the {@code edges()} method
* returns its edges.
* <p>
* This implementation uses <em>Prim's algorithm</em> with an indexed
* binary heap.
* The constructor takes time proportional to <em>E</em> log <em>V</em>
* and extra space (not including the graph) proportional to <em>V</em>,
* where <em>V</em> is the number of vertices and <em>E</em> is the number of edges.
* Afterwards, the {@code weight()} method takes constant time
* and the {@code edges()} method takes time proportional to <em>V</em>.
* <p>
* For additional documentation,
* see <a href="http://algs4.cs.princeton.edu/43mst">Section 4.3</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
* For alternate implementations, see {@link LazyPrimMST}, {@link KruskalMST},
* and {@link BoruvkaMST}.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class PrimMST {
private static final double FLOATING_POINT_EPSILON = 1E-12;
private Edge[] edgeTo; // edgeTo[v] = shortest edge from tree vertex to non-tree vertex
private double[] distTo; // distTo[v] = weight of shortest such edge
private boolean[] marked; // marked[v] = true if v on tree, false otherwise
private IndexMinPQ<Double> pq;
/**
* Compute a minimum spanning tree (or forest) of an edge-weighted graph.
* @param G the edge-weighted graph
*/
public PrimMST(EdgeWeightedGraph G) {
edgeTo = new Edge[G.V()];
distTo = new double[G.V()];
marked = new boolean[G.V()];
pq = new IndexMinPQ<Double>(G.V());
for (int v = 0; v < G.V(); v++)
distTo[v] = Double.POSITIVE_INFINITY;
for (int v = 0; v < G.V(); v++) // run from each vertex to find
if (!marked[v]) prim(G, v); // minimum spanning forest
// check optimality conditions
assert check(G);
}
// run Prim's algorithm in graph G, starting from vertex s
private void prim(EdgeWeightedGraph G, int s) {
distTo[s] = 0.0;
pq.insert(s, distTo[s]);
while (!pq.isEmpty()) {
int v = pq.delMin();
scan(G, v);
}
}
// scan vertex v
private void scan(EdgeWeightedGraph G, int v) {
marked[v] = true;
for (Edge e : G.adj(v)) {
int w = e.other(v);
if (marked[w]) continue; // v-w is obsolete edge
if (e.weight() < distTo[w]) {
distTo[w] = e.weight();
edgeTo[w] = e;
if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
else pq.insert(w, distTo[w]);
}
}
}
/**
* Returns the edges in a minimum spanning tree (or forest).
* @return the edges in a minimum spanning tree (or forest) as
* an iterable of edges
*/
public Iterable<Edge> edges() {
Queue<Edge> mst = new Queue<Edge>();
for (int v = 0; v < edgeTo.length; v++) {
Edge e = edgeTo[v];
if (e != null) {
mst.enqueue(e);
}
}
return mst;
}
/**
* Returns the sum of the edge weights in a minimum spanning tree (or forest).
* @return the sum of the edge weights in a minimum spanning tree (or forest)
*/
public double weight() {
double weight = 0.0;
for (Edge e : edges())
weight += e.weight();
return weight;
}
// check optimality conditions (takes time proportional to E V lg* V)
private boolean check(EdgeWeightedGraph G) {
// check weight
double totalWeight = 0.0;
for (Edge e : edges()) {
totalWeight += e.weight();
}
if (Math.abs(totalWeight - weight()) > FLOATING_POINT_EPSILON) {
System.err.printf("Weight of edges does not equal weight(): %f vs. %f\n", totalWeight, weight());
return false;
}
// check that it is acyclic
UF uf = new UF(G.V());
for (Edge e : edges()) {
int v = e.either(), w = e.other(v);
if (uf.connected(v, w)) {
System.err.println("Not a forest");
return false;
}
uf.union(v, w);
}
// check that it is a spanning forest
for (Edge e : G.edges()) {
int v = e.either(), w = e.other(v);
if (!uf.connected(v, w)) {
System.err.println("Not a spanning forest");
return false;
}
}
// check that it is a minimal spanning forest (cut optimality conditions)
for (Edge e : edges()) {
// all edges in MST except e
uf = new UF(G.V());
for (Edge f : edges()) {
int x = f.either(), y = f.other(x);
if (f != e) uf.union(x, y);
}
// check that e is min weight edge in crossing cut
for (Edge f : G.edges()) {
int x = f.either(), y = f.other(x);
if (!uf.connected(x, y)) {
if (f.weight() < e.weight()) {
System.err.println("Edge " + f + " violates cut optimality conditions");
return false;
}
}
}
}
return true;
}
/**
* Unit tests the {@code PrimMST} data type.
*
* @param args the command-line arguments
*/
public static void main(String[] args) {
In in = new In(args[0]);
EdgeWeightedGraph G = new EdgeWeightedGraph(in);
PrimMST mst = new PrimMST(G);
for (Edge e : mst.edges()) {
StdOut.println(e);
}
StdOut.printf("%.5f\n", mst.weight());
}
}
/******************************************************************************
* Copyright 2002-2016, Robert Sedgewick and Kevin Wayne.
*
* This file is part of algs4.jar, which accompanies the textbook
*
* Algorithms, 4th edition by Robert Sedgewick and Kevin Wayne,
* Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.
* http://algs4.cs.princeton.edu
*
*
* algs4.jar is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* algs4.jar is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with algs4.jar. If not, see http://www.gnu.org/licenses.
******************************************************************************/