djbec.py
6.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# Ed25519 digital signatures
# Based on http://ed25519.cr.yp.to/python/ed25519.py
# See also http://ed25519.cr.yp.to/software.html
# Adapted by Ron Garret
# Sped up considerably using coordinate transforms found on:
# http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
# Specifically add-2008-hwcd-4 and dbl-2008-hwcd
try: # pragma nocover
unicode
PY3 = False
def asbytes(b):
"""Convert array of integers to byte string"""
return ''.join(chr(x) for x in b)
def joinbytes(b):
"""Convert array of bytes to byte string"""
return ''.join(b)
def bit(h, i):
"""Return i'th bit of bytestring h"""
return (ord(h[i//8]) >> (i%8)) & 1
except NameError: # pragma nocover
PY3 = True
asbytes = bytes
joinbytes = bytes
def bit(h, i):
return (h[i//8] >> (i%8)) & 1
import hashlib
b = 256
q = 2**255 - 19
l = 2**252 + 27742317777372353535851937790883648493
def H(m):
return hashlib.sha512(m).digest()
def expmod(b, e, m):
if e == 0: return 1
t = expmod(b, e // 2, m) ** 2 % m
if e & 1: t = (t * b) % m
return t
# Can probably get some extra speedup here by replacing this with
# an extended-euclidean, but performance seems OK without that
def inv(x):
return expmod(x, q-2, q)
d = -121665 * inv(121666)
I = expmod(2,(q-1)//4,q)
def xrecover(y):
xx = (y*y-1) * inv(d*y*y+1)
x = expmod(xx,(q+3)//8,q)
if (x*x - xx) % q != 0: x = (x*I) % q
if x % 2 != 0: x = q-x
return x
By = 4 * inv(5)
Bx = xrecover(By)
B = [Bx % q,By % q]
#def edwards(P,Q):
# x1 = P[0]
# y1 = P[1]
# x2 = Q[0]
# y2 = Q[1]
# x3 = (x1*y2+x2*y1) * inv(1+d*x1*x2*y1*y2)
# y3 = (y1*y2+x1*x2) * inv(1-d*x1*x2*y1*y2)
# return (x3 % q,y3 % q)
#def scalarmult(P,e):
# if e == 0: return [0,1]
# Q = scalarmult(P,e/2)
# Q = edwards(Q,Q)
# if e & 1: Q = edwards(Q,P)
# return Q
# Faster (!) version based on:
# http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
def xpt_add(pt1, pt2):
(X1, Y1, Z1, T1) = pt1
(X2, Y2, Z2, T2) = pt2
A = ((Y1-X1)*(Y2+X2)) % q
B = ((Y1+X1)*(Y2-X2)) % q
C = (Z1*2*T2) % q
D = (T1*2*Z2) % q
E = (D+C) % q
F = (B-A) % q
G = (B+A) % q
H = (D-C) % q
X3 = (E*F) % q
Y3 = (G*H) % q
Z3 = (F*G) % q
T3 = (E*H) % q
return (X3, Y3, Z3, T3)
def xpt_double (pt):
(X1, Y1, Z1, _) = pt
A = (X1*X1)
B = (Y1*Y1)
C = (2*Z1*Z1)
D = (-A) % q
J = (X1+Y1) % q
E = (J*J-A-B) % q
G = (D+B) % q
F = (G-C) % q
H = (D-B) % q
X3 = (E*F) % q
Y3 = (G*H) % q
Z3 = (F*G) % q
T3 = (E*H) % q
return (X3, Y3, Z3, T3)
def pt_xform (pt):
(x, y) = pt
return (x, y, 1, (x*y)%q)
def pt_unxform (pt):
(x, y, z, _) = pt
return ((x*inv(z))%q, (y*inv(z))%q)
def xpt_mult (pt, n):
if n==0: return pt_xform((0,1))
_ = xpt_double(xpt_mult(pt, n>>1))
return xpt_add(_, pt) if n&1 else _
def scalarmult(pt, e):
return pt_unxform(xpt_mult(pt_xform(pt), e))
def encodeint(y):
bits = [(y >> i) & 1 for i in range(b)]
e = [(sum([bits[i * 8 + j] << j for j in range(8)]))
for i in range(b//8)]
return asbytes(e)
def encodepoint(P):
x = P[0]
y = P[1]
bits = [(y >> i) & 1 for i in range(b - 1)] + [x & 1]
e = [(sum([bits[i * 8 + j] << j for j in range(8)]))
for i in range(b//8)]
return asbytes(e)
def publickey(sk):
h = H(sk)
a = 2**(b-2) + sum(2**i * bit(h,i) for i in range(3,b-2))
A = scalarmult(B,a)
return encodepoint(A)
def Hint(m):
h = H(m)
return sum(2**i * bit(h,i) for i in range(2*b))
def signature(m,sk,pk):
h = H(sk)
a = 2**(b-2) + sum(2**i * bit(h,i) for i in range(3,b-2))
inter = joinbytes([h[i] for i in range(b//8,b//4)])
r = Hint(inter + m)
R = scalarmult(B,r)
S = (r + Hint(encodepoint(R) + pk + m) * a) % l
return encodepoint(R) + encodeint(S)
def isoncurve(P):
x = P[0]
y = P[1]
return (-x*x + y*y - 1 - d*x*x*y*y) % q == 0
def decodeint(s):
return sum(2**i * bit(s,i) for i in range(0,b))
def decodepoint(s):
y = sum(2**i * bit(s,i) for i in range(0,b-1))
x = xrecover(y)
if x & 1 != bit(s,b-1): x = q-x
P = [x,y]
if not isoncurve(P): raise Exception("decoding point that is not on curve")
return P
def checkvalid(s, m, pk):
if len(s) != b//4: raise Exception("signature length is wrong")
if len(pk) != b//8: raise Exception("public-key length is wrong")
R = decodepoint(s[0:b//8])
A = decodepoint(pk)
S = decodeint(s[b//8:b//4])
h = Hint(encodepoint(R) + pk + m)
v1 = scalarmult(B,S)
# v2 = edwards(R,scalarmult(A,h))
v2 = pt_unxform(xpt_add(pt_xform(R), pt_xform(scalarmult(A, h))))
return v1==v2
##########################################################
#
# Curve25519 reference implementation by Matthew Dempsky, from:
# http://cr.yp.to/highspeed/naclcrypto-20090310.pdf
# P = 2 ** 255 - 19
P = q
A = 486662
#def expmod(b, e, m):
# if e == 0: return 1
# t = expmod(b, e / 2, m) ** 2 % m
# if e & 1: t = (t * b) % m
# return t
# def inv(x): return expmod(x, P - 2, P)
def add(n, m, d):
(xn, zn) = n
(xm, zm) = m
(xd, zd) = d
x = 4 * (xm * xn - zm * zn) ** 2 * zd
z = 4 * (xm * zn - zm * xn) ** 2 * xd
return (x % P, z % P)
def double(n):
(xn, zn) = n
x = (xn ** 2 - zn ** 2) ** 2
z = 4 * xn * zn * (xn ** 2 + A * xn * zn + zn ** 2)
return (x % P, z % P)
def curve25519(n, base=9):
one = (base,1)
two = double(one)
# f(m) evaluates to a tuple
# containing the mth multiple and the
# (m+1)th multiple of base.
def f(m):
if m == 1: return (one, two)
(pm, pm1) = f(m // 2)
if (m & 1):
return (add(pm, pm1, one), double(pm1))
return (double(pm), add(pm, pm1, one))
((x,z), _) = f(n)
return (x * inv(z)) % P
import random
def genkey(n=0):
n = n or random.randint(0,P)
n &= ~7
n &= ~(128 << 8 * 31)
n |= 64 << 8 * 31
return n
#def str2int(s):
# return int(hexlify(s), 16)
# # return sum(ord(s[i]) << (8 * i) for i in range(32))
#
#def int2str(n):
# return unhexlify("%x" % n)
# # return ''.join([chr((n >> (8 * i)) & 255) for i in range(32)])
#################################################
def dsa_test():
import os
msg = str(random.randint(q,q+q)).encode('utf-8')
sk = os.urandom(32)
pk = publickey(sk)
sig = signature(msg, sk, pk)
return checkvalid(sig, msg, pk)
def dh_test():
sk1 = genkey()
sk2 = genkey()
return curve25519(sk1, curve25519(sk2)) == curve25519(sk2, curve25519(sk1))