kp13ts64_r01w01_70c3p.v
32.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
/*********************************************************/
/* */
/* kp13ts64_r01w01_70c3p */
/* */
/* Verilog model for 32kx8 XPM embedded module. */
/* Parallel(8-bit) program, Parallel(8-bit) read */
/* */
/* Created by: Chung Eng chungeng@kilopass.com */
/* version 1.0 Feb 11, 2005 */
/* version 1.1 April 19, 2005 */
/* version 1.2 July 22, 2005 */
/* version 1.3 Aug. 03, 2005 */
/* */
/* Modified by: Jason Chen j.chen@kilopass.com */
/* version 1.4 Aug 04, 2005 */
/* */
/* */
/* */
/* 1.0 -- initial version. */
/* 1.1 -- added warning message and enhanced timing check*/
/* 1.2 -- fixed timing in specify. */
/* added function to prohibit 0 overwritten 1. */
/* changed output to undefine data to tOHA, tOHRE,*/
/* and tOHCEB. */
/* added warning message while READEN is < tACC. */
/* 1.3 -- added addr to fuse sensitivity list. */
/* added tCSRST. removed tCES. changed tRSCEB to */
/* tRSRD. */
/* enhanced checking maximum CPUMPEN assertion. */
/* checked A[n:9] in WRTEST model. */
/* 1.4 -- update release changes */
/* */
/* */
/* This software and documentation is the confidential */
/* and proprietary information of Kilopass Technology, */
/* Inc ("Kilopass"). ("Confidential Information"). */
/* You shall not disclose such Confidential Information */
/* and shall use it only in accordance with the terms of */
/* the license agreement you entered into with Kilopass. */
/* */
/* KILOPASS MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT */
/* THE SUITABILITY OF THE SOFTWARE, EITHER EXPRESS OR */
/* IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED */
/* WARRANTIES OF MERCHANTABILITY, FITNESS FOR A */
/* PARTICULAR PURPOSE, OR NON-INFRINGEMENT. KILOPASS */
/* SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY */
/* LICENSEE AS A RESULT OF USING, MODIFYING OR */
/* DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. */
/* */
/* Developed by Kilopass Technology, Inc., California */
/* USA For inquiries, contact us via information posted */
/* on www.kilopass.com */
/* */
/* Copyright (c) 2002 - 2005 Kilopass Technology, Inc. */
/* All rights reserved. */
/* */
/*********************************************************/
//Thu Aug 4 15:08:35 PDT 2005
`timescale 1ns / 1ns
`celldefine
module kp13ts64_r01w01_70c3p
(
D, A, DIN, CEB, CLE, DLE,
PGMEN, READEN, RSTB, WEB, CPUMPEN
);
parameter DATA_WIDTH = 1;
parameter ADDR_WIDTH = 16;
parameter TADDR_WIDTH = 9;
parameter CADDR_WIDTH = 9;
parameter XPM_DEPTH = 1 << ADDR_WIDTH;
parameter WRTEST_DEPTH = 1 << TADDR_WIDTH;
parameter TDEC = 5;
parameter WRTEST = 2;
parameter CLOCK_PERIOD = 2;
parameter TACC = 70;
output D; // data out
input [ADDR_WIDTH-1:0] A; // address
input DIN; // data in
input CEB; // chip enable, active low
input CLE; // command latch enable
input DLE; // data latch enable
input PGMEN; // program enable
input READEN; // read enable
input RSTB; // reset, active low
input WEB; // data latch wen and program wen, active low
input CPUMPEN; // charge pump enable high
wire din; // data input
wire [ADDR_WIDTH-1:0] addr; // address
wire [TADDR_WIDTH-1:0] taddr;// address for test array
wire rd_en; // read enable
wire pg_en; // program enable
wire ceb; // chip enable, active low
wire dle; // data latch enable
wire cle; // command latch enable
wire rstb; // reset, active low
wire web; // data latch wen and program wen, active low
wire cpumpen; // charge pump enable.
reg dout;
reg mem [XPM_DEPTH-1:0]; // memory array
reg tmem [WRTEST_DEPTH-1:0]; // 512 x 8 test (spare) mem array
reg ckrboard [XPM_DEPTH-1:0]; // checkerboard for testdec read mode
reg d_latch; // data latch for program
reg [CADDR_WIDTH-1:0] c_latch; // cmd latch for test mode
reg tdec_latch;
reg twr_latch;
reg tm_tdec;
reg tm_twr;
reg read_op;
reg prog_op;
reg latch_pg_data;
reg latch_cmd;
reg cmd_en;
reg [ADDR_WIDTH-1:0] ckaddr;
reg tprob;
reg prog_data;
reg fuse;
reg fbit;
reg valid_fuse;
reg invalid_taddr;
reg [5:0] msb_addr;
reg [5:0] count;
reg rclk;
reg [ADDR_WIDTH-1:0] dly1;
reg [ADDR_WIDTH-1:0] dly2;
reg [ADDR_WIDTH-1:0] a_latch;
reg p1;
reg new_addr;
reg xr15;
reg xr14;
reg xr13;
reg xr12;
reg xr11;
reg xr10;
reg xr9;
reg xr8;
reg xr7;
reg xr6;
reg xr5;
reg xr4;
reg xr3;
reg xr2;
reg xr1;
reg xr0;
reg addr_toggle;
reg valid_rd;
reg invalid_rd;
reg douti;
reg m0;
reg m1;
reg mpulse;
reg rdly1;
reg rdly2;
wire axr15;
wire axr14;
wire axr13;
wire axr12;
wire axr11;
wire axr10;
wire axr9;
wire axr8;
wire axr7;
wire axr6;
wire axr5;
wire axr4;
wire axr3;
wire axr2;
wire axr1;
wire axr0;
wire addr_chg;
integer f, g;
parameter DEL = 1,
DEL2 = 2,
HIGH = 1,
LOW = 0,
LOWs = 8'h00,
HIGHs = 8'hFF;
initial // initialize the memory cells to be all 0's
// checkerboard 4-FF's and 4-00's.
begin
mem_initial;
output_initial;
regs_initial;
end
//-----------------------------
//
// buffering
//
//-----------------------------
assign din = DIN;
assign addr = A;
assign taddr = A[TADDR_WIDTH-1:0];
assign rd_en = READEN;
assign pg_en = PGMEN;
assign ceb = CEB;
assign dle = DLE;
assign cle = CLE;
assign rstb = RSTB;
assign web = WEB;
assign cpumpen = CPUMPEN;
//-----------------------------
//
// Data output
//
//-----------------------------
wire dout_i = douti;
buf (D, dout_i);
//-----------------------------
//
// operation definitions
//
//-----------------------------
always @(ceb or dle or cle or
web or rstb or rd_en or pg_en) begin
if (~ceb) begin
write_read_op;
end
end
always @(ceb or addr) begin
if (~ceb) begin
check_fuse;
wrtest_addr;
end
end
//----------------------------
//
// memory cycle
//
//----------------------------
always @(addr or taddr or prog_op or read_op or ceb or
tm_tdec or tm_twr or invalid_taddr ) begin : MEMORY_CYCLE
casez ({prog_op, read_op})
2'b00 : begin
if (ceb) begin
$display ("XPM is in stand by mode.");
end
end
2'b10 : begin
write_test_and_mem;
end
2'b01 : begin
read_tm_and_mem;
end
2'b11 : begin
$display ("Invald operation to read while XPM programming.");
end
default: begin
read_tm_and_mem;
end
endcase
end
//-----------------------------
//
// memory initial
//
//-----------------------------
task mem_initial;
integer iDFP;
integer iTFP;
integer iCKFP;
begin
d_latch = 0;
c_latch = 0;
tdec_latch = 0;
twr_latch = 0;
tm_tdec = 0;
tm_twr = 0;
read_op = 0;
prog_op = 0;
latch_pg_data = 0;
latch_cmd = 0;
cmd_en = 0;
tprob = 0;
prog_data = 0;
fuse = 0;
fbit = 0;
valid_fuse = 0;
invalid_taddr = 0;
// text file to load memory arrays
// $readmemh ("../dv/mem_file.txt", mem);
// $readmemh ("../dv/tmem_file.txt", tmem);
// initial memory to 0's
for (iDFP=0; iDFP<XPM_DEPTH; iDFP=iDFP+1) mem[iDFP] = LOWs;
for (iTFP=0; iTFP<WRTEST_DEPTH; iTFP=iTFP+1) tmem[iTFP] = LOWs;
for (iCKFP=0; iCKFP<4096; iCKFP=iCKFP+1) begin
ckaddr = iCKFP;
if (ckaddr[0]==1) begin : ODD_ADDRESS
ckrboard[ckaddr] = HIGH;
end
if (ckaddr[0]==0) begin : EVEN_ADDRESS
ckrboard[ckaddr] = LOW;
end
end
end
endtask
//-----------------------------
//
// outputs initial
//
//-----------------------------
task output_initial;
begin
#0 dout = 'bx; // initialize the output
#0 ckaddr = 0;
end
endtask
//-----------------------------
//
// write and read operations
//
//-----------------------------
task write_read_op;
begin
read_op = ~dle & ~cle & web & rstb & rd_en & ~pg_en;
prog_op = ~dle & ~cle & ~web & rstb & ~rd_en & pg_en & cpumpen;
latch_pg_data = dle & ~cle & ~web & rstb;
cmd_en = cle & ~pg_en & ~dle;
latch_cmd = cmd_en & ~web & rstb;
latches_reset;
latch_tm_cmd;
latch_prog_data;
end
endtask
//-----------------------------
//
// latch test command (9 modes)
//
//-----------------------------
task latch_tm_cmd;
begin
if (latch_cmd) begin : LOAD_ADDR_TO_C_LATCH
c_latch = addr[CADDR_WIDTH-1:0];
tdec_latch = addr[TDEC]; // addr bit 5
twr_latch = addr[WRTEST];// addr bit 2
test_modes;
end
end
endtask
//----------------------------
//
// generate test modes
//
//-----------------------------
task test_modes;
begin
if (tdec_latch & cle) begin
@ (posedge web) begin
tm_tdec <= c_latch[TDEC];
end
end
if (twr_latch & cle) begin
@ (posedge web) begin
tm_twr <= c_latch[WRTEST];
end
end
end
endtask
//----------------------------
//
// check wrtest mode address
//
//-----------------------------
task wrtest_addr;
begin
if (tm_twr) begin
invalid_taddr = (|addr[ADDR_WIDTH-1:TADDR_WIDTH] === 1'b1);
if (invalid_taddr) begin
$display ("\n Invalid address in WRTEST mode, A[n:9] must be 0's.");
end
end
end
endtask
//-----------------------------
//
// reset data latch and cmd latch
//
//-----------------------------
task latches_reset;
begin
if (~rstb) begin : LATCHES_RESET
d_latch = 'b0;
c_latch = 'b0;
tdec_latch = 0;
twr_latch = 0;
tm_tdec = 0;
tm_twr = 0;
prog_data = 0;
fuse = 0;
invalid_taddr = 0;
test_modes;
end
end
endtask
//-----------------------------
//
// check fused bits
//
//-----------------------------
task check_fuse;
begin
if (~ceb) begin
if (tm_twr) begin
if (~invalid_taddr) begin
fbit = tmem[taddr];
end
end
else begin
fbit = mem[addr];
end
valid_fuse = (^(fbit) !== 1'bx);
if (valid_fuse) begin
fuse = fbit;
end
else begin
fuse = 0;
end
end
end
endtask
//-----------------------------
//
// latch program data
//
//-----------------------------
task latch_prog_data;
begin
if (latch_pg_data) begin : LOAD_DIN_TO_D_LATCH
if (tm_twr) begin
d_latch = din | fuse;
end
else begin
d_latch = din | d_latch | fuse;
end
end
end
endtask
//-----------------------------
//
// write test mode and memory
//
//-----------------------------
task write_test_and_mem;
begin
if (prog_op) begin : WRITE
if (tm_twr) begin : WRTEST_MODE
if (~invalid_taddr) begin
tmem[taddr] = d_latch;
end
end
else begin : WRITE_MEM
mem[addr] = d_latch;
prog_data = d_latch; // for warning message
end
end
end
endtask
//-----------------------------
//
// read testdec, test write and memory
//
//-----------------------------
task read_tm_and_mem;
begin
if (read_op) begin : READ
if (tm_tdec) begin : READ_TDEC
dout = ckrboard[addr]; // read checkerboard
end
else
if (tm_twr) begin : READ_WRTEST_MODE
if (~invalid_taddr) begin
dout = tmem[addr]; // read write test mode
end
end
else
begin : READ_MEM
dout = mem[addr];
end
end
end
endtask
//-----------------------------
//
// register initials
//
//-----------------------------
task regs_initial;
begin
count = 0;
rclk = 0;
dly1 = 0;
a_latch = 0;
p1 = 0;
new_addr = 0;
xr15 = 0;
xr14 = 0;
xr13 = 0;
xr12 = 0;
xr11 = 0;
xr10 = 0;
xr9 = 0;
xr8 = 0;
xr7 = 0;
xr6 = 0;
xr5 = 0;
xr4 = 0;
xr3 = 0;
xr2 = 0;
xr1 = 0;
xr0 = 0;
addr_toggle = 0;
valid_rd = 0;
invalid_rd = 0;
dout = 0;
m0 = 0;
m1 = 0;
mpulse = 0;
end
endtask
//-----------------------------
//
// valid read pulse width.
//
//-----------------------------
always @ (ceb) begin : INTERNAL_CLOCK
rclk = 0;
if (~ceb) begin
forever begin
# (CLOCK_PERIOD/2)
rclk = ~rclk;
end
end
end
always @ (posedge rclk or rstb) begin : LATCH_ADDR
if (~rstb) begin
a_latch <= 0;
end
else begin
dly1 <= addr;
dly2 <= dly1;
a_latch <= dly2;
end
end
always @ (negedge new_addr) begin : NEW_ADDR_RESET_XOR
xr15 = 0;
xr14 = 0;
xr13 = 0;
xr12 = 0;
xr11 = 0;
xr10 = 0;
xr9 = 0;
xr8 = 0;
xr7 = 0;
xr6 = 0;
xr5 = 0;
xr4 = 0;
xr3 = 0;
xr2 = 0;
xr1 = 0;
xr0 = 0;
end
always @ (addr or a_latch or rstb) begin : CHECK_ADDR
if (~rstb) begin
xr15 = 0;
xr14 = 0;
xr13 = 0;
xr12 = 0;
xr11 = 0;
xr10 = 0;
xr9 = 0;
xr8 = 0;
xr7 = 0;
xr6 = 0;
xr5 = 0;
xr4 = 0;
xr3 = 0;
xr2 = 0;
xr1 = 0;
xr0 = 0;
end
else begin
xr15 = addr[15]^a_latch[15];
xr14 = addr[14]^a_latch[14];
xr13 = addr[13]^a_latch[13];
xr12 = addr[12]^a_latch[12];
xr11 = addr[11]^a_latch[11];
xr10 = addr[10]^a_latch[10];
xr9 = addr[9]^a_latch[9];
xr8 = addr[8]^a_latch[8];
xr7 = addr[7]^a_latch[7];
xr6 = addr[6]^a_latch[6];
xr5 = addr[5]^a_latch[5];
xr4 = addr[4]^a_latch[4];
xr3 = addr[3]^a_latch[3];
xr2 = addr[2]^a_latch[2];
xr1 = addr[1]^a_latch[1];
xr0 = addr[0]^a_latch[0];
end
end
always @ (posedge rclk or rstb) begin : ADDR_TOGGLE
if (~rstb) begin
addr_toggle = 0;
end
else begin
addr_toggle = |{
xr15, xr14, xr13, xr12,
xr11, xr10, xr9, xr8,
xr7, xr6, xr5, xr4,
xr3, xr2, xr1, xr0
};
end
end
// asynchr address changes
assign axr15 = addr[15]^a_latch[15];
assign axr14 = addr[14]^a_latch[14];
assign axr13 = addr[13]^a_latch[13];
assign axr12 = addr[12]^a_latch[12];
assign axr11 = addr[11]^a_latch[11];
assign axr10 = addr[10]^a_latch[10];
assign axr9 = addr[9]^a_latch[9];
assign axr8 = addr[8]^a_latch[8];
assign axr7 = addr[7]^a_latch[7];
assign axr6 = addr[6]^a_latch[6];
assign axr5 = addr[5]^a_latch[5];
assign axr4 = addr[4]^a_latch[4];
assign axr3 = addr[3]^a_latch[3];
assign axr2 = addr[2]^a_latch[2];
assign axr1 = addr[1]^a_latch[1];
assign axr0 = addr[0]^a_latch[0];
assign addr_chg = |{
axr15, axr14, axr13, axr12,
axr11, axr10, axr9, axr8,
axr7, axr6, axr5, axr4,
axr3, axr2, axr1, axr0
};
always @ (posedge rclk or addr_toggle or
rstb) begin : START_PULSE
if (~rstb) begin
p1 <= 0;
end
else begin
p1 <= addr_toggle;
end
new_addr = addr_toggle & ~p1;
end
always @ (posedge rclk or invalid_rd or
rstb) begin : MESSAGE_PULSE
if (~rstb) begin
m1 <= 0;
m0 <= 0;
end
else begin
m1 <= invalid_rd;
m0 <= m1;
end
mpulse = invalid_rd & ~m0;
end
always @ (mpulse or count) begin : READ_WARNING
if (mpulse & count == 6'h00) begin
$display ("\n READEN assertion is less than access time, output data are in undefined value. %0t:", $time);
end
end
always @ (posedge rclk or rd_en or rstb) begin
if (~rstb) begin
rdly1 <= 0;
rdly2 <= 0;
end
else begin
rdly1 <= rd_en;
rdly2 <= rdly1;
end
end
always @ (negedge rdly2 or ceb) begin : FALLING_READ_RESET
if (ceb) begin
count = 0;
end
else if (~rdly2) begin
count = 0;
end
end
always @ (posedge rclk) begin : SYN_RESET
if (~rd_en) begin
valid_rd = 0;
end
end
always @ (posedge rclk or new_addr or rd_en or
rstb) begin : VALID_READ
if (new_addr | ~rstb | ceb) begin
count = 0;
valid_rd = 0;
invalid_rd = 0;
end
else if (rd_en) begin : READ_COUNTER
if (count == 6'h3F) begin
count = count;
end
else begin
count = count + 1;
end
end
if (count >= TACC/2 - 1 & rd_en) begin: ACC_TIME
valid_rd = ~ceb;
end
else if (count >= 6'h02 & count <= TACC/2 &
~rd_en) begin: LESS_THAN_ACC
invalid_rd = 1;
end
end
always @ (posedge rclk or valid_rd or invalid_rd
or rstb or ceb) begin
if (~rstb) begin
douti <= 'bx;
end
else if (valid_rd) begin
douti<= dout;
end
else if (invalid_rd | ~rd_en | ceb) begin: TOHRE_AND_TOHCEB
douti <= 'bx;
end
end
always @ (addr_chg) begin: TOHA
if (addr_chg) begin
douti <= 'bx;
end
end
specify
specparam rd_rise = 70;
specparam rd_fall = 70;
specparam rd_en_rise = 70;
specparam rd_en_fall = 70;
specparam ceb_rise = 70;
specparam ceb_fall = 70;
// for timing checking
// write cycle timing
specparam tRW = 20;
specparam tRS = 20;
specparam tRH = 20;
specparam tAS = 25;
specparam tDS = 20;
specparam tDLES = 20;
specparam tWWL = 20;
specparam tWWH = 50;
specparam tDLEH = 20;
specparam tDH = 20;
specparam tPES = 1000;
specparam tPW = 50000;
specparam tPEH = 5000;
specparam tAH = 25;
specparam tRPGM = 1000;
// program cycle timing with internal charge pump
specparam tCPS = 1000;
specparam tCPPW = 50000;
specparam tCPH = 1000;
// read cycle timing
specparam tRSRD = 20;
specparam tCSRST = 20;
specparam tCE = 70;
specparam tACC = 70;
specparam tREADEN = 70;
specparam tREW = 20;
specparam tRWH = 70;
specparam tCEW = 20;
specparam tCWL = 70;
// testdec timing
specparam tRSCLE = 20;
specparam tTWS = 25;
specparam tCLES = 15;
specparam tWW = 20;
specparam tCLEH = 15;
specparam tTWH = 30;
specparam tRDES = 100;
specparam tREADENT= 70;
specparam tACCT = 70;
// wrtest timing
specparam tRDEP = 100;
specparam tWS = 1000;
specparam tWH = 5000;
/*
// for functional checking
// write cycle timing
specparam tRW = 1;
specparam tRS = 1;
specparam tRH = 1;
specparam tAS = 1;
specparam tDS = 1;
specparam tDLES = 1;
specparam tWWL = 1;
specparam tWWH = 1;
specparam tDLEH = 1;
specparam tDH = 1;
specparam tPES = 1;
specparam tPW = 1;
specparam tPEW = 1;
specparam tPEH = 1;
specparam tAH = 1;
specparam tRPGM = 1;
specparam tPGM = 1;
// program cycle timing with internal charge pump
specparam tCPS = 1;
specparam tCPPW = 1;
specparam tCPH = 1;
// read cycle timing
specparam tRSRD = 1;
specparam tCSRST = 1;
specparam tCE = 1;
specparam tACC = 1;
specparam tREADEN = 1;
specparam tOHA = 1;
specparam tREW = 1;
specparam tRWH = 1;
specparam tOHRE = 1;
specparam tCEW = 1;
specparam tCWL = 1;
specparam tOHCEB = 1;
// testdec timing
specparam tRSCLE = 1;
specparam tTWS = 1;
specparam tCLES = 1;
specparam tCLEH = 1;
specparam tTWH = 1;
specparam tRDES = 1;
specparam tREADENT= 1;
specparam tACCT = 1;
// wrtest timing
specparam tRDEP = 1;
specparam tWS = 1;
specparam tWH = 1;
*/
(A *> D) = (rd_rise, rd_fall, 0,0,0,0);
(READEN *> D) = (rd_en_rise, rd_en_fall, 0,0,0,0);
(CEB *> D) = (ceb_rise, ceb_fall, 0,0,0,0);
$width (negedge RSTB, tRW, 0, tprob);
$width (negedge WEB &&& DLE==1'b1, tWWL, 0, tprob);
$width (posedge WEB, tWWH, 0, tprob);
// $width (negedge WEB &&& PGMEN==1'b1, tPW, 0, tprob);
$width (posedge WEB &&& PGMEN==1'b1, tRPGM, 0, tprob);
$width (negedge WEB &&& PGMEN==1'b1, tCPPW, 0, tprob);
$width (posedge CEB, tCEW, 0, tprob);
$width (negedge CEB, tCWL, 0, tprob);
$width (negedge READEN, tREW, 0, tprob);
$width (posedge READEN, tRWH, 0, tprob);
$setup (posedge RSTB, posedge READEN, tRSRD, tprob); //
$setup (negedge RSTB, posedge READEN, tRSRD, tprob); //
$setup (posedge DIN, negedge WEB, tDS, tprob);
$setup (negedge DIN, negedge WEB, tDS, tprob);
$hold (posedge WEB, posedge DIN, tDH, tprob);
$hold (posedge WEB, negedge DIN, tDH, tprob);
$setup (posedge DLE, negedge WEB, tDLES, tprob);
$setup (negedge DLE, negedge WEB, tDLES, tprob);
$hold (posedge WEB, posedge DLE, tDLEH, tprob);
$hold (posedge WEB, negedge DLE, tDLEH, tprob);
$setup (posedge A, negedge WEB &&& CLE==1'b0, tAS, tprob);
$setup (negedge A, negedge WEB &&& CLE==1'b0, tAS, tprob);
$hold (posedge WEB &&& PGMEN==1'b1, posedge A, tAH, tprob);
$hold (posedge WEB &&& PGMEN==1'b1, negedge A, tAH, tprob);
$hold (posedge RSTB, posedge A, tRS, tprob);
$hold (posedge RSTB, negedge A, tRS, tprob);
$hold (negedge PGMEN, posedge RSTB, tRH, tprob); //
$hold (negedge PGMEN, negedge RSTB, tRH, tprob); //
$setup (posedge CEB, negedge RSTB, tCSRST, tprob); //
$setup (negedge CEB, negedge RSTB, tCSRST, tprob); //
$setup (posedge PGMEN, negedge WEB, tPES, tprob);
$setup (negedge PGMEN, negedge WEB, tPES, tprob);
$hold (posedge WEB &&& PGMEN==1'b1, posedge PGMEN, tPEH, tprob);
$hold (posedge WEB &&& PGMEN==1'b1, negedge PGMEN, tPEH, tprob);
$setup (posedge CPUMPEN, negedge WEB, tCPS, tprob);
$setup (negedge CPUMPEN, negedge WEB, tCPS, tprob);
$hold (posedge WEB &&& PGMEN==1'b1, posedge CPUMPEN, tCPH, tprob);
$hold (posedge WEB &&& PGMEN==1'b1, negedge CPUMPEN, tCPH, tprob);
// testdec
$hold (posedge RSTB, posedge CLE, tRSCLE, tprob);
$hold (posedge RSTB, negedge CLE, tRSCLE, tprob);
$setup (posedge A, negedge WEB &&& CLE==1'b1, tTWS, tprob);
$setup (negedge A, negedge WEB &&& CLE==1'b1, tTWS, tprob);
$hold (posedge WEB &&& PGMEN==1'b0, posedge A, tTWH, tprob);
$hold (posedge WEB &&& PGMEN==1'b0, negedge A, tTWH, tprob);
$setup (posedge CLE, negedge WEB, tCLES, tprob);
$setup (negedge CLE, negedge WEB, tCLES, tprob);
$hold (posedge WEB, posedge CLE, tCLEH, tprob);
$hold (posedge WEB, negedge CLE, tCLEH, tprob);
$setup (posedge WEB, posedge READEN, tRDES, tprob);
$setup (negedge WEB, posedge READEN, tRDES, tprob);
// write test
$setup (posedge PGMEN, posedge READEN, tRDEP, tprob);
$setup (negedge PGMEN, posedge READEN, tRDEP, tprob);
endspecify
//------------------------------
//
// report the time of every timing violation
//
//------------------------------
always @ (tprob) begin : REPORT_VIOLATION
$display ("\n Timing violation found %0t:", $time);
end
warning_msg wmsg (addr, rd_en, pg_en, ceb, cle, dle, web, rstb, latch_cmd, tm_twr, d_latch, prog_data, din, fuse, cpumpen);
endmodule
//---------------------------
//
// warning messages.
//
//---------------------------
module warning_msg (addr, rd_en, pg_en, ceb, cle, dle, web, rstb, latch_cmd, tm_twr, d_latch, prog_data, din, fuse, cpumpen);
parameter DIN_WIDTH = 1;
parameter DATA_WIDTH = 1;
parameter ADDR_WIDTH = 16;
parameter TADDR_WIDTH = 9;
input [ADDR_WIDTH-1:0] addr;
input rd_en;
input pg_en;
input ceb;
input cle;
input dle;
input web;
input rstb;
input latch_cmd;
input tm_twr;
input d_latch;
input prog_data;
input din;
input fuse;
input cpumpen;
always @ (ceb or rd_en or pg_en or cle or dle ) begin : WARNING_MESSAGE
if (rd_en & pg_en & ~ceb) begin
$display ("Invalid operations. Cannot program and read in the same time.");
end
if (cle & dle & ~ceb) begin
$display ("Invalid commands. Cannot be latch data and test command in the same time.");
end
if (dle & pg_en & ~ceb) begin
$display ("Invalid operation. Cannot latch data and program enable in the same time.");
end
end
always @ (latch_cmd or addr) begin : INVALID_TEST_MODES
if (latch_cmd & |addr[TADDR_WIDTH-1:0]) begin
if (|{addr[TADDR_WIDTH-1:6],~addr[5],addr[4:0]}) begin
if (|{addr[TADDR_WIDTH-1:3],~addr[2],addr[1:0]}) begin
$display ("Invald test mode, address = %h.", addr);
end
end
end
end
reg [ADDR_WIDTH-1:0] addr_latch;
reg hold_addr;
reg local_rst; // for address warning
wire toggle_addr;
wire xor0;
wire xor1;
wire xor2;
wire xor3;
wire xor4;
wire xor5;
wire xor6;
wire xor7;
wire xor8;
wire xor9;
wire xor10;
wire xor11;
wire xor12;
wire xor13;
wire xor14;
wire clk = web;
reg [1:0] currentstate, nextstate;
initial
begin
#0
addr_latch = 0;
hold_addr = 0;
local_rst = 0;
end
// State machine for address warning
parameter ST0 = 2'b00,
ST1 = 2'b01,
ST2 = 2'b10,
ST3 = 2'b11;
always @ (posedge dle or tm_twr) begin:TM_RESET_SM
if (tm_twr) begin
currentstate <= ST0;
end
end
always @ (posedge clk or currentstate) begin:ADDR_LATCH
if (currentstate == 2'b01) begin
addr_latch <= addr;
end
end
always @ (posedge clk or negedge rstb or posedge local_rst) begin:SEQ
if (~rstb | local_rst) begin
currentstate <= ST0;
end
else begin
currentstate <= nextstate;
end
end
always @ (dle or cle or pg_en or ceb or currentstate) begin:COMB
if (~ceb) begin
case (currentstate)
ST0: begin
if (dle) begin
nextstate <= ST1;
hold_addr <= 0;
addr_latch <= 0;
local_rst <= 0;
end
end
ST1: begin
if (~cle) begin
nextstate <= ST2;
hold_addr <= 1;
end
else begin
nextstate <= ST0;
end
end
ST2: begin
if (pg_en) begin
nextstate <= ST0;
hold_addr <= 0;
addr_latch <= 0;
local_rst <= 1;
end
else if (~pg_en | cle) begin
nextstate <= ST0;
end
end
default: begin
nextstate <= ST0;
end
endcase
end
end
//XOR BITS
assign xor14 = {addr[14]^addr_latch[14]} & hold_addr;
assign xor13 = {addr[13]^addr_latch[13]} & hold_addr;
assign xor12 = {addr[12]^addr_latch[12]} & hold_addr;
assign xor11 = {addr[11]^addr_latch[11]} & hold_addr;
assign xor10 = {addr[10]^addr_latch[10]} & hold_addr;
assign xor9 = {addr[9]^addr_latch[9]} & hold_addr;
assign xor8 = {addr[8]^addr_latch[8]} & hold_addr;
assign xor7 = {addr[7]^addr_latch[7]} & hold_addr;
assign xor6 = {addr[6]^addr_latch[6]} & hold_addr;
assign xor5 = {addr[5]^addr_latch[5]} & hold_addr;
assign xor4 = {addr[4]^addr_latch[4]} & hold_addr;
assign xor3 = {addr[3]^addr_latch[3]} & hold_addr;
assign xor2 = {addr[2]^addr_latch[2]} & hold_addr;
assign xor1 = {addr[1]^addr_latch[1]} & hold_addr;
assign xor0 = {addr[0]^addr_latch[0]} & hold_addr;
assign toggle_addr = |{
xor14, xor13, xor12,
xor11, xor10, xor9, xor8,
xor7, xor6, xor5, xor4,
xor3, xor2, xor1, xor0
};
always @ (toggle_addr) begin
if (toggle_addr) begin
$display (" \n Address changed during promgram before time %0t:", $time);
$display (" address = %h.", addr);
end
end
// Warning for missing reset, caused accumulating 1's
// in data latch, prior new program cycle.
wire [DIN_WIDTH-1:0] data_width;
reg data_width_larger_than_one;
reg prog_data_not_zero;
reg compare_data;
reg prog_data_chk0;
wire data_mismatch;
wire display_msg;
reg [1:0] cst, nst;
wire dxor;
initial
begin
data_width_larger_than_one = 0;
prog_data_not_zero = 0;
compare_data = 0;
prog_data_chk0 = 0;
cst = 0;
nst = 0;
end
parameter state0 = 2'b00,
state1 = 2'b01,
state2 = 2'b10,
state3 = 2'b11;
assign data_width = DIN_WIDTH;
always @ (ceb or data_width) begin
if (~ceb && data_width >= 2 ) begin
data_width_larger_than_one = 1;
end
else begin
data_width_larger_than_one = 0;
end
end
always @ (posedge dle or tm_twr) begin:TM_RESET_STM
if (tm_twr) begin
cst <= state0;
end
end
// use 3 clock cycle when missing rstb insertion.
always @ (posedge clk or negedge rstb) begin:SEQ_DATA
if (~rstb) begin
cst <= state0;
end
else begin
cst <= nst;
end
end
always @ (dle or cle or ceb or rstb or pg_en or web or cst or
data_width_larger_than_one) begin:COMB_DATA
if (~ceb & data_width_larger_than_one) begin
case (cst)
state0: begin
if (pg_en & ~web) begin
nst <= state1;
compare_data <= 0;
prog_data_chk0 <= 1;
end
end
state1: begin
if (cle | ~rstb) begin
nst <= state0;
prog_data_chk0 <= 0;
end
else if (dle & ~web ) begin
nst <= state2;
compare_data <= 1;
end
end
state2: begin
if (~rstb) begin
nst <= state0;
prog_data_chk0 <= 0;
end
else if (pg_en & ~web) begin
nst <= state1;
compare_data <= 0;
end
end
default: begin
nst <= state0;
end
endcase
end
end
always @ (compare_data or prog_data or d_latch or
prog_data_chk0) begin
if (prog_data_chk0) begin
prog_data_not_zero = | prog_data;
end
end
assign dxor = {prog_data^d_latch} & compare_data;
assign data_mismatch = |dxor;
assign display_msg = cst == 2'b10 & dle;
always @ (compare_data or data_mismatch or display_msg) begin
if (compare_data) begin
if (data_mismatch & display_msg) begin
$display (" \n Wrong program data at time. %0t:", $time);
$display (" program data = %h.", d_latch);
$display (" Missing reset in program cycle.");
end
else if (~data_mismatch & display_msg) begin
$display (" \n The same program data at time. %0t:", $time);
$display (" program data = %h.", prog_data);
end
end
end
// attempt write 0 over 1 warning
reg comparebit;
integer i;
always @ (ceb or dle or web or rstb or fuse or tm_twr or addr) begin
comparebit = ~ceb & dle & ~web & rstb;
if (comparebit) begin
for (i=0; i<DATA_WIDTH; i=i+1) begin
if (fuse > din) begin
if (tm_twr & (|addr[ADDR_WIDTH-1:TADDR_WIDTH] === 1'b0)) begin
$display ("\n bit%d cannot be overwritten by 0 at address %h,",i,addr);
end
else
if (~tm_twr) begin
$display ("\n bit%d cannot be overwritten by 0 at address %h,",i,addr);
end
end
end
end
end
// maximum charge pump assertion 100us warning
reg cpclk;
reg [12:0] counter;
reg cpump_msg;
parameter CLOCK_CYC = 20;
always @ (ceb) begin : CP_CLOCK
cpclk = 0;
if (~ceb) begin
forever begin
# (CLOCK_CYC/2)
cpclk = ~cpclk;
end
end
end
always @ (posedge cpclk or negedge cpumpen or rstb or ceb) begin: CPUMP_COUNTER
if (~ceb) begin
if (~cpumpen | ~rstb) begin
counter <= 0;
cpump_msg <= 0;
end
else if (counter == 13'h138A) begin: CAP_CYC_5002
counter <= counter;
end
else begin
counter <= counter + 1;
end
if (counter == 13'h1387) begin: CYC_5000
cpump_msg <= 1;
end
if (cpump_msg) begin
$display ("\n CPUMPEN assertion > 100 microseconds. %0t:", $time);
end
if (counter == 13'h1388) begin
cpump_msg <= 0;
end
end
end
endmodule
`endcelldefine