mi-spec.html 44.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
<html>
<head>
<title>
	Project BB - MI Specification
</title>
</head>
<body bgcolor="#ffffff" text="#000000"
  link="#004868" vlink="#986424" alink="#00ffff">

<table width="100%" cellpadding=2 cellspacing=0 border=0>
<tr>
<td bgcolor="#e0e0e0">
	Project BB - MI Specification
</td>
<td align=right bgcolor="#f0c0c0" width="20%">
<font color=red>
	<b>Broad<i>On</i> confidential</b>
</font>
</td>
</tr>
</table>

<p>
<b><u> Index </u></b>
<p>
<dl>
<dd> <a href="vr4300-man.pdf">NEC Vr4300 User's Manual</a>
<dd> <a href=#arch>MI Architecture</a>
<dd> <a href=#reqtypes>CPU Request Types</a>
<dd> <a href=#berr>Bus Error Handling</a>
<dd> <a href=#addrspc>Memory and Register Spaces</a>
<dd> <a href=#comregs>Compatible MI Registers</a>
<dd> <a href=#newregs>New MI Registers</a>
<dd> <a href=#reset>Reset</a>
<dd> <a href=#intr>Interrupts</a>
<dd> <a href=#virage>Virage Interface and Control</a>
</dl>

<a name="arch">
<p>
<b><u> MI Architecture </u></b>
<p>
	NECs embedded Vr4300 core features an unidirectional SYSAD interface.
	The only difference to the chip version is that the bi-directional
	drivers have been removed. The protocol itself has not changed, there
	can still be only one outstanding request. BroadOn has requested from
	NEC support for PLL clock multipliers of x1, x1.5 and x2.
<p>
<img src="mi-unibus.gif" width=640 height=214 border=0>
<p>
	The MI is pretty much a pass-through block between the proceesor's
	SYSAD interface and the system's control bus (cbus) and the data bus
	(dbus). Five new blocks implement new functions and security features.
	The <i>security module</i> controls system wide access to security
	sensitive information, as well as entering and leaving of
<a href="secure-mode.html">secure mode</a>.
	The <i>Boot ROM</i> (brom) contains the boot loader that brings in
	the <i>secure kernel</i> from external flash into the <i>boot SRAM</i>
	(bram) for execution. The <i>iram</i> can be configured for secure
	or application mode, its general purpose is emulation support. Three
	<i>Virage Flash Blocks</i> (v0, v1, and v2) contain security related
	data. Flash v0 and v1 store 512bits (16 words x32). Flash v2 is 2kbits
	in size (64 words x32) and contains fixed security bits, such as the
	private key. It is programmed through the JTAG chain and can be used
	to patch code.
<p>
<img src="mi-block.gif" width=640 height=480 border=0>

<a name="reqtypes">
<p>
<b><u> CPU Request Types </u></b>
<p>
	The cpu can issue two basic types of requests; single and block requests.
	Single requests are triggered by accesses to uncached or write-through
	spaces and move 1..4 bytes of data. Block requests of size 8 (doubleword)
	are issued by doubleword loads or stores to uncached or write-through
	spaces and move exactly 8 bytes. They are only issued when the cpu is
	in 64-bit mode. Block requests of size 16 move a data cache line between
	the cpu and cacheable memory. Block requests of size 32 move an instruction
	cache line.

<a name="berr">
<p>
<b><u> Bus Error Handling </u></b>
<p>
	The SYSAD bus has no means to signal a failed write request back to the
	cpu pipe. The only way to aid debug and access control is through external
	interrupts or nmi. Logic in the MI has to capture the invalid address,
	access type and write data for the exception or emulation handler. A cycle
	accurate restart is impractical when interrupts are used, because the
	program counter in the cpu pipe can advance during disabled interrupts.
	Besides, large error state storage and instruction backtrace in software
	would be required. To fully emulate cycle accuracy, nmi must be used.
	Erroneous read requests can signal a bus error in the read response to
	the cpu. A cpu pipeline restart is possible. The BB MI has only one
	capture register to hold the first failed write. Multiple write errors
	before the registers have been read, set a <i>multiple bit</i>. A <i>write
	error interrupt</i> is raised upon capture of a failed write.

<a name="addrspc">
<p>
<b><u> Memory and Register Spaces </u></b>
<p>
	The system implementation of the control bus (cbus) and data bus (dbus)
	puts access limits on various address spaces. Main memory (dbus bus
	through ri), the boot ROM (brom), the boot SRAM (bram), the internal sram
	(iram), and all virage shadow SRAMs (v0, v1, v2) are the only spaces
	that support both single (uncached) and block (cached) accesses. All
	other spaces are defined as register spaces and only support single
	reads and writes because they use the cbus. Furthermore, all register
	space accesses read or write all 32 bits of data, thus forcing 32-bit
	alignment of addresses without byte write capability. The behavior for
	block requests to register spaces is programmable. Illegal block reads
	can either return a bus error to invalidate the cache line, or return
	undefined data. Illegal block writes can be ignored, raise the write error
	interrupt or raise the secure kernel trap.
	Below table lists the MI actions in the various address spaces.
	If a particular memory device is smaller than the listed space, then the
	device appears mirrored multiple times.
<pre>
	address range			size	dev	MI
	--------------------------------------------------------------------------------
	0x80000000 ... 0xffffffff	2GB	ri	cbus dma request
	0x1fd00000 ... 0x7fffffff	1.5GB	pi	io 1, cbus read/write request
	0x1fcc0000 ... 0x1fcfffff	256kB	mi	writes ignored, reads 0;
	0x1fcb0000 ... 0x1fcbffff	64kB	mi	writes ignored, reads 0;
	0x1fca0000 ... 0x1fcaffff	64kB	mi	virage 2, 2kbits;
	0x1fc90000 ... 0x1fc9ffff	64kB	mi	virage 1, 512bits;
	0x1fc80000 ... 0x1fc8ffff	64kB	mi	virage 0, 512bits;
	0x1fc80000 ... 0x1fcbffff	256kB	mi	virage flash space
	0x1fc40000 ... 0x1f7fffff	256kB	mi	iram, no cbus request
	0x1fc00800 ... 0x1f37ffff	254kB	mi	brom/bram, no cbus request
	0x1fc007c0 ... 0x1fc007ff	64B	mi	brom/bram, no cbus request
							optional bus/write error
	0x1fc00000 ... 0x1fc007bf	1984B	mi	brom/bram, no cbus request
	0x10000000 ... 0x1fbfffff	252MB	pi	io 1, cbus read/write request
	0x08000000 ... 0x0fffffff	128MB	pi	io 2, cbus read/write request
	0x06000000 ... 0x07ffffff	32MB	pi	io 1, cbus read/write request
	0x05000000 ... 0x05ffffff	16MB	pi	io 2, cbus read/write request
	0x04300000 ... 0x043fffff	1MB	mi	mi registers, no cbus request
	0x04000000 ... 0x04ffffff	16MB	all	cbus read/write request
	0x03000000 ... 0x03ffffff	16MB	mi	writes dropped, reads return 0
							optional bus/write error
	0x01000000 ... 0x02ffffff	32MB	ri	cbus dma request
	0x00000000 ... 0x00ffffff	16MB	ri	cbus dma request
</pre>

<a name="comregs">
<p>
<b><u> Compatible MI Registers </u></b>
<p>
	Below table lists all compatible MI registers. None of the special
	modes that were enabled through the MI_MODE register in N64 are
	implemented. The RDRAM register mode has been replaced by registers
	in the RI for configuration of the main memory interface. The ebus
	test mode is not needed, because the x64 main memory space allows
	access to all bits of the DDR memory. The init mode has been removed
	as well. It was also related to RDRAM setup. Scan and JTAG cover
	manufacturing and debug requirements.
<p>
<table cellpadding=2 cellspacing=2 border=1>
<tr>
<td> Name </td>
<td> Address </td>
<td> Data </td>
<td> Read/Write </td>
<td> Reset </td>
<td> N64 </td>
<td> Description </td>
</tr>

<tr>
<td> MI_MODE </td>
<td> 0x0430_0000 </td>
<td> [31:14] </td>
<td> W </td>
<td> - </td>
<td> y </td>
<td> write data are ignored; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [13] </td>
<td> W </td>
<td> - </td>
<td> y </td>
<td> set RDRAM register mode; <br>
	ignored in bcp; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [12] </td>
<td> W </td>
<td> - </td>
<td> y </td>
<td> clear RDRAM register mode; <br>
	ignored in bcp; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [11] </td>
<td> W CLR_DPINTR </td>
<td> - </td>
<td> y </td>
<td> clear DP interrupt; <br>
	writing 1 clears DP interrupt; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [10] </td>
<td> W </td>
<td> - </td>
<td> y </td>
<td> set ebus test mode; <br>
	ignored in bcp; <br>
	ebus test is covered by scan/jtag; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [9] </td>
<td> W </td>
<td> - </td>
<td> y </td>
<td> clear ebus test mode; <br>
	ignored in bcp; <br>
	ebus test is covered by scan/jtag; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [8] </td>
<td> W </td>
<td> - </td>
<td> y </td>
<td> set init mode; <br>
	ignored in bcp; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [7] </td>
<td> W </td>
<td> - </td>
<td> y </td>
<td> clear init mode; <br>
	ignored in bcp; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [6:0] </td>
<td> W </td>
<td> - </td>
<td> y </td>
<td> init mode length; <br>
	ignored in bcp; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [31:10] </td>
<td> R </td>
<td> 0 </td>
<td> y </td>
<td> reads return 0; </td>
<tr>
<td> </td>
<td> </td>
<td> [9] </td>
<td> R </td>
<td> 0 </td>
<td> y </td>
<td> RDRAM register mode; <br>
	bcp returns 0 as there is no such mode; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [8] </td>
<td> R </td>
<td> 0 </td>
<td> y </td>
<td> ebus test mode; <br>
	bcp returns 0 as there is no such mode; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [7] </td>
<td> R </td>
<td> 0 </td>
<td> y </td>
<td> init mode; <br>
	bcp returns 0 as there is no such mode; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [6:0] </td>
<td> R </td>
<td> 0 </td>
<td> y </td>
<td> init mode length; <br>
	bcp returns 0 as there is no such mode; <br>
</td>
</tr>

<tr>
<td> MI_VERSION </td>
<td> 0x0430_0004 </td>
<td> [31:0] </td>
<td> RO VERSION </td>
<td> 0x0202b0b0 </td>
<td> y </td>
<td> version number, same as N64; <br>
	[31:24] is RSP version; <br>
	[23:16] is RDP version; <br>
	[15:8] is RI version; <br>
	[7:0] is IO version; <br>
	writes are ignored; <br>
</td>
</tr>

<tr>
<td> MI_INTR </td>
<td> 0x0430_0008 </td>
<td> [31:0] </td>
<td> W </td>
<td> - </td>
<td> y </td>
<td> writes are ignored; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [31:6] </td>
<td> RO </td>
<td> 0 </td>
<td> y </td>
<td> reads return 0; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [5] </td>
<td> RO DP_INTR </td>
<td> 0 </td>
<td> y </td>
<td> status of dp interrupt; <br>
	set by dp unit; <br>
	cleared by writing 1 to MI_MODE bit 11; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [4] </td>
<td> RO PI_INTR </td>
<td> 0 </td>
<td> y </td>
<td> status of pi dma interrupt; <br>
	set and cleared by pi dma; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [3] </td>
<td> RO VI_INTR </td>
<td> 0 </td>
<td> y </td>
<td> status of vi interrupt; <br>
	set and cleared by vi; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [2] </td>
<td> RO AI_INTR </td>
<td> 0 </td>
<td> y </td>
<td> status of ai interrupt; <br>
	set and cleared by ai; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [1] </td>
<td> RO SI_INTR </td>
<td> 0 </td>
<td> y </td>
<td> status of si interrupt; <br>
	set and cleared by si; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [0] </td>
<td> RO SP_INTR </td>
<td> 0 </td>
<td> y </td>
<td> status of sp interrupt; <br>
	set and cleared by sp; <br>
</td>
</tr>

<tr>
<td> MI_MASK </td>
<td> 0x0430_000c </td>
<td> [31:12] </td>
<td> W </td>
<td> - </td>
<td> y </td>
<td> writes are ignored; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [11:10] </td>
<td> W <br> SET_DP_MASK <br> CLR_DP_MASK </td>
<td> - </td>
<td> y </td>
<td> writing 10 sets dp interrupt mask; <br>
	writing 01 clears dp interrupt mask; <br>
	writing 00 or 11 leave mask unchanged; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [9:8] </td>
<td> W <br> SET_PI_MASK <br> CLR_PI_MASK</td>
<td> - </td>
<td> y </td>
<td> writing 10 sets pi interrupt mask; <br>
	writing 01 clears pi interrupt mask; <br>
	writing 00 or 11 leave mask unchanged; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [7:6] </td>
<td> W <br> SET_VI_MASK <br> CLR_VI_MASK</td>
<td> - </td>
<td> y </td>
<td> writing 10 sets vi interrupt mask; <br>
	writing 01 clears vi interrupt mask; <br>
	writing 00 or 11 leave mask unchanged; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [5:4] </td>
<td> W <br> SET_AI_MASK <br> CLR_AI_MASK </td>
<td> - </td>
<td> y </td>
<td> writing 10 sets ai interrupt mask; <br>
	writing 01 clears ai interrupt mask; <br>
	writing 00 or 11 leave mask unchanged; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [3:2] </td>
<td> W <br> SET_SI_MASK <br> CLR_SI_MASK </td>
<td> - </td>
<td> y </td>
<td> writing 10 sets si interrupt mask; <br>
	writing 01 clears si interrupt mask; <br>
	writing 00 or 11 leave mask unchanged; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [1:0] </td>
<td> W <br> SET_SP_MASK <br> CLR_SP_MASK </td>
<td> - </td>
<td> y </td>
<td> writing 10 sets sp interrupt mask; <br>
	writing 01 clears sp interrupt mask; <br>
	writing 00 or 11 leave mask unchanged; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [31:6] </td>
<td> R </td>
<td> 0 </td>
<td> y </td>
<td> reads return 0; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [5] </td>
<td> R DP_MASK </td>
<td> 0 </td>
<td> y </td>
<td> returns dp interrupt mask; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [4] </td>
<td> R PI_MASK </td>
<td> 0 </td>
<td> y </td>
<td> returns pi dma interrupt mask; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [3] </td>
<td> R VI_MASK </td>
<td> 0 </td>
<td> y </td>
<td> returns vi interrupt mask; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [2] </td>
<td> R AI_MASK </td>
<td> 0 </td>
<td> y </td>
<td> returns ai interrupt mask; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [1] </td>
<td> R SI_MASK </td>
<td> 0 </td>
<td> y </td>
<td> returns si interrupt mask; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [0] </td>
<td> R SP_MASK </td>
<td> 0 </td>
<td> y </td>
<td> returns sp interrupt mask; </td>
</tr>


</table>

<a name="newregs">
<p>
<b><u> New MI Registers </u></b>
<p>
	All new MI registers control new functions and the security features.
	XXX
<p>
<table cellpadding=2 cellspacing=2 border=1>
<tr>
<td> Name </td>
<td> Address </td>
<td> Data </td>
<td> Read/Write </td>
<td> Reset </td>
<td> N64 </td>
<td> Description </td>
</tr>

<tr>
<td> MI_CTRL </td>
<td> 0x0430_0010 </td>
<td> [31:20] </td>
<td> RO </td>
<td> 0 </td>
<td> n </td>
<td> write data are ignored; <br>
	reads return 0; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [19] </td>
<td> RW UNMASK_IDE </td>
<td> 0 </td>
<td> n </td>
<td> 1 enables ide interrupt mask regardless of the setting
	in the MI_EMASK register;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [18] </td>
<td> RW SKI_PIF </td>
<td> 0 </td>
<td> n </td>
<td> 1 enable secure kernel trap on writes to PIF RAM;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [17] </td>
<td> RW WEI_PIF </td>
<td> 0 </td>
<td> n </td>
<td> 1 enable write error interrupt on writes to PIF RAM;
	reading MI_ER_INFO clears the interrupt;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [16] </td>
<td> RW BER_PIF </td>
<td> 0 </td>
<td> n </td>
<td> 1 enable bus error on reads from PIF RAM in non-secure mode;
	0 reads return brom/bram data;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [15] </td>
<td> RW SKI_BNM </td>
<td> 0 </td>
<td> n </td>
<td> 1 enable secure kernel trap on block writes
	(cacheable) to non-memory spaces;
	0 writes are ignored;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [14] </td>
<td> RW WEI_BNM </td>
<td> 0 </td>
<td> n </td>
<td> 1 enable write error interrupt on block writes
	(cacheable) to non-memory spaces;
	0 writes are ignored;
	reading MI_ER_INFO clears the interrupt;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [13] </td>
<td> RW BER_BNM </td>
<td> 0 </td>
<td> n </td>
<td> 1 enable bus error on block reads
	(cacheable) from non-memory spaces;
	0 reads return undefined data;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [12] </td>
<td> WO SOFTRST </td>
<td> 0 </td>
<td> n </td>
<td> 1 cpu executes warm reset sequence;
	warm reset takes 64 sysclks;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [11] </td>
<td> WO COLDRST </td>
<td> 0 </td>
<td> n </td>
<td> 1 change cpu divide mode;
	cpu executes cold reset sequence;
	cold reset takes 64k sysclks;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [10:8] </td>
<td> RW DIV_MODE </td>
<td> - </td>
<td> n </td>
<td> cpu pipeline clock multiplier; <br>
	000 = sysclk x 1; <br>
	001 = sysclk x 1.5; <br>
	010 = sysclk x 2; <br>
	011 = sysclk x 3; <br>
	all others are reserved; <br>
	set to 000 on pin reset; <br>
	not modified by internal resets; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [7:0] </td>
<td> RO </td>
<td> 0 </td>
<td> n </td>
<td> write data are ignored; <br>
	reads return 0; <br>
</td>
</tr>

<tr>
<td> MI_SEC_MODE </td>
<td> 0x0430_0014 <br> non-secure mode </td>
<td> [31:0] </td>
<td> W </td>
<td> - </td>
<td> n </td>
<td> writes are ignored; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [31:0] </td>
<td> R </td>
<td> - </td>
<td> n </td>
<td> single reads arm the logic to enter secure mode and return 0;
	secure mode is entered during the issue phase of the next single
	read from address 0x1fc0_0000, valid boot vector data are returned
	for this fetch;
</td>
</tr>
<tr>
<td> </td>
<td> 0x0430_0014 <br> secure mode </td>
<td> [31:27] </td>
<td> RW </td>
<td> 0 </td>
<td> n </td>
<td> write data are ignored; <br>
	reads return 0; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [26] </td>
<td> RW SMD_EN </td>
<td> 0 </td>
<td> n </td>
<td> 1 enable secure md trap; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [25] </td>
<td> RW SBUT_EN </td>
<td> 0 </td>
<td> n </td>
<td> 1 enable secure button trap; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [24] </td>
<td> RW IRAM_EN </td>
<td> 0 </td>
<td> n </td>
<td> iram accessibility; <br>
	1 in non-secure mode; <br>
	0 only in secure mode; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [23:8] </td>
<td> RO </td>
<td> 0 </td>
<td> n </td>
<td> write data are ignore; <br>
	reads return 0; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [7] </td>
<td> RW SMD </td>
<td> 0 </td>
<td> n </td>
<td> 1 secure mode triggered by md;
	NMI stays asserted as long as SMD, SBUT, STRAP, SFATAL, SAPP or STIMER are 1;
	must be written with 0 to re-enable nmi;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [6] </td>
<td> RW SBUT </td>
<td> 0 </td>
<td> n </td>
<td> 1 secure mode triggered by button;
	NMI stays asserted as long as SMD, SBUT, STRAP, SFATAL, SAPP or STIMER are 1;
	must be written with 0 to re-enable nmi;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [5] </td>
<td> RW STRAP </td>
<td> 0 </td>
<td> n </td>
<td> 1 secure mode triggered by emulation trap;
	source is any of the SKI_* bits in MI_CTRL; <br>
	NMI stays asserted as long as SMD, SBUT, STRAP, SFATAL, SAPP or STIMER are 1;
	must be written with 0 to re-enable nmi;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [4] </td>
<td> RW SFATAL </td>
<td> 0 </td>
<td> n </td>
<td> 1 secure mode triggered by fatal pi error; <br>
	NMI stays asserted as long as SMD, SBUT, STRAP, SFATAL, SAPP or STIMER are 1;
	must be written with 0 to re-enable nmi;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [3] </td>
<td> RW STIMER </td>
<td> 0 </td>
<td> n </td>
<td> 1 secure mode triggered by timer; <br>
	NMI stays asserted as long as SMD, SBUT, STRAP, SFATAL, SAPP or STIMER are 1;
	must be written with 0 to re-enable nmi;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [2] </td>
<td> RW SAPP </td>
<td> 0 </td>
<td> n </td>
<td> 1 secure mode triggered by application; <br>
	NMI stays asserted as long as SMD, SBUT, STRAP, SFATAL, SAPP or STIMER are 1;
	must be written with 0 to re-enable nmi;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [1] </td>
<td> RW RESET </td>
<td> 1 </td>
<td> n </td>
<td> brom/bram address space control; <br>
	set to 1 at reset; <br>
	1 brom 1fc0_0000, bram 1fc2_0000; <br>
	0 bram 1fc0_0000, brom 1fc2_0000; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [0] </td>
<td> R SECURE </td>
<td> 1 </td>
<td> n </td>
<td> 1 if in secure mode; <br>
	writing 1 keeps secure mode on; <br>
	writing 0 leaves secure mode; <br>
</td>
</tr>

<tr>
<td> MI_SEC_TIMER </td>
<td> 0x0430_0018 <br> non-secure mode </td>
<td> [31:0] </td>
<td> RW </td>
<td> - </td>
<td> n </td>
<td> writes are ignored; <br>
	reads return 0; <br>
	the pre-scaler is used to divide the system clock before driving
	the counter timer; a value of n for the pre-scaler divides the system
	clock by n+1;
</td>
</tr>
<tr>
<td> </td>
<td> 0x0430_0018 <br> secure mode </td>
<td> [31:16] </td>
<td> W </td>
<td> 0 </td>
<td> n </td>
<td> writes set the pre-scaler; <br>
	writing 0 disables the secure timer;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [31:16] </td>
<td> R </td>
<td> x </td>
<td> n </td>
<td> current value of timer counter; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [15:0] </td>
<td> RW </td>
<td> x </td>
<td> n </td>
<td> timer start value; <br>
	the counter is loaded with start value, then decrements;
	upon reaching 0, the secure timer trap is triggered;
</td>
</tr>

<tr>
<td> MI_SEC_VTIME </td>
<td> 0x0430_001c <br> non-secure mode </td>
<td> [31:0] </td>
<td> RW </td>
<td> - </td>
<td> n </td>
<td> writes are ignored; <br>
	reads return 0; <br>
</td>
</tr>
<tr>
<td> </td>
<td> 0x0430_001c <br> secure mode </td>
<td> [31:17] </td>
<td> RO </td>
<td> 0 </td>
<td> n </td>
<td> reserved; <br>
	writes are ignored; <br>
	reads return 0; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [16] </td>
<td> RO </td>
<td> - </td>
<td> n </td>
<td> current state of time base clock; <br>
	restarts on new time base value;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [15:8] </td>
<td> RO </td>
<td> - </td>
<td> n </td>
<td> current count of time base divider; <br>
	loaded from time base value when 0; <br>
	counter decrements;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [7:0] </td>
<td> RW </td>
<td> 62 </td>
<td> n </td>
<td> time base value; <br>
	divides sysclk, bit 0 forced to 0; <br>
	must be set to provide 1us time base;
</td>
</tr>

<tr>
<td> MI_ERR_ADDR </td>
<td> 0x0430_0020 </td>
<td> [31:0] </td>
<td> RO </td>
<td> x </td>
<td> n </td>
<td> captured address of first write error; </td>
</tr>

<tr>
<td> MI_ERR_DATA </td>
<td> 0x0430_0024 </td>
<td> [31:0] </td>
<td> RO </td>
<td> x </td>
<td> n </td>
<td> captured data of first single write error; </td>
</tr>

<tr>
<td> MI_ERR_INFO </td>
<td> 0x0430_0028 </td>
<td> [4] </td>
<td> RO WEVAL </td>
<td> 0 </td>
<td> n </td>
<td> 1 write error valid; <br>
	reading MI_ERR_INFO clears write error interrupt;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [3] </td>
<td> RO WEMULT </td>
<td> x </td>
<td> n </td>
<td> 1 on multiple write errors before error info has been read;
	cleared on new capture of first error;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [2] </td>
<td> RO WEBLK </td>
<td> x </td>
<td> n </td>
<td> write error request type; <br>
	0=single, 1=block request
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [1:0] </td>
<td> RO WESIZE </td>
<td> x </td>
<td> n </td>
<td> write error request size; <br>
	single: 00=1, 01=2, 10=3, 11=4 bytes <br>
	block: 00=8, 01=16, 10=32, 11=illegal bytes
</td>
</tr>

<tr>
<td> MI_RANDOM </td>
<td> 0x0430_002c </td>
<td> [31:1] </td>
<td> RO </td>
<td> x </td>
<td> n </td>
<td> writes are ignored; <br>
	reads return 0;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [0] </td>
<td> RO </td>
<td> x </td>
<td> n </td>
<td> random number bit </td>
</tr>


<tr>
<td> MI_AVCTRL </td>
<td> 0x0430_0030 </td>
<td> [31:26] </td>
<td> RO </td>
<td> x </td>
<td> n </td>
<td> writes are ignored; <br>
reads return 0; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [25] </td>
<td> RW <br> AV_RESET </td>
<td> 0 </td>
<td> n </td>
<td> 
this bit controls reset on the AI and VI; <br>
writing 1 will take the AI and VI out of reset; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [24] </td>
<td> RW <br> PLL_BYPASS </td>
<td> 0 </td>
<td> n </td>
<td> writing 1 will bypass the video PLL;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [23] </td>
<td> RW <br> VENC_TEST </td>
<td> 0 </td>
<td> n </td>
<td> 
writing 1 puts the video encoder into test mode; <br>
this can be used to reset the encoder; <br>
for simulations the encoder needs to be reset twice during startup <br>
to correctly put it into a known state; <br>
make VENC_TEST high for 4 clocks, wait 30 clocks, then <br>
make it high for another 4 clocks; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [22] </td>
<td> RW <br> VTRAP </td>
<td> 0 </td>
<td> n </td>
<td> 
video encoder trap filter control;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [21] </td>
<td> RW <br> VMPAL  </td>
<td> 0 </td>
<td> n </td>
<td> writing 1 puts the encoder in MPAL mode;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [20] </td>
<td> RW <br> VNTPL </td>
<td> 1 </td>
<td> n </td>
<td> NTSC/PAL mode control; <br>
writing 1 puts the encoder in NTSC mode;
writing 0 puts the encoder in PAL mode;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [19] </td>
<td> RW <br> DAC_POWER </td>
<td> 0 </td>
<td> n </td>
<td> by default DAC is powered down; <br>
writing 1 powers up the video DAC; 
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [18:16] </td>
<td> RW <br> VPLL_PDIV </td>
<td> 0 </td>
<td> n </td>
<td> video PLL output divider P; <br>
this controls the relationship between output freq. <br>
and the VCO frequency; <br>
possible values are: <br>
0 -> FVCO <br>
1 -> FVCO/2 <br>
2 -> FVCO/4 <br>
3 -> FVCO/8 <br>
4 -> FVCO/16 <br>
</td>
</tr>

<tr>
<td> </td>
<td> </td>
<td> [15:9] </td>
<td> RW <br> VPLL_NDIV </td>
<td> 0 </td>
<td> n </td>
<td> video PLL input divider N; <br>
this divides the input clock; <br>
possible values are: <br>
0 -> Invalid <br>
1 -> 2 <br>
2 -> 3 <br>
... <br>
127 -> 128 <br>
</td>

<tr>
<td> </td>
<td> </td>
<td> [8:4] </td>
<td> RW <br> VPLL_MDIV </td>
<td> 0 </td>
<td> n </td>
<td> video PLL feedback divider M; <br>
this divides the feedback clock; <br>
possible values are: <br>
0 -> 1 <br>
1 -> 2 <br>
2 -> 3 <br>
... <br>
31 -> 32 <br>
</td>

<tr>
<td> </td>
<td> </td>
<td> [3:2] </td>
<td> RW <br> VPLL_FRANGE </td>
<td> 0 </td>
<td> n </td>
<td> video PLL VCO frequency range control; <br>
possible values are: <br>
0 -> 60 - 85 MHz <br>
1 -> 85 - 120 MHz <br>
2 -> 120 - 170 MHz <br>
3 -> 170 - 250 MHz <br>
this should be set such that the output frequency <br>
multiplied by VPLL_PDIV is in range <br>
</td>

<tr>
<td> </td>
<td> </td>
<td> [1] </td>
<td> RW <br> VPLL_DIVRESET </td>
<td> 1 </td>
<td> n </td>
<td> video PLL output divider reset; <br>
this should be set to 0 to use P divider;
</td>

<tr>
<td> </td>
<td> </td>
<td> [0] </td>
<td> RW <br> VPLL_STANDBY </td>
<td> 1 </td>
<td> n </td>
<td> video PLL standby; <br>
setting this to 1 disables the PLL; <br>
this bit must be 1 for at least 30 uSec <br>
after programming all the values;
</td>
/<tr>

<tr>
<td> MI_EINTR </td>
<td> 0x0430_0038 </td>
<td> [31:0] </td>
<td> W </td>
<td> - </td>
<td> n </td>
<td> writes are ignored; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [31:26] </td>
<td> RO </td>
<td> 0 </td>
<td> n </td>
<td> reads return 0; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [25] </td>
<td> RO MD_STS </td>
<td> 1 </td>
<td> n </td>
<td> status of md input; <br>
	module 0=present, 1=removed; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [24] </td>
<td> RO BUT_STS </td>
<td> 1 </td>
<td> n </td>
<td> status of button input; <br>
	button 1=pressed, 0=released; <br>
	software has to wait for button release after power-on
	before enabling the pre-nmi trap;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [23:14] </td>
<td> RO </td>
<td> 0 </td>
<td> n </td>
<td> reads return 0; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [13] </td>
<td> RW MD_INTR </td>
<td> 0 </td>
<td> n </td>
<td> status of md interrupt; <br>
	set by change in module presence; <br>
	cleared by writing this bit with 1; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [12] </td>
<td> RO BUT_INTR </td>
<td> 0 </td>
<td> n </td>
<td> status of button interrupt; <br>
	set and cleared by mi button logic; <br>
	interrupt is cleared by mask=0; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [11] </td>
<td> RO USB1_INTR </td>
<td> 0 </td>
<td> n </td>
<td> status of usb1 interrupt; <br>
	set and cleared by usb1 controller; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [10] </td>
<td> RO USB0_INTR </td>
<td> 0 </td>
<td> n </td>
<td> status of usb0 interrupt; <br>
	set and cleared by usb0 controller; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [9] </td>
<td> RO ERR_INTR </td>
<td> 0 </td>
<td> n </td>
<td> status of pi error interrupt; <br>
	set and cleared by pi; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [8] </td>
<td> RO IDE_INTR </td>
<td> 0 </td>
<td> n </td>
<td> status of pi ide interrupt; <br>
	set and cleared by pi ide controller; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [7] </td>
<td> RO AES_INTR </td>
<td> 0 </td>
<td> n </td>
<td> status of pi aes interrupt; <br>
	set and cleared by pi aes controller; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [6] </td>
<td> RO FLASH_INTR </td>
<td> 0 </td>
<td> n </td>
<td> status of pi flash interrupt; <br>
	set and cleared by pi flash controller; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [5:0] </td>
<td> RO </td>
<td> 0 </td>
<td> y </td>
<td> same as MI_INTR; </td>
</tr>

</tr>
<tr>
<td> MI_EMASK </td>
<td> 0x0430_003c </td>
<td> [31:28] </td>
<td> W </td>
<td> - </td>
<td> n </td>
<td> writes are ignored; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [27:26] </td>
<td> W <br> SET_MD_MASK <br> CLR_MD_MASK </td>
<td> - </td>
<td> n </td>
<td> writing 10 sets md interrupt mask; <br>
	writing 01 clears md interrupt mask; <br>
	writing 00 or 11 leave mask unchanged; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [25:24] </td>
<td> W <br> SET_BUT_MASK <br> CLR_BUT_MASK </td>
<td> - </td>
<td> n </td>
<td> writing 10 sets button interrupt mask; <br>
	writing 01 clears button interrupt mask; <br>
	writing 00 or 11 leave mask unchanged; <br>
	clearing the button mask disables the secure kernel
	button trap (pre_nmi);
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [23:22] </td>
<td> W <br> SET_USB1_MASK <br> CLR_USB1_MASK </td>
<td> - </td>
<td> n </td>
<td> writing 10 sets usb1 interrupt mask; <br>
	writing 01 clears usb1 interrupt mask; <br>
	writing 00 or 11 leave mask unchanged; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [21:20] </td>
<td> W <br> SET_USB0_MASK <br> CLR_USB0_MASK </td>
<td> - </td>
<td> n </td>
<td> writing 10 sets usb0 interrupt mask; <br>
	writing 01 clears usb0 interrupt mask; <br>
	writing 00 or 11 leave mask unchanged; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [19:18] </td>
<td> W <br> SET_ERR_MASK <br> CLR_ERR_MASK </td>
<td> - </td>
<td> n </td>
<td> writing 10 sets pi error interrupt mask; <br>
	writing 01 clears pi error interrupt mask; <br>
	writing 00 or 11 leave mask unchanged; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [17:16] </td>
<td> W <br> SET_IDE_MASK <br> CLR_IDE_MASK </td>
<td> - </td>
<td> n </td>
<td> writing 10 sets pi ide interrupt mask; <br>
	writing 01 clears pi ide interrupt mask; <br>
	writing 00 or 11 leave mask unchanged; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [15:14] </td>
<td> W <br> SET_AES_MASK <br> CLR_AES_MASK </td>
<td> - </td>
<td> n </td>
<td> writing 10 sets pi aes interrupt mask; <br>
	writing 01 clears pi aes interrupt mask; <br>
	writing 00 or 11 leave mask unchanged; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [13:12] </td>
<td> W <br> SET_FLASH_MASK <br> CLR_FLASH_MASK </td>
<td> - </td>
<td> n </td>
<td> writing 10 sets pi flash interrupt mask; <br>
	writing 01 clears pi flash interrupt mask; <br>
	writing 00 or 11 leave mask unchanged; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [11:0] </td>
<td> RW </td>
<td> - </td>
<td> y </td>
<td> same as MI_MASK </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [31:14] </td>
<td> R </td>
<td> 0 </td>
<td> n </td>
<td> reads return 0; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [13] </td>
<td> R MD_MASK </td>
<td> 0 </td>
<td> n </td>
<td> returns md interrupt mask; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [12] </td>
<td> R BUT_MASK </td>
<td> 0 </td>
<td> n </td>
<td> returns button interrupt mask; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [11] </td>
<td> R USB1_MASK </td>
<td> 0 </td>
<td> n </td>
<td> returns usb1 interrupt mask; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [10] </td>
<td> R USB0_MASK </td>
<td> 0 </td>
<td> n </td>
<td> returns usb0 interrupt mask; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [9] </td>
<td> R ERR_MASK </td>
<td> 0 </td>
<td> n </td>
<td> returns pi error interrupt mask; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [8] </td>
<td> R IDE_MASK </td>
<td> 0 </td>
<td> n </td>
<td> returns pi ide interrupt mask; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [7] </td>
<td> R AES_MASK </td>
<td> 0 </td>
<td> n </td>
<td> returns pi aes interrupt mask; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [6] </td>
<td> R FLASH_MASK </td>
<td> 0 </td>
<td> n </td>
<td> returns pi flash interrupt mask; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [5:0] </td>
<td> R </td>
<td> 0 </td>
<td> y </td>
<td> same as MI_MASK; </td>
</tr>
</tr>

</table>

<a name="reset">
<p>
<b><u>Reset</u></b>
<p>
	The system supports 4 different types of reset: pin reset, cold reset, 
	warm reset and bcp reset. Pin reset is generated externally to the chip and 
	is input to the RST pin (active low). Cold and warm reset are generated inside
	the MI and routed to the 4300 CPU. In response to pin reset, the MI generates
	a cold reset to the CPU. The MI also ANDs all three active low reset lines 
	together to form the bcp reset line, that is routed to the rest of the chip. 
	So, the rest of the chip does not distinguish cold and warm rest. In addition 
	to the bcp reset signal, the PI and the RI also get the pin reset signal, 
	since they have special case behavior that depends on pin reset.
<p>
	The PI will latch the BoardID into the PI_GPIO register on pin reset 
	(See the <a href="pi-spec.html">PI specification</a>). The RI clears the
	Refresh Rate register on pin reset. For bcp reset without power on reset
	the BoardID is not latched and the Refresh Enable bit is not cleared.
<p>
	To summarize the details of each of the reset.
<dl>
<dt><i>Pin Reset</i>
<dd>
	Pin reset is generated by keeping the RST line external to the chip low.
	Generally this happens on power-on. Pin reset will cause a cold reset to
	be generated to the CPU, and a bcp reset to the rest of the chip.
<p>
	On pin reset, all registers reset to their default values and the BoardID 
	is latched into the top 16 bits of the PI_GPIO register. See the
	<a href="pi-spec.html">PI Specification</a>.
<p>
<dt>Cold Reset</i>
<dd>
	Cold reset is triggered by writing to the MI_CTRL register with a 1 in
	the COLDRST bit. This will also generate a bcp reset to the rest of the chip.
<p>
	On cold reset the DIV mode of the CPU is set from the bits programmed 
	in the MI_CTRL register. With the exception of the DIV mode in the MI_CTRL 
	register and the Refresh Rate register in the RI, all other registers are 
	set to their default values on cold reset.
<p>
<dt><i>Warm Reset</i>
<dd>
	Warm reset is triggered by writing to the MI_CTRL register with a 1 in
	the WARMRST bit. This will also generate a bcp reset to the rest of the chip.
<p>
	On warm reset all registers with the exception of the DIV mode in the 
	MI_CTRL and the Refresh Rate register in the RI are reset to their default 
	values.
</dl>

<a name="intr">
<p>
<b><u>Interrupts</u></b>
<p>
	The 4300 supports 5 interrupt lines: INT0 - INT4.&nbsp;
<dl>
<dt><i>INT0</i>
<dd>
	INT0 is connected to the legacy RCP interrupt line, that muxes interrupts 
	from the AI, VI, DP, SP, PI and SI. These status of the individual interrupt 
	causes appear in the MI_INTR register. The interrupts can be masked using 
	the MI_MASK register.
<p>
<dt><i>INT1</i>
<dd>
	INT1 is the BCP interrupt line and muxes the new interrupt sources introduced 
	with new BCP functionality. These include: USB0, USB1, ERR, IDE, AES and FLASH.
	The latter four are all sourced from the PI unit (see <a href="pi-spec.html">
 	PI Specification</a>).&nbsp;
<p>
	The MI_EINTR register includes the interrupt status for these and the 
	legacy interrupts, and the MI_EMASK can be used to mask/unmask these interrupts 
	along with the legacy interrupts.
<p>
	The IDE interrupt mask is a special case. If the UNMASK_IDE bit is set 
	in the MI_CTRL register, an IDE interrupt will trigger INT1, regardless of 
	the state of the mask in the MI_EMASK register. This is to prevent applications 
	from accidently disabling the interrupt, since it will be used for debugging.
<p>
<dt><i>INT2</i>
<dd>
	INT2 was used in the RCP as the Pre-NMI interrupt, and was connected to the
	Reset button on the console. In the BCP this line is directly connected to
	the Power/Reset button.
<p>
<dt><i>INT3</i>
<dd>
	INT3 is the MI_ERROR interrupt. It its triggered as a result of illegal 
	writes to PIF RAM space, or illegal block writes to non-memory spaces, if 
	this is enabled in the MI_CTRL register. The interrupt is cleared by reading 
	the MI_ERR_INFO register.
<p>
<dt><i>INT4</i>
<dd>
	INT4 is unused.
</dl>

<p>
<b> Module Insertion/Removal Detection </b>
<p>
	The current status of the module presence can be read in the MD_STS bit of
	the MI_EINTR register. Module removal can trigger an interrupt or a secure
	kernel trap, if enabled. MD_INTR is set to indicate a change in the module
	status and stays active until cleared by writing 1. When servicing the
	exception, it is left up to software to debounce contact jitter during the
	module insertion or removal. Software can poll the MD_STS bit, possibly
	using software timers.

<a name="virage">
<p>
<b><u> Interface to Virage Non-Volatile Flash </u></b>
<p>
	Each of the virage blocks is addressed through a 64kB space in the
	MI boot space. This space is divided into four sub spaces which address
	the virage sram (Vx_MEM), the virage store controller (Vx_REG) registers,
	the mi virage control register (Vx_CTRL), the store controller execute
	space (Vx_NMS) and charge-pump execute space (Vx_CP). The MI_SEC_VTIME
	register is used to create a time base of 1us for the virage store
	controllers. The time base is not needed when the virage store controllers
	are bypassed. See the
<a href="nmsc-a5.doc">Virage Store Controller SPecification</a>
	for details.
	
<dl>
<dt> Vx_MEM
<dd> This is the shadow sram of the non-volatile array. <br>
	It supports single (uncached) and block (cached) accesses. <br>
	Reads accesses can be issued at any time. <br>
	Write accesses are blocked as long as the novea array is in keep mode. <br>
<p>
<dt> Vx_REG
<dd> The registers inside the virage store controller are accessed
	through this space. The store controler registers are 8 bits wide
	and use data bits [7:0].
	Only single (uncached) requests are supported. However, block
	(cached) requests are not trapped, do not cause errors and
	have undefined data behavior.
<p>
<dt> Vx_CTRL
<dd> This register controls how the charge pump and novea array are controlled.
	Only single (uncached) requests are supported. However, block
	(cached) requests are not trapped, do not cause errors and
	have undefined data behavior. <br>
	Bits [31] selects either the virage store controller or direct
	access by the cpu. <br>
	Bits [30:24] control the virage store controller. <br>
	Bits [23:0] bypass the virage store controller for direct cpu access. <br>
	Addr[13]=1: NMS executes command; <br>
	Addr[12]=1: charge pump CLKE is pulsed; <br>

</dl>

<table cellpadding=2 cellspacing=2 border=1>
<tr>
<td> V[012]_CTRL <br> V[012]_NMS <br> V[012]_CP </td>
<td> 0x1fc[89a]_cxxx <br> 0x1fc[89a]_exxx <br> 0x1fc[89a]_dxxx </td>
<td> [31:0] </td>
<td> RW </td>
<td> - </td>
<td> n </td>
<td> virage control register; <br>
	controls virage store controller; <br>
	cpu has direct control in bypass mode; <br>
	32-bit read/write access; <br>
	address must be 32-bit aligned; <br>
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [31] </td>
<td> RW NMS_BYP </td>
<td> 0 </td>
<td> n </td>
<td> store controller bypass; <br>
	NMS 0 = enabled, 1 = bypassed; <br>
	when bypassed, software has control over the
	CP_* and NV_* bits directly; the CP_* and NV_* bits
	reflect the current of the virage store controller
	when NMS_BYP is 0;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [30] </td>
<td> RO NMS_READY </td>
<td> - </td>
<td> n </td>
<td> store controller ready status; <br>
	0 = busy, 1 = ready; 
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [29] </td>
<td> RO NMS_PASS </td>
<td> - </td>
<td> n </td>
<td> store controller pass status; <br>
	0 = failed, 1 = pass;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [28] </td>
<td> RO NMS_KEEP </td>
<td> - </td>
<td> n </td>
<td> store controller keep status; <br>
	0 = normal, 1 = keep mode is on;
</td>
</tr>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [27] </td>
<td> RO </td>
<td> 0 </td>
<td> n </td>
<td> reserved; <br>
	writes are ignored, reads return 0;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [26:24] </td>
<td> RW NMS_CMD </td>
<td> 0 </td>
<td> n </td>
<td> store controller command; <br>
	000 = idle; <br>
	001 = serial sram access; <br>
	010 = full store; <br>
	011 = normal recall; <br>
	100 = normal compare; <br>
	101 = keep mode on; <br>
	110 = recall auto margin; <br>
	111 = reserved; <br>
	the command is started when address[13] is 1 and NMS_BYP is 0;
	address[13] can be on in the same access that sets NMS_CMD;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [23] </td>
<td> RO NV_RCREADY </td>
<td> - </td>
<td> n </td>
<td> novea recall ready status; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [22] </td>
<td> RO NV_MATCH </td>
<td> - </td>
<td> n </td>
<td> novea match status; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [21] </td>
<td> RW NV_RECALL </td>
<td> 0 </td>
<td> n </td>
<td> novea recall control; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [20] </td>
<td> RW NV_STORE </td>
<td> 0 </td>
<td> n </td>
<td> novea store control; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [18] </td>
<td> RW NV_COMP </td>
<td> 0 </td>
<td> n </td>
<td> novea comp control; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [17:16] </td>
<td> RW NV_MRCL </td>
<td> 00 </td>
<td> n </td>
<td> novea mrcl controls; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [15:14] </td>
<td> RW NV_TECC </td>
<td> 00 </td>
<td> n </td>
<td> novea tecc controls; </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [13:12] </td>
<td> RW NV_BIAS </td>
<td> 00 </td>
<td> n </td>
<td> novea bias controls; </td>
</tr>

<tr>
<td> </td>
<td> </td>
<td> [11] </td>
<td> RW CP_RST </td>
<td> 0 </td>
<td> n </td>
<td> charge pump reset; <br>
	0 = operation, 1 = reset;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [10] </td>
<td> RW CP_PE </td>
<td> 0 </td>
<td> n </td>
<td> charge pump enabled; <br>
	0 = disabled, 1 = enabled;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [9] </td>
<td> RW CP_DATA </td>
<td> 0 </td>
<td> n </td>
<td> charge pump data bit; <br>
	bit stream for unlock sequence; <br>
	unlock is 10010110;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [8] </td>
<td> RW CP_VRANGE </td>
<td> 0 </td>
<td> n </td>
<td> charge pump vpp range; <br>
	see charge pump spec for details;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [7:4] </td>
<td> RW CP_VPPSEL </td>
<td> 0 </td>
<td> n </td>
<td> charge pump vpp select; <br>
	see charge pump spec for details;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [3:2] </td>
<td> RO </td>
<td> 0 </td>
<td> n </td>
<td> reserved; <br>
	writes are ignored, reads return 0;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [1] </td>
<td> RO CP_UNLOCK </td>
<td> - </td>
<td> n </td>
<td> charge pump unlock status; <br>
	0 = locked, 1 = unlocked;
</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> [0] </td>
<td> RO CP_PORST </td>
<td> - </td>
<td> n </td>
<td> charge pump power-on reset; <br>
	0 = operational, 1 = reset;
</td>
</tr>
</tr>

<tr>
<td> V[012]_REG </td>
<td> 0x1fc[89a]_8xxx </td>
<td> [31:0] </td>
<td> RW </td>
<td> - </td>
<td> n </td>
<td> NMS register space; <br>
	32-bit read/write access; <br>
	address must be 32-bit aligned; <br>
	bits [7:0] are NMS register data; <br>
	bits [31:8] are ignored and read 0; <br>
</td>
</tr>
<tr>
<td> </td>
<td> 0x1fc[89a]_8000 </td>
<td> [7:0] </td>
<td> RW </td>
<td> 0000_0001 </td>
<td> n </td>
<td> NMS CRSTO_0 register; </td>
</tr>
<tr>
<td> </td>
<td> 0x1fc[89a]_8004 </td>
<td> [6:0] </td>
<td> RW </td>
<td> 0001_0010 </td>
<td> n </td>
<td> NMS CRSTO_1 register; </td>
</tr>
<tr>
<td> </td>
<td> 0x1fc[89a]_8008 </td>
<td> [7:0] </td>
<td> RW </td>
<td> 1001_0000 </td>
<td> n </td>
<td> NMS CRM_0 register; </td>
</tr>
<tr>
<td> </td>
<td> 0x1fc[89a]_800c </td>
<td> [7:0] </td>
<td> RW </td>
<td> 1001_0110 </td>
<td> n </td>
<td> NMS CRM_1 register; </td>
</tr>
<tr>
<td> </td>
<td> 0x1fc[89a]_8010 </td>
<td> [7:0] </td>
<td> RW </td>
<td> 0101_1001 </td>
<td> n </td>
<td> NMS CRM_2 register; </td>
</tr>
<tr>
<td> </td>
<td> 0x1fc[89a]_8014 </td>
<td> [5:0] </td>
<td> RW </td>
<td> 0001_0101 </td>
<td> n </td>
<td> NMS CRM_3 register; </td>
</tr>

<tr>
<td> V[012]_MEM </td>
<td> 0x1fc[89a]_0000 <br> ... <br> 0x1fc[89a]_7fff </td>
<td> [31:0] </td>
<td> RW </td>
<td> - </td>
<td> n </td>
<td> virage sram space; <br>
	32-bit read/write access; <br>
	no byte write enables; <br>
	address must be 32-bit aligned; <br>
	smaller devices appear mirrored; <br>
</td>
</tr>

</table>

<p>
<b><u> TODO </u></b>
<p>
<ul>
<li> v2 crc
</ul>


<hr>
<font size="-1">
	Problems and comments to
<a href="mailto:berndt@broadon.com">
	berndt@broadon.com
</a>
</font>
</body>
</html>