vusb_sie.v
148 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
/*******************************************************************************
-- File Type: Verilog HDL
-- Tool Version: VHDL2verilog v4.4 Tue Sep 19 10:06:32 EDT 2000 SunOS 5.5.1
-- Input file was: vusb_sie
-- Date Created: Tue Jul 16 13:58:50 2002
*******************************************************************************/
`timescale 1 ns / 1 ns // timescale for following modules
// -----------------------------------------------------------------------------
// Copyright 1996 VAutomation Inc. Nashua NH (603)882-2282 ALL RIGHTS RESERVED.
// This software is provided under license and contains proprietary and
// confidential material which is the property of VAutomation Inc.
//
// File: vusb_sie.vhd VAutomation USB Serial Interface Engine
//
// Revision: $Revision: 1.1.1.1 $
//
// Description:
// Synthesizabe VHDL description implementing the USB Serial Interface
// Engine (SEI).
//
//
// Block Diagram:
//
// ------------------------------------------------------------------------------
// This product is licensed to:
// John Princen of RouteFree
// for use at site(s):
// broadon
// ------------------------------------------------------------------------------
// Revision History
// $Log:
// 127 VUSB 1.126 7/5/02 2:00:56 PM Will Sanborn Removed
// hub signals, which were not used.
// 126 VUSB 1.125 6/27/02 6:04:02 PM Will Sanborn Doc
// Change Only: replacing "synopsysTM" in comments with "_synopsysTMTM" to
// prevent error with compiler interpreting those comments as pragmas.
// 125 VUSB 1.124 6/27/02 3:20:12 PM Will Sanborn Modified
// outputs in ratematch block, so OE signal goes active before the data
// signals on DPO and DMO.
// 124 VUSB 1.123 6/25/02 2:36:13 PM Chris Kolb Added
// resume/remote wake-up detection logic.
// 123 VUSB 1.122 4/11/02 2:49:12 PM Patrick Koran all
// checked in from pats pc, week of Starteam upgrade 4.6 to 5.1
// 122 VUSB 1.121 2/18/02 9:02:20 AM Tom Frechette Added
// reset to rx_reg process
// 121 VUSB 1.120 2/14/02 2:32:24 PM Tom Frechette Moved
// single ended transceiver logic to sie.
// 120 VUSB 1.119 2/7/02 4:42:15 PM Tom Frechette Changed
// async to _a and sync names on reset.
// 119 VUSB 1.118 2/7/02 3:59:16 PM Tom Frechette Fixed
// corrupt handshake bug. Added pid_chk_ok to reject_tx.
// 118 VUSB 1.117 1/9/02 10:30:25 AM Tom Frechette Addressed
// token done bug. If the handshake packet is corrupt, we don't report
// a token done.
// 117 VUSB 1.116 11/29/01 4:53:05 PM Tom Frechette Changed
// comments to _synopsysTMTM.
// 116 VUSB 1.115 10/30/01 11:01:31 AM Monika Leary Removed a
// couple of unused signals to get rid of synthesis warnings
// 115 VUSB 1.114 10/2/01 11:09:10 AM Monika Leary Changed
// endpoint stall so we don't stall on a setup
// 114 VUSB 1.113 8/23/01 9:49:31 AM Tom Frechette
// 113 VUSB 1.112 7/24/01 5:05:51 PM Monika Leary Changed
// async reset portion of a register to get rid of a synthesis warning
// 112 VUSB 1.111 7/9/01 3:25:51 PM Tom Frechette Moved
// host only register into its own proc.
// 111 VUSB 1.110 7/9/01 2:44:45 PM Tom Frechette One more
// time for verilog trans.
// 110 VUSB 1.109 7/9/01 2:14:49 PM Tom Frechette Still
// changing comments position for verilog.
// 109 VUSB 1.108 7/9/01 1:27:43 PM Tom Frechette Adjusting
// host remove comment for verilog.
// 108 VUSB 1.107 7/9/01 11:09:49 AM Tom Frechette Moved
// host remove comments for verilog translation.
// 107 VUSB 1.106 6/22/01 9:07:18 AM Tom Frechette Changed
// name of Config package
// 106 VUSB 1.105 6/21/01 10:00:30 AM Tom Frechette Changed
// the name.
// 105 VUSB 1.104 6/21/01 9:52:19 AM Tom Frechette
// 104 VUSB 1.103 5/25/01 10:26:28 AM Monika Leary Changed
// usboe generation so it is output from a register
// 103 VUSB 1.102 5/16/01 3:24:23 PM Tom Frechette Moved
// hc_reset to clear sof cnt outside of the clken_12 if statement.
// 102 VUSB 1.101 5/15/01 3:40:30 PM Monika Leary Added
// async reset, made all registers run on one clock, removed output
// registers from usboe, dpo and dmo.
// 101 VUSB 1.100 1/18/01 1:44:20 PM Chris Kolb Changed
// txd_pid_data generation from a concurrent construct to a process to
// try to work around a bug in exemplar.
// 100 VUSB 1.99 12/14/00 8:45:32 AM Christopher Meyers RCS
// Keyword To StarTeam Keyword Translation
// 99 VUSB 1.98 12/13/00 9:15:33 PM Chris Kolb Changed
// the current_token and current endpoint, so that they would not be
// effected by an SOF token to prevent thrashing of the cached BDT by
// SOF tokens.
// 98 VUSB 1.97 12/13/00 9:15:27 PM Mark Pettigrew # added
// host_wo_hub to sensitivity list of Tx Data Packet state machine
// 97 VUSB 1.96 12/13/00 9:15:20 PM Chris Kolb Changed
// host_wo_hub from a generic to a signal. Changed architecture name to
// rtl.
// 96 VUSB 1.95 12/13/00 9:15:14 PM Gregory Recupero Fixed
// NAK response during a SETUP token if bus_gnt lost during data phase.
// Also change dma_err_set for FIFO overflow and underflow conditions
// 95 VUSB 1.94 12/13/00 9:15:08 PM Gregory Recupero Removed
// ^M's
// 94 VUSB 1.93 12/13/00 9:15:01 PM Mark Pettigrew
// ulogicified source - no functional changes
// 93 VUSB 1.92 12/13/00 9:14:55 PM Mark Pettigrew fixed
// 'reject_rx_dat_set' assertion condition - should be '/= PID_SETUP'
// 92 VUSB 1.91 12/13/00 9:14:48 PM Chris Kolb Changed
// bts_err_set so that the idle state on the bus would not be reported
// as a bit stuff error while waiting for a sync pulse in the TOK_SYNC
// state.
// 91 VUSB 1.90 12/13/00 9:14:41 PM Mark Pettigrew updated
// EMBEDDED HOST ADD section to drive 'low_speed_en'. Need to drive this
// else usb dev mode dies.
// 90 VUSB 1.89 12/13/00 9:14:35 PM Chris Kolb Added
// term to ser2par_rg_d to prevent false syncs.
// 89 VUSB 1.88 12/13/00 9:14:28 PM Chris Kolb Removed
// reduntant assignments to low_speed_en and hc_ls_timing_set. Cleaned
// up sensitivity lists and unused signals.
// 88 VUSB 1.87 12/13/00 9:14:21 PM Chris Kolb Changed
// hc_ls_timing_clr to cause a PRE_PID to be generated when sending a
// RXD_HSHK transmit packet (IN token ACK, NAK or STALL) to a low speed
// device.
// 87 VUSB 1.86 12/13/00 9:14:15 PM Chris Kolb Added
// host_wo_hub generic to allow host without hub to be set individually
// for each vusb core is a simulation.
// 86 VUSB 1.85 12/13/00 9:14:09 PM Chris Kolb Added
// logic to support Low speed devices thru a hub.
// 85 VUSB 1.84 12/13/00 9:14:02 PM Chris Kolb Added hc
// (host control) reset to reset the state machines when host mode is
// entered or exited.
// 84 VUSB 1.83 12/13/00 9:13:55 PM Chris Kolb Added
// support for SOF timer function for LS host. Fixed bug with Frame
// number loading.
// 83 VUSB 1.82 12/13/00 9:13:49 PM Chris Kolb Cut the
// response turnaround time by one cycle to give customers more margin
// when running gate level simulation.
// 82 VUSB 1.81 12/13/00 9:13:43 PM Chris Kolb Fixed
// crc5_err_set by removing not TOK_EOP term from the ser2par_rg_se
// equation. Extended the range of the DFN8 error indication to cover
// any packet that token, data or handshake that ends on a non-byte
// boundary.
// 81 VUSB 1.80 12/13/00 9:13:35 PM Chris Kolb Fixed
// signal exchange problems associated with low speed host operation.
// 80 VUSB 1.79 12/13/00 9:13:29 PM Gregory Recupero Modified
// output signal generation to use the low_speed_dev constant to
// generate low speed signaling.
// 79 VUSB 1.78 12/13/00 9:13:23 PM Chris Kolb Added a
// cycle of delay to sie_eop_out to support tighter connection tear down
// timing in the hub.
// 78 VUSB 1.77 12/13/00 9:13:17 PM Chris Kolb Changed
// clear pulse on SOF counter from the asynchronous mcek_cnt_clr to the
// synchronized sof_cnt_clr. This effected the sleep interrupt
// generation.
// 77 VUSB 1.76 12/13/00 9:13:11 PM Chris Kolb Recoded
// inputs and outputs of hc_sof_cnt with the clock enable crossings in
// mind.
// 76 VUSB 1.75 12/13/00 9:13:05 PM Chris Kolb Fixed
// width of hc_sof_cnt constant compare in frame_num_d equation.
// 75 VUSB 1.74 12/13/00 9:12:59 PM Chris Kolb Changed
// _synopsysTM(TM) comment placement so it would survive translation to
// verilog.
// 74 VUSB 1.73 12/13/00 9:12:53 PM Chris Kolb Added
// synchronous reset term for own_ok_suspend.
// 73 VUSB 1.72 12/13/00 9:12:47 PM Chris Kolb Fixed
// vasync comment on rx_srst_regs process.
// 72 VUSB 1.71 12/13/00 9:12:41 PM Chris Kolb Fixed
// token busy.
// 71 VUSB 1.70 12/13/00 9:12:35 PM Gregory Recupero Added
// resume support for device and host controller modes
// 70 VUSB 1.69 12/13/00 9:12:28 PM Chris Kolb Added
// logic to make ISO packet tokens ignore the txd suspend signal.
// 69 VUSB 1.68 12/13/00 9:12:22 PM Chris Kolb Removed a
// cycle ofdelay from the BDT endpoint stall indication, so that it
// would track the BDT OWN bit.
// 68 VUSB 1.67 12/13/00 9:12:16 PM Chris Kolb Added
// code to suspend any transfer type when txd_suspend is true. Change
// assertion of txd_suspend to occur when a SETUP token is completed.
// Added code to cause BDT's not to be cached when txd_suspend is true.
// 67 VUSB 1.66 12/13/00 9:12:09 PM Gregory Recupero Added
// suspend timer and sleep logic
// 66 VUSB 1.65 12/13/00 9:12:03 PM Chris Kolb Added
// hardware dequeuing and protocol stall support.
// 65 VUSB 1.64 12/13/00 9:11:56 PM Chris Kolb False
// bitstuff error detect at end of packet fix.
// 64 VUSB 1.63 12/13/00 9:11:50 PM Chris Kolb Added
// code to suppress the token done interrupt and BDT write, but flush
// any remaining data at the end of packet if the KEEP bit is set.
// 63 VUSB 1.62 12/13/00 9:11:43 PM Chris Kolb Changed
// sie_eop_out output to assert for one cycle after the SE0 to J
// transition. ;
// 62 VUSB 1.61 12/13/00 9:11:36 PM Chris Kolb Removed 8
// cycle time limit in TOK_SYNC state to allow sync detection even if
// the PLL adjusts short twice in response to a slow clock with a phase
// shift.
// 61 VUSB 1.60 12/13/00 9:11:29 PM Chris Kolb Added
// acknowledge for token req and clr from up_int.
// 60 VUSB 1.59 12/13/00 9:11:22 PM Chris Kolb Recoded
// for synchronous reset.
// 59 VUSB 1.58 12/13/00 9:11:15 PM Gregory Recupero Updated
// HOST ADD for Makerelease
// 58 VUSB 1.57 12/13/00 9:11:09 PM Chris Kolb Moved SOF
// timer and associated logic to a fixed 12MHz clock enable.
// 57 VUSB 1.56 12/13/00 9:11:03 PM Chris Kolb Added
// syntax for Async or Sync reset inference.
// 56 VUSB 1.55 12/13/00 9:10:56 PM Chris Kolb Syntax
// error.
// 55 VUSB 1.54 12/13/00 9:10:49 PM Chris Kolb Added
// signals for VUSB Hub. Added logic to support cancelling host tokens.
// 54 VUSB 1.53 12/13/00 9:10:42 PM Chris Kolb Fixed
// false BTS error generation during RXD_EOP.
// 53 VUSB 1.52 12/13/00 9:10:34 PM Chris Kolb Changed
// logic so ISO in tokens that BTO will be sent only once.
// 52 VUSB 1.51 12/13/00 9:10:28 PM Chris Kolb Fixed
// process sensitivity lists.
// 51 VUSB 1.50 12/13/00 9:10:21 PM Chris Kolb Fixed
// host bdt reread equation after rejected rx or tx packets.
// 50 VUSB 1.49 12/13/00 9:10:14 PM Chris Kolb Fixed
// bitstuff error detection on the last bit of a packet.
// 49 VUSB 1.48 12/13/00 9:10:08 PM Chris Kolb Added
// error condition handling for bit_stuff, DFN8, Premature EOP, CRC5,
// CRC16 Data fifo over and underrun, endpoint stall, data toggle
// synchronization, and owns bit latency.
// 48 VUSB 1.47 12/13/00 9:10:02 PM Chris Kolb Added
// code to support bit stuff generation on the last bit of a token
// packet. Simplified the attach interrupt hardware. Added support for
// longer latency memory systems (BDT caching).
// 47 VUSB 1.46 12/13/00 9:09:55 PM Chris Kolb Corrected
// Host token operation.
// 46 VUSB 1.45 12/13/00 9:09:49 PM Gregory Recupero Fixed
// erroneous bts_err_set during high performance mode operation
// 45 VUSB 1.44 12/13/00 9:09:43 PM Chris Kolb Enabled
// and debugged host mode operations.
// 44 VUSB 1.43 12/13/00 9:09:35 PM Chris Kolb Added
// code to support embedded host mode operations. Currently untested.
// 43 VUSB 1.42 12/13/00 9:09:28 PM Chris Kolb Changed
// the meaning of the endpoint control register bit definitions.
// 42 VUSB 1.41 12/13/00 9:09:22 PM Chris Kolb Added
// clock enable to logic to all registers and strobed outputs.
// 41 VUSB 1.40 12/13/00 9:09:17 PM Chris Kolb Removed
// <Control-M> characters from the line ends.
// 40 VUSB 1.39 12/13/00 9:09:10 PM Gregory Recupero Added
// additional error support
// 39 VUSB 1.38 12/13/00 9:09:05 PM Chris Kolb Removed
// transition that rejected packets that have long EOP pulses.
// 38 VUSB 1.37 12/13/00 9:08:59 PM Eric Ryherd chenged
// the DET_SYNC to only check for 3 zeroes and a one instead of 6 zeros
// and a one which fails in the lab. PLL may blow the second bit.
// 37 VUSB 1.36 12/13/00 9:08:53 PM Gregory Recupero Fix last
// bit stuff of CRC
// 36 VUSB 1.35 12/13/00 9:08:48 PM Gregory Recupero Added
// better se0 detection to the TOKEN state machine
// 35 VUSB 1.34 12/13/00 9:08:42 PM Gregory Recupero Added
// error checking conditions
// 34 VUSB 1.33 12/13/00 9:08:36 PM Gregory Recupero Fixed
// transmit of small packets
// 33 VUSB 1.32 12/13/00 9:08:30 PM Gregory Recupero Added
// direction support to bulk and iso endpoints
// 32 VUSB 1.31 12/13/00 9:08:23 PM Gregory Recupero Fixed
// otk_pstate to use ser2par_cnt_eq7 Added enumerated type variables for
// simulation debug
// 31 VUSB 1.30 12/13/00 9:08:17 PM Gregory Recupero Added
// new endpoint control register formats
// 30 VUSB 1.29 12/13/00 9:08:10 PM Gregory Recupero Added
// EOP to the DPLL and brought more debugging signals out.
// 29 VUSB 1.28 12/13/00 9:08:03 PM Gregory Recupero Moved
// SE0 detect to DPLL.
// 28 VUSB 1.27 12/13/00 9:07:57 PM Gregory Recupero Encoded
// in and out token state machines
// 27 VUSB 1.26 12/13/00 9:07:50 PM Gregory Recupero
// Re-ordered Control/Data bus bit definitions
// 26 VUSB 1.25 12/13/00 9:07:43 PM Chris Kolb Reversed
// the bit order of the address comparitor input.
// 25 VUSB 1.24 12/13/00 9:07:36 PM Gregory Recupero Added
// token state machine present state bit to debug bus Implemented
// additional error conditions CRC5_ERR, and CRC16_ERR
// 24 VUSB 1.23 12/13/00 9:07:29 PM Gregory Recupero Improved
// SYNC field detection
// 23 VUSB 1.22 12/13/00 9:07:22 PM Eric Ryherd reset the
// ODD bits when indicated.
// 22 VUSB 1.21 12/13/00 9:07:16 PM Gregory Recupero Added
// dma_early_req to reduce bus request latency
// 21 VUSB 1.20 12/13/00 9:07:10 PM Gregory Recupero Added
// code for DMA_ERR on IN tokens
// 20 VUSB 1.19 12/13/00 9:07:04 PM Gregory Recupero Added
// cdb signals for error status interrupts
// 19 VUSB 1.18 12/13/00 9:06:58 PM Gregory Recupero
// Corrected stalled conditions of SETUP, IN, and OUT tokens for control
// endpoints
// 18 VUSB 1.17 12/13/00 9:06:51 PM Gregory Recupero Fixed
// false single ended 0 dectects
// 17 VUSB 1.16 12/13/00 9:06:45 PM Gregory Recupero Added
// det_se0 and ser2par_cnt to out token statemachine sensitivity list
// 16 VUSB 1.15 12/13/00 9:06:38 PM Gregory Recupero Fixed
// OUT token NAK response problem Improved false EOP rejection
// 15 VUSB 1.14 12/13/00 9:06:32 PM Gregory Recupero
// Increased bus turnaround time by 2 clocks Fixed IN token with 0 byte
// count
// 14 VUSB 1.13 12/13/00 9:06:25 PM Gregory Recupero Fixed
// BDT DATA01 writeback problem on SETUP and OUT TOKENS
// 13 VUSB 1.12 12/13/00 9:06:19 PM Gregory Recupero Added
// in_handshake_done to sensitivity list
// 12 VUSB 1.11 12/13/00 9:06:13 PM Gregory Recupero Added
// CRC16 and fixed bitstuff on IN tokens
// 11 VUSB 1.10 12/13/00 9:06:07 PM Gregory Recupero Fixed IN
// token handshake with own=0
// 10 VUSB 1.9 12/13/00 9:06:01 PM Gregory Recupero Added IN
// token
// 9 VUSB 1.8 12/13/00 9:05:54 PM Gregory Recupero Added Tx
// FIFO interface
// 8 VUSB 1.7 12/13/00 9:05:48 PM Gregory Recupero Added Rx
// FIFO interface
// 7 VUSB 1.6 12/13/00 9:05:41 PM Gregory Recupero Added
// ser2par_cnt_eq2 to sensitivity list
// 6 VUSB 1.5 12/13/00 9:05:34 PM Gregory Recupero Fixed
// bit stuff removal problem on back-to-back tokens
// 5 VUSB 1.4 12/13/00 9:05:28 PM Gregory Recupero Added
// handshake states
// 4 VUSB 1.3 12/13/00 9:05:23 PM Eric Ryherd Fixed
// USB_RST_EN_D. needed to be=1 on SRST, not 0.
// 3 VUSB 1.2 12/13/00 9:05:18 PM Gregory Recupero OUT and
// SETUP coded.
// 2 VUSB 1.1 12/13/00 9:05:12 PM Chris Kolb Added
// dummy assignments for unimplemented outputs.
// 1 VUSB 1.0 12/13/00 9:05:07 PM Chris Kolb initial
// revision
// $
// ------------------------------------------------------------------------------
// use ieee.std_logic_arith.all;
// ------------------------------------------------------------------------------
// Copyright 1995 VAutomation Inc. Nashua NH (603)882-2282 ALL RIGHTS RESERVED.
// This software is provided under license and contains proprietary and
// confidential material which is the property of VAutomation Inc.
//
// File: vusb_cfg.vhd USB Configuration file.
//
// Revision: $Revision: 1.1.1.1 $
//
// Description: A Package file for the usb core that defines global usb constants
// that contol how the VUSB core is synthesised.
//
// ---------------------------------------------------------------------------
// This product is licensed to:
// $name$ of $company$
// for use at site(s):
// $site$
// ------------------------------------------------------------------------------
// Revision History
// $Log:
// 32 VUSB 1.31 7/5/02 9:15:50 AM Chris Kolb Moved
// VUSB build configruation Revision constant to vusb_cfg, and updated
// the rev number to 3.0.
// 31 VUSB 1.30 4/11/02 2:49:09 PM Patrick Koran all
// checked in from pats pc, week of Starteam upgrade 4.6 to 5.1
// 30 VUSB 1.29 3/18/02 10:52:11 AM Tom Frechette Changed
// IRQ_NUM default to 0x0.
// 29 VUSB 1.28 3/15/02 2:39:08 PM Tom Frechette Added
// Interupt info into add_info register.
// 28 VUSB 1.27 2/7/02 4:49:00 PM Tom Frechette Removed
// sync config variable.
// 27 VUSB 1.26 8/23/01 9:48:58 AM Tom Frechette
// 26 VUSB 1.25 7/25/01 3:41:35 PM Tom Frechette Changed
// FIFO Parameter Names.
// 25 VUSB 1.24 7/10/01 3:03:41 PM Tom Frechette Moved
// HOST comment for verilog.
// 24 VUSB 1.23 7/6/01 7:44:00 AM Tom Frechette Added
// host comments around host constant to make it look like vusb_sie.
// 23 VUSB 1.22 7/6/01 7:34:33 AM Tom Frechette Added
// device constant comment for ARC.
// 22 VUSB 1.21 7/3/01 4:42:08 PM Tom Frechette Changed
// mode to a constant in vusb_cfg.
// 21 VUSB 1.20 6/22/01 3:09:48 PM Tom Frechette Changed
// endpoint number.
// 20 VUSB 1.19 6/21/01 9:59:56 AM Tom Frechette Changed
// the name and added fifo constants
// 19 VUSB 1.18 6/21/01 9:51:24 AM Tom Frechette
// 18 VUSB 1.17 5/25/01 10:25:08 AM Monika Leary Set
// synchronous reset constant to '1'
// 17 VUSB 1.16 5/17/01 2:52:48 PM Monika Leary Added
// USE_SYNC_RESET constant
// 16 VUSB 1.15 12/14/00 8:42:11 AM Christopher Meyers RCS
// Keyword To StarTeam Keyword Translation
// 15 VUSB 1.14 12/13/00 7:58:39 PM Chris Kolb Removed
// the HOST_WITHOUT_HUB constant. This control is now a Endpt0 control
// register bit in up_int.vhd.
// 14 VUSB 1.13 12/13/00 7:58:31 PM Gregory Recupero Removed
// ^M's
// 13 VUSB 1.12 12/13/00 7:58:26 PM Mark Pettigrew
// ulogicified source - no functional changes
// 12 VUSB 1.11 12/13/00 7:58:19 PM Chris Kolb Change
// type of HOST_WITHOUT_HUB from std_logic to integer so that it could
// be used to initialize a _synopsysTM(TM) compatible generic.
// 11 VUSB 1.10 12/13/00 7:58:14 PM Chris Kolb Set
// constant to support Host to Low Speed device thru a hub.
// 10 VUSB 1.9 12/13/00 7:58:07 PM Chris Kolb Changed
// LOW_SPEED_DEV constant to type integer to support generics.
// 9 VUSB 1.8 12/13/00 7:57:58 PM Christopher Meyers
// removed ASIC_IMPLEMENTATION constant
// 8 VUSB 1.7 12/13/00 7:57:46 PM Chris Kolb Remove
// ^M's. No functional changes.
// 7 VUSB 1.6 12/13/00 7:57:39 PM Chris Kolb Added
// HOST_WITHOUT_HUB constant to support new code in the DPLLNRZI.
// 6 VUSB 1.5 12/13/00 7:57:19 PM Chris Kolb Turned
// host mode back on.
// 5 VUSB 1.4 12/13/00 7:57:12 PM Chris Kolb Reverted
// to device only implementation.
// 4 VUSB 1.3 12/13/00 7:57:08 PM Chris Kolb Added
// revision string.
// 3 VUSB 1.2 12/13/00 7:57:03 PM Chris Kolb Enabled
// implementation of embedded host functions.
// 2 VUSB 1.1 12/13/00 7:56:58 PM Chris Kolb Added
// IMPLEMENT_EMBEDED_HOST constant.
// 1 VUSB 1.0 12/13/00 7:56:51 PM Chris Kolb initial
// revision
// $
//
//
// ------------------------------------------------------------------------------
module vusb_sie (clk,
clk_en,
clken_12,
rst,
rst_a,
cdb_in,
cdb_out,
rx_full,
rx_wdata,
rx_we,
tx_empty,
tx_rdata,
tx_re,
tx_valid,
flush,
host_mode_en,
host_wo_hub,
low_speed_req,
low_speed_en,
suspnd,
usboe_early,
usboe,
dpo,
dmo,
rcv,
jstate,
eop,
se0,
debug);
// file containing translation of VHDL package 'vusb_cfg'
parameter lsdev = 0;
`include "vusb_cfg.v"
input clk; // Clock
input clk_en; // Clock enable
input clken_12; // SOF timer clock enable
input rst; // Reset synchronous
input rst_a; // reset asynchronous
input [43:0] cdb_in; // Control/Data bus in
output [45:0] cdb_out; // Control/Data bus out
input rx_full; // Rx FIFO full
output [7:0] rx_wdata; // Rx FIFO write data
output rx_we; // Rx FIFO write enable
input tx_empty; // Tx FIFO empty
input [7:0] tx_rdata; // Tx FIFO read data
output tx_re; // Tx FIFO read enable
input tx_valid; // Tx FIFO has valid data in it
output flush; // FIFO flush enable
input host_mode_en; // enable embedded host if implemented
input host_wo_hub; // host without hub control
input low_speed_req; // USB Speed Control from uProc
output low_speed_en; // USB Speed Control to DPLL
output suspnd; // USB Suspend
output usboe_early; // early pulse of USB Output Enable
output usboe; // USB Output Enable
output dpo; // USB Data Plus Output
output dmo; // USB Data Minus Output
input rcv; // USB Receive Data
input jstate; // synchronized jstate signal
input eop; // USB end of packet
input se0; // USB single ended zero
output [15:0] debug; // Debug bus
wire [45:0] cdb_out;
wire [7:0] rx_wdata;
wire rx_we;
wire tx_re;
wire flush;
wire low_speed_en;
wire suspnd;
wire usboe_early;
wire usboe;
wire dpo;
wire dmo;
wire [15:0] debug;
parameter SUSPEND_TERM_CNT_HS = {4'b 1000, 4'b 1100, 4'b 1010, 4'b 0000}; // 8ca0h = 36,000
parameter SUSPEND_TERM_CNT_LS = {4'b 0001,
4'b 0001, 4'b 1001, 4'b 0100}; // 1194h = 4,500
parameter SOF_TERM_CNT_HS = {4'b 0010, 4'b 1110,
4'b 1101, 4'b 1111}; // 2ee0h = 12,000
// "0000" & "0100" & "0110" & "0000"; -- 0460h = 1,200
parameter SOF_TERM_CNT_LS = {4'b 0000, 4'b 0101, 4'b 1101,
4'b 1100}; // 05dch = 1,500
parameter PID_OUT = 4'b 0001;
parameter PID_IN = 4'b 1001;
parameter PID_SOF = 4'b 0101;
parameter PID_SETUP = 4'b 1101;
parameter PID_DATA0 = 4'b 0011;
parameter PID_DATA1 = 4'b 1011;
parameter PID_ACK = 4'b 0010;
parameter PID_NAK = 4'b 1010;
parameter PID_STALL = 4'b 1110;
parameter PID_PRE = 4'b 1100;
// TYPE tok_states:
parameter tok_states_ERROR_E = 0;
parameter tok_states_TOK_IDLE_E = 1;
parameter tok_states_TOK_SYNC_E = 2;
parameter tok_states_TOK_PID_E = 3;
parameter tok_states_TOK_BYTE0_E = 4;
parameter tok_states_TOK_BYTE1_E = 5;
parameter tok_states_TOK_EOP_E = 6;
parameter tok_states_TOK_PROC_E = 7;
parameter tok_states_TOK_WAIT_E = 8;
parameter TOK_IDLE = 3'b 000;
parameter TOK_SYNC = 3'b 001;
parameter TOK_PID = 3'b 011;
parameter TOK_BYTE0 = 3'b 010;
parameter TOK_BYTE1 = 3'b 110;
parameter TOK_EOP = 3'b 111;
parameter TOK_PROC = 3'b 101;
parameter TOK_WAIT = 3'b 100;
// TYPE txd_states:
parameter txd_states_TXD_WAIT_E = 0;
parameter txd_states_TXD_SYNC_E = 1;
parameter txd_states_TXD_PID_E = 2;
parameter txd_states_TXD_DATA_E = 3;
parameter txd_states_TXD_CRC16L_E = 4;
parameter txd_states_TXD_CRC16H_E = 5;
parameter txd_states_TXD_LBS_E = 6;
parameter txd_states_TXD_EOP_E = 7;
parameter txd_states_TXD_HSHK_E = 8;
parameter txd_states_TXD_DONE_E = 9;
parameter txd_states_TXD_PRE_E = 10;
parameter txd_states_TXD_LSDLY_E = 11;
parameter txd_states_TXD_DELAY_E = 12;
parameter TXD_WAIT = 4'b 0000;
parameter TXD_SYNC = 4'b 0001;
parameter TXD_PID = 4'b 0010;
parameter TXD_DATA = 4'b 0011;
parameter TXD_CRC16L = 4'b 0100;
parameter TXD_CRC16H = 4'b 0101;
parameter TXD_LBS = 4'b 1110;
parameter TXD_EOP = 4'b 0110;
parameter TXD_HSHK = 4'b 0111;
parameter TXD_DONE = 4'b 1000;
parameter TXD_DELAY = 4'b 1001;
parameter TXD_PRE = 4'b 1010;
parameter TXD_LSDLY = 4'b 1011;
// TYPE rxd_states:
parameter rxd_states_RXD_WAIT_E = 0;
parameter rxd_states_RXD_SYNC_E = 1;
parameter rxd_states_RXD_IDLE_E = 2;
parameter rxd_states_RXD_PID_E = 3;
parameter rxd_states_RXD_BYTE0_E = 4;
parameter rxd_states_RXD_BYTE1_E = 5;
parameter rxd_states_RXD_BYTE2_E = 6;
parameter rxd_states_RXD_EOP_E = 7;
parameter rxd_states_RXD_HSHK_E = 8;
parameter rxd_states_RXD_DONE_E = 9;
parameter RXD_WAIT = 4'b 0000;
parameter RXD_IDLE = 4'b 0001;
parameter RXD_SYNC = 4'b 0010;
parameter RXD_PID = 4'b 0011;
parameter RXD_BYTE0 = 4'b 0100;
parameter RXD_BYTE1 = 4'b 0101;
parameter RXD_BYTE2 = 4'b 0110;
parameter RXD_EOP = 4'b 0111;
parameter RXD_HSHK = 4'b 1000;
parameter RXD_DONE = 4'b 1001;
// The following line is used when translating to Verilog...
// _synopsys sync_set_reset "rst"
// Requires the sync_set/reset attribute to insure no Xes in simulation
wire bdt_stall_d; // BDT stall control bit
wire bdt_valid; // BDT registers contain a valid BDT
wire [3:0] bdt_wrt_pid; // PID value for BDT
wire bto_err_set; // Bus timeout error interrupt set
wire byte_count_eq; // DMA byte count equals saved byte count
// SIE counter signals
reg [4:0] mcek_cnt; // multi purpose counter
wire mcek_cnt_clr; // Counter clear term
reg se0_f; // registered copy of se0 input
reg jstate_f; // registered copy of rcv input
reg [4:0] crc5_data; // CRC5 data
wire crc5_data_clr; // CRC5 data load enable
wire crc5_data_ld; // CRC5 data load enable
wire crc5_data_se; // CRC5 data shift enable
wire crc5_okay; // CRC5 okay
wire crc5_err_set; // CRC5 okay
reg [15:0] crc16_data; // CRC16 data
wire crc16_data_comp; // CRC16 data compute enable
wire crc16_data_se; // CRC16 data shift enable
wire [15:0] comp_crc16_data; // Compute CRC16 data
wire crc16_data_ld; // CRC16 data load enable
wire crc16_err_set; // CRC16 error detected.
wire crc16_okay; // CRC16 okay
// Current token register, token write data, and load enable
reg [3:0] current_token;
reg current_token_eq;
wire [3:0] current_token_d;
wire current_token_ld;
// Current endpoint register, endpoint write data, and load enable
reg [3:0] current_endpt;
reg current_endpt_eq;
wire [3:0] current_endpt_d;
wire current_endpt_ld;
wire data01; // BDT data0/1 control bit
wire det_rst; // Detect USB reset
wire det_eop; // Detect end of packet
wire det_se0; // Detect single ended zero
wire det_sync; // Detect SYNC
reg dev_dma_rd_bdt; // DMA read BDT (4 bytes) (non-host)
wire dma_rd_bdt; // DMA read BDT (4 bytes)
reg dma_re_rd_bdt; // DMA re_rd BDT (4 bytes)
reg dma_wrt_bdt; // DMA write BDT (4 bytes)
reg dfn8_err_tok; // Token packet not 8-bits error interrupt set
reg dfn8_err_rxd; // Data field not 8-bits error interrupt set
wire dts; // BDT dts control bit
// DMA early req
parameter enable_early_req = 1'b 0;
// signal endpt_en : std_ulogic; -- Endpoint enabled
reg endpt_in_en; // Endpoint rx in enabled
wire endpt_in_en_d; // Endpoint rx in enabled data
reg endpt_ctl_dis; // Endpoint not control enpoint
wire endpt_ctl_dis_d; // Endpoint not control enpoint
reg endpt_out_en; // Endpoint rx out enabled
wire endpt_out_en_d; // Endpoint rx out enabled data
wire endpt_stall; // Endpoint stall
reg endpt_stall_clr; // Endpoint stall clear
wire endpt_stall_set; // Endpoint stall set
reg endpt_hshk; // Endpoint handshake enable
wire endpt_hshk_d; // Endpoint handshake data
// Current frame number register, frame number write data, and load enable
reg [10:0] frame_num;
wire [10:0] frame_num_d;
reg frame_num_ld;
// Embedded host controller signals
wire hc_en; // embedded host controller functions are
// implemented and turned on
wire hc_en_f;
// edge of hc_en.
reg hc_en_fq; // register for capturing the rising
wire hc_attach_set; // attach / detach interrupt pulse
wire hc_det_attach; // host controller attach detect
wire hc_resume_set; // attach / detach interrupt pulse
wire hc_det_resume; // host controller attach detect
reg hc_dma_rd_bdt_q; // DMA read BDT (4 bytes) (host)
wire hc_dma_rd_bdt; // DMA read BDT (4 bytes) (host)
wire hc_reset; // reset on entering or exiting host mode.
wire hc_rst_req; // USB reset request
// signal hc_sof_cnt_q : std_ulogic_vector(15 downto 0); -- SOF Threshold
reg sof_cnt_clr0; // SOF counter clear in clken_dpll domain
reg sof_cnt_clra; // two cycle wide async sof cnt clear
reg sof_cnt_clr; // SOF cnt clr in clken_12 domain
wire hc_ls_timing; // host is using low speed timing
reg hc_ls_timing_q; // host is using low speed timing
wire hc_ls_timing_clr; // finish host low speed timing
wire hc_ls_timing_set; // start host low speed timing
reg tok_ls_timing_set; // start host token low speed timing
reg txd_ls_timing_set; // start host txd low speed timing
wire hc_no_retry; // host retry not allowed on this failure
wire hc_retry_disable; // host retry disabled from uProcessor int
wire [3:0] hc_rxd_pid; // Rx PID value
reg [3:0] hc_rxd_pid_q; // Rx PID value
reg [15:0] hc_sof_cnt; // SOF Threshold
reg hc_sof_tc; // SOF terminal count
wire hc_sof_thld_set; // SOF Threshold det interrupt pulse
wire hc_sof_err_set; // Start of Frame error interrupt pulse
wire hc_sof_req; // USB SOF transaction request
wire hc_sof_req_set; // USB SOF sync to clk_en
reg hc_sof_req_set_q; // USB SOF sync to clk_en
wire hc_sof_req_f; // USB SOF one clk_en delayed
reg hc_sof_req_fq; // USB SOF one clk_en delayed reg output
reg hc_sof_req_q; // USB SOF register output
wire [7:0] hc_sof_thld; // SOF Threshold
wire hc_stall_set; // stall interrupt pulse
wire hc_token_busy; // the last host token request is not complete
wire hc_token_busy_f; // registered copy
reg hc_token_busy_fq; // flip_flop q output
reg hc_token_done; // USB token transaction completed
wire [3:0] hc_token_endpt; // host End Point
wire hc_token_inhibit; // USB token inhibit
reg hc_token_inhibit_dq; // token inhibit async to clke_en
wire hc_token_inhibit_d; // token inhibit regster input.
wire hc_token_inhibit_f; // USB token inhibit one cycle delayed
reg hc_token_inhibit_fq; // register output
reg hc_token_inhibit_q; // register output.
wire hc_token_req; // USB token transaction req
wire [3:0] hc_token_pid; // host PID
wire [7:0] hc_txd_byte; // host data byte
wire [10:0] hc_tx_data; // host data
reg idpo; // Internal USB Data plus output
wire idmo_d; // Internal USB Data minus output
wire idpo_d; // Internal USB Data plus output
wire in_handshake_en; // In handshake enable
reg in_handshake_done; // In handshake done
wire tx_datpkt_proc; // Tx Data Packet process
wire tx_datpkt_done; // Tx Data Packet process done
wire tx_fif_re; // internal copy of Tx FIFO read enable
reg [3:0] txd_pid_data; // Tx Data Packet pid data
wire usb_dout; // USB data dout
wire usb_jstate_req; // USB jstate output request
wire usb_kstate_req; // USB kstate output request
wire usb_nrzo; // USB nrz encoded data out.
wire usb_se0_req; // USB single ended zero output request
// Tx Data Packet state machine state bits
reg [3:0] txd_enum; // Tx Data Packet state enumerated type
reg [3:0] txd_pstate; // Present state bits
reg [3:0] txd_nstate; // Next state bits
wire txd_token; // the current token requires a tx data packet.
wire txd_suspend; // This signal is set on receipt of a SETUP
// token and inhibits any IN token
// processing until it is cleared by software.
reg txd_suspend_set; // set signal receipt of a SETUP
// target mode transmit suspend / host mode token busy dual use signal
wire txdsuspend_tokbusy; // register
wire txdsuspend_tokbusy_clr; // clear from usb_sie
wire txdsuspend_tokbusy_set; // set from usb_sie
reg txd_usboe; // usboe from transmit state machine
wire last_bit_stuff_en; // Last bit stuff enable
wire [15:0] nxt_crc16_data; // Next CRC16 data
wire [4:0] nxt_crc5_data; // Next CRC5 data
// Bit stuff logic signals
wire bts_err_set; // bit stuff error set signal
reg bit_stuff_err; // bit stuff error in this packet
reg [2:0] one_bit_cnt; // One bit count
wire [2:0] one_bit_cnt_d; // One bit count data
wire one_bit_cnt_ld; // One bit count load enable
wire zero_stuff; // This bit is a stuff bit.
wire force_bit_stuff_err; // Force a bit stuff error on output
reg zero_stuff_inhibit; // Turn off bit stuffing for one byte
reg out_data01_pid; // Out data01 pid register
wire out_data01_pid_d; // Out data01 pid register data
wire out_handshake_en; // Out handshake enable
reg out_handshake_done; // Out handshake done
wire resume_req; // Assert resume signaling request
// Rx Data Packet state machine state bits
reg [3:0] rxd_enum; // Rx Data Packet enumerated type
// signal rxd_nstate : rxd_states; -- Next state bits
reg [3:0] rxd_pstate; // Present state bits
reg [3:0] rxd_nstate; // Next state bits
wire rx_datpkt_proc; // Rx Data Packet process
wire rx_datpkt_done; // Rx Data Packet process done
wire rx_fif_we; // Receive FIFO write enable
reg rx_overrun_nak; // Force a Nak responce to this Rx Packet
reg own; // BDT own control bit
wire own_d; // BDT own control bit data
wire own_ld; // BDT own control bit load enable
wire own_ok; // BDT own control bit is still valid
reg own_ok_suspend; // Don't cache the BDT own control bit
// Parallel to serial register signals
reg [7:0] par2ser_rg;
wire [7:0] par2ser_rg_d;
wire par2ser_rg_se; // Par2ser reg shift enable
wire par2ser_rg_ld; // Par2ser reg load enable
wire pid_chk_ok; // PID check
wire [3:0] pid_field; // PID field
reg reject_rx_datpkt; // Reject tx data packet enable
reg reject_rx_dat_set; // Reject rx data packet enable
reg reject_tx_datpkt; // Reject tx data packet enable
wire reject_tx_dat_set; // Reject rx data packet enable
// Serial to parallel bit counter signals
reg [2:0] ser2par_cnt;
wire [2:0] ser2par_cnt_d;
wire ser2par_cnt_en; // Serial to parallel bit count enable
wire ser2par_cnt_eq0; // Serial to parallel bit count equals 0
wire ser2par_cnt_eq1; // Serial to parallel bit count equals 1
wire ser2par_cnt_eq2; // Serial to parallel bit count equals 2
wire ser2par_cnt_eq6; // Serial to parallel bit count equals 6
wire ser2par_cnt_eq7; // Serial to parallel bit count equals 7
wire ser2par_cnt_ld; // Serial to parallel bit count load
// Serial to parallel register signals
reg [23:0] ser2par_rg;
wire [23:0] ser2par_rg_d;
wire ser2par_rg_se; // Ser2par reg shift enable
reg sof_pid; // SOF pid detect
// signal stall : std_ulogic; -- BDT stall control bit
reg start_txd; // Staring the tx data packet state machine
// Token state machine state bits
reg [3:0] tok_enum; // Token state enumerated type
// signal tok_nstate : tok_states; -- Next state bits
reg [2:0] tok_pstate; // Present state bits
reg [2:0] tok_nstate; // Next state bits
wire token_done; // Token processing done
wire token_proc_en; // Token processing enable
reg tok_usboe; // USBOE from token state maching
wire [7:0] transmit_data; // Transmit data
wire transmit_done; // Transmit done
wire tgt_stall_set; // A stall handshake has been sent by target
wire [6:0] usb_addr; // USB address
reg usb_addr_eq; // USB address equals
wire usb_addr_eq_d; // USB address equals data
wire usb_bs_data; // USB bit stuff data
wire usb_crc_data; // USB crc data
wire usb_en; // USB enable signal
wire usb_rst_en_d; // USB reset enable data
reg usb_rst_en; // USB reset enable
reg usboe_early_r1; // registers used to create pulse for early version of usboe
reg usboe_early_r2; // registers used to create pulse for early version of usboe
reg usboe_early_r3; // registers used to create pulse for early version of usboe
reg usboe_early_r4; // registers used to create pulse for early version of usboe
wire usboe_nxt; // USB output enable unregistered
reg usboe_r; // USB output enable data
reg usboe_i; // USB output enable internal
wire valid_sof_pid_d; // Valid SOF PID detect to hub
wire valid_data_pid; // Valid data PID
wire valid_data_tgl; // Valid data toggle bit
wire valid_token_pid; // Valid token PID
wire valid_stall_pid; // Valid token PID
wire keep; // BDT keep control bit
reg resume_req_f; // Resume signaling request delayed 1 ff
reg resume_req_ff; // Resume signaling request delayed 2 ffs
reg lseop_en; // LS EOP enable
wire lseop_en_nxt; // LS EOP enable
wire set_lseop_en; // Set LS EOP enable
wire clr_lseop_en; // Clear LS EOP enable
wire low_speed_signaling; // Enable low speed signaling
// host controller enable is used to enable the embedded host perations of the
// core. When IMPLEMENT_EMBEDED_HOST is '0' this signal causes the bulk of the
// logic associated with the embedded host functions to be optimized out.
assign hc_en = IMPLEMENT_EMBEDED_HOST & host_mode_en;
// Assign debug bus
assign debug = {reject_rx_datpkt, det_eop, det_se0, det_sync,
ser2par_rg[0], tok_pstate, rxd_pstate, txd_pstate};
// ------------------------------------------------------------------------------
// Dummy output signal assignments to remove unknowns from the simulations. --
// These assignments should be removed as the logic is implemented. --
// ------------------------------------------------------------------------------
assign suspnd = 1'b 0; //
// Buffer USB outputs
assign dpo = idpo_d;
assign dmo = VUSB_XCVR_MODE_SINGLE_ENDED == 1'b 1 ? ~(idpo_d | idmo_d) :
idmo_d;
assign usboe = usboe_i;
// ------------------------------------------------------------------------------
// FIFO interfaces
// ------------------------------------------------------------------------------
// Rx FIFO write data
// This is the receive data that must be written into the Rx FIFO.
assign rx_wdata = {ser2par_rg[16], ser2par_rg[17], ser2par_rg[18], ser2par_rg[19],
ser2par_rg[20], ser2par_rg[21], ser2par_rg[22], ser2par_rg[23]};
// Rx FIFO write enable
// This signal when active high writes the receive data into the Rx FIFO.
assign rx_we = rx_fif_we;
assign rx_fif_we = clk_en == 1'b 1 & own == 1'b 1 &
endpt_stall == 1'b 0 & rxd_pstate == RXD_BYTE2 &
ser2par_cnt_eq7 == 1'b 1 ? 1'b 1 :
1'b 0;
// ------------------------------------------------------------------------------
//
// Control/Data Bus In Definitions:
//
// Assign control inputs, do all in one spot for easy modifications
//
// cdb_in(43) : hc_retry_disable - disable the automatic retry of host transfer
// failures.
assign hc_retry_disable = cdb_in[43];
// cdb_in(42) : resume_req - This signal causes the SIE to generate the resume
// signalling on the USB bus in device or embedded host mode. When
// operating in embedded host mode the resume signalling is
// terminated with a LS EOP.
assign resume_req = cdb_in[42];
// cdb_in(41) : hc_rst_req - This signal causes the SIE to generate the reset
// signalling on the USB bus in embedded host mode.
assign hc_rst_req = cdb_in[41];
// cdb_in(40) : txdsuspend_tokbusy dual use register output
// txd_suspend - Transmit data packets are suspended on
// the target until the uProcessor resets
// the suspend ctl.
// hc_token_busy - The token statemachine has not completed
// the last host token transaction.
assign txdsuspend_tokbusy = cdb_in[40];
// cdb_in(39:32): hc_sof_thld - SOF threshold: count of USB byte times
// before the next SOF at which to discontinue Host
// transactions.
assign hc_sof_thld = cdb_in[39:32];
// cdb_in(31:28) : usb_token_pid - This is the PID used in host mode token packets.
assign hc_token_pid = cdb_in[31:28];
// cdb_in(27:24) : usb_token_endpt - This is the Enpoint number used in host mode
// token packets.
assign hc_token_endpt = cdb_in[27:24];
// cdb_in(23:17) : addr(6:0) - This is the USB address that the usb_sie
// will compare with token packets.
//
assign usb_addr = cdb_in[23:17];
// cdb_in(16) : byte_count_eq - This bit informs the usb_sie that
// the DMA engine has reached a terminal byte count.
// Data transmission should terminate when all remaining
// data has been read from the Tx FIFO.
//
assign byte_count_eq = cdb_in[16];
// cdb_in(15) : odd_rst - reset the PING/PONG odd bits.
//
// odd_rst <= cdb_in(15); -- clear BDT odd PING/PONG bits
// cdb_in(14:8) : ep_ctl - Endpoint control bits.
//
// 12 11 10 9 8
// +------------+-----------+----------+----------+---------+
// | ep_ctl_dis | ep_out_en | ep_in_en | ep_stall | ep_hshk |
// +------------+-----------+----------+----------+---------+
//
assign endpt_ctl_dis_d = cdb_in[12]; //
assign endpt_out_en_d = cdb_in[11]; //
assign endpt_in_en_d = cdb_in[10]; //
assign endpt_stall = cdb_in[9]; //
assign endpt_hshk_d = cdb_in[8]; //
// cdb_in(7:2) : bdt(7:2) - These signals are the first byte of
// the BDT. They contain the following control bits:
//
// 7 6 5 4 3 2
// +-----+---------+----------+------+-----+------+
// | own | data0/1 | keep | ninc | dts | stall|
// +-----+---------+----------+------+-----+------+
//
assign own_d = cdb_in[7]; // BDT own control bit
assign data01 = cdb_in[6]; // BDT data0/1 control bit
assign keep = cdb_in[5]; // BDT keep control bit
// ninc <= cdb_in(4); -- BDT ninc (no increment) control bit
assign dts = cdb_in[3]; // BDT dts (data toggle sync) control bit
assign bdt_stall_d = cdb_in[2]; // BDT stall control bit
// cdb_in(1) : bdt_valid - When this bit is active high it indicates
// that the BDT control bits are valid.
//
assign bdt_valid = cdb_in[1];
// cdb_in(0) : usb_en - This is the USB enable signal from the control
// register.
//
assign usb_en = cdb_in[0];
// ------------------------------------------------------------------------------
//
// Control/Data Bus Out Definitions:
//
// cdb_out(45) : txd_token - the current token requires a tx data packet.
assign cdb_out[45] = txd_token;
// cdb_out(44) : stall_set - Set signal for the stalled endpoint interrupt
assign cdb_out[44] = endpt_stall_clr;
// cdb_out(43) : stall_set - Set signal for the stalled endpoint interrupt
assign cdb_out[43] = endpt_stall_set;
// cdb_out(42:41) : clear and set signals for the dual use register
// txd_suspend - Transmit data packets are suspended on
// the target until the uProcessor resets
// the suspend ctl.
// hc_token_busy - The token statemachine has not completed
// the last host token transaction.
assign cdb_out[42] = txdsuspend_tokbusy_clr;
assign cdb_out[41] = txdsuspend_tokbusy_set;
// cdb_out(40) : out_data01_pid - This bit is represents the DATA PID
// received during a SETUP or Rx Data Packet. If 0 we are
// receiving a DATA0 PID, if 1 we are receving a DATA1
// PID. This value is written back to memory in the BDT
// control byte (bit 6).
//
assign cdb_out[40] = out_data01_pid;
// cdb_out(39:36) : bdt_wrt_pid - These 4 bits represent the current
// token pid value. It is valid when a TOK_DNE is
// active.
//
assign cdb_out[39:36] = bdt_wrt_pid;
// cdb_in(35:25) : frame_num - These 11 bits represent the last frame
// number that was received via a SOF packet. It is
// valid after SOF_TOK has gone active.
//
assign cdb_out[35:25] = frame_num; // Current frame number
// cdb_in(24:21) : endpt - These four bits represent the current endpoint
// that the USB is using. This value will be stored by
// the up_int in the stat_rg when tok_dne_set=1.
//
assign cdb_out[24:21] = current_endpt; // Current end point
// cdb_in(20) : tx_datpkt_proc - This bit indicates that the usb_sie is
// processing a tx data packet.
//
assign cdb_out[20] = tx_datpkt_proc;
// cdb_in(19) : rx_datpkt_proc - This bit indicates that the usb_sie is
// processing a rx data packet.
//
assign cdb_out[19] = rx_datpkt_proc;
// cdb_in(18:17) : sie_dma_req - These two bits define the type of DMA
// request that the SIE is requesting. The bits are
// defined as:
//
// 17 16 | Type of DMA request
// -------+--------------------------------------
// 0 1 | BDT read DMA request (i.e. 4 bytes)
// 1 0 | BDT write DMA request (i.e. 4 bytes)
//
// NOTE: The SIE will only activate one of the request
// bits at a time.
//
assign cdb_out[18:17] = {(dma_wrt_bdt & own & ~endpt_stall & clk_en),
(dma_rd_bdt & clk_en)}; // DMA read BDT (4 bytes)
// DMA write BDT (4 bytes)
// cdb_out(16) : dma_early_req - This signal is used to have the DMA
// request the bus early. No bus cycles are performed
// with this request signal on the bus is requested.
// This is useful in design when the bus_gnt latency
// could exceed xxx ns, (zzz sie clks).
//
assign cdb_out[16] = enable_early_req == 1'b 1 & current_token == PID_IN &
(tok_pstate == TOK_BYTE1 | tok_pstate == TOK_EOP) &
token_proc_en == 1'b 1 & usb_addr_eq == 1'b 1 ? 1'b 1 :
1'b 0;
// cdb_out(15) : bts_err_set - This signal when active will set the
// BTS_ERR interrupt in the error status register
// (err_stat_rg).
//
assign cdb_out[15] = bts_err_set;
// cdb_out(14) : own_err_set - This signal when active will set the
// OWN_ERR interrupt in the error status register
// (err_stat_rg).
//
assign cdb_out[14] = 1'b 0;
// cdb_out(13) : dma_err_set - This signal when active will set the
// DMA_ERR interrupt in the error status register
// (err_stat_rg).
//
assign cdb_out[13] = rx_fif_we & rx_full | tx_fif_re & tx_empty; // or reading data that is not there
// cdb_out(12) : bto_err_set - This signal when active will set the
// BTO_ERR interrupt in the error status register
// (err_stat_rg).
//
assign cdb_out[12] = bto_err_set;
// Bus timeout error interrupt set
assign bto_err_set = (rxd_pstate == RXD_IDLE | rxd_pstate == RXD_SYNC) &
mcek_cnt == 5'b 01110 ? 1'b 1 :
1'b 0;
// Turn around time for out/setup token or handshake
// cdb_out(11) : dfn8_err_set - This signal when active will set the
// DF8N_ERR interrupt in the error status register
// (err_stat_rg).
//
assign cdb_out[11] = dfn8_err_tok | dfn8_err_rxd; // from token or rx data
// cdb_out(10) : crc16_err_set - This signal when active will set the
// CRC16_ERR interrupt in the error status register
// (err_stat_rg).
//
assign crc16_err_set = rxd_pstate == RXD_EOP & crc16_okay == 1'b 0 &
in_handshake_en == 1'b 0 & ser2par_cnt_eq0 == 1'b 1 ? 1'b 1 :
1'b 0;
assign cdb_out[10] = crc16_err_set;
// cdb_out(9) : crc5_err_set - This signal when active will set the
// CRC5_ERR interrupt in the error status register
// (err_stat_rg).
//
assign cdb_out[9] = hc_en == 1'b 0 ? crc5_err_set :
hc_sof_err_set;
assign crc5_err_set = tok_pstate == TOK_EOP & crc5_okay == 1'b 0 &
ser2par_cnt_eq0 == 1'b 1 & hc_en == 1'b 0 ? 1'b 1 :
1'b 0;
// cdb_out(8) : pid_err_set - This signal when active will set the
// PID_ERr interrupt in the error status register
// (err_stat_rg).
//
assign cdb_out[8] = (tok_pstate == TOK_PID & hc_en == 1'b 0 |
rxd_pstate == RXD_PID) & pid_chk_ok == 1'b 0 &
ser2par_cnt_eq7 == 1'b 1 ? 1'b 1 :
1'b 0;
// cdb_in(7) : stall_int_set - for target a stall handshake has been
// sent. For host a stall handshake has been received. This
// signal will cause stall bit in the interrupt status
// register to be set.
//
assign cdb_out[7] = hc_en == 1'b 1 ? hc_stall_set :
tgt_stall_set;
// cdb_out(43) : attach_set - This siganal when active will set the USB
// attach/detach interrupt in the interrupt status register.
assign cdb_out[6] = hc_attach_set;
// cdb_out(5) : resume_set - This signal when active will set the
// RESUME interrupt in the interrupt status register
// (istat_rg).
//
assign cdb_out[5] = hc_resume_set;
// cdb_out(4) : sleep_set - This signal when active will set the
// SLEEP interrupt in the interrupt status register
// (istat_rg).
//
assign cdb_out[4] = hc_en == 1'b 0 & jstate == 1'b 1 &
se0 == 1'b 0 & hc_sof_tc == 1'b 1 ? 1'b 1 :
1'b 0;
// cdb_out(3) : tok_dne_set - This signal when active will set the
// TOK_DNE interrupt in the interrupt status register
// (istat_rg).
//
assign cdb_out[3] = hc_en == 1'b 0 ? token_done :
hc_token_done & clk_en;
// cdb_out(2) : sof_tok_set - This signal when active will set the
// SOF_TOK interrupt in the interrupt status register
// (istat_rg).
//
assign cdb_out[2] = frame_num_ld | hc_sof_thld_set;
// cdb_out(1) : error_set - This signal when active will set the
// ERROR interrupt in the interrupt status register
// (istat_rg).
//
assign cdb_out[1] = 1'b 0;
// cdb_out(0) : usb_rst_set - This signal when active will set the
// USB_RST interrupt in the interrupt status register
// (istat_rg).
//
assign cdb_out[0] = det_rst; // Detect USB reset
// clear and set signals for the dual use register txdsuspend_tokbusy
// txd_suspend - Transmit data packets are suspended on
// the target until the uProcessor resets
// the suspend ctl.
// hc_token_busy - The token statemachine has not completed
// the last host token transaction.
assign txdsuspend_tokbusy_set = hc_en == 1'b 0 ? txd_suspend_set :
1'b 0;
assign txdsuspend_tokbusy_clr = hc_en == 1'b 1 ? hc_token_done :
1'b 0;
assign txd_suspend = txdsuspend_tokbusy & ~hc_en;
// BDT own control bit load enable
// The bdt own bit is sampled once during each transaction. It must be
// valid by the time own_ld is active, or we will assume we do not own
// the bdt and take the approriate action. Timing very important for in
// tokens not as critical for rx data packets.
assign own_ld = tx_datpkt_proc == 1'b 1 & txd_pstate == TXD_SYNC &
ser2par_cnt_eq6 == 1'b 1 | rxd_pstate == RXD_BYTE0 &
ser2par_cnt_eq6 == 1'b 1 | rxd_pstate == RXD_IDLE ? 1'b 1 :
1'b 0;
// for ISO packets that BTO
// If the BDT Own bit is one and the BDT_STALL bit is one then set the endpoint
// stall register.
assign endpt_stall_set = own_ld == 1'b 1 & own_d == 1'b 1 &
bdt_stall_d == 1'b 1 & txd_suspend == 1'b 0 &
current_token != PID_SETUP ? 1'b 1 :
1'b 0;
// If the last token caused us to fetch a valid owns bit and the current token
// packet is the same as the last one the then the BDT loaded and it's owns bit
// are still OK. Other wise we will refetch the BDT.
assign own_ok = bdt_valid == 1'b 1 & own_d == 1'b 1 &
(own_ok_suspend == 1'b 0 | current_token != PID_IN) &
current_token_eq == 1'b 1 & current_endpt_eq == 1'b 1 ? 1'b 1 :
1'b 0;
// Detect USB Reset
// This signal looks for a USB reset condition. This is signified by a SE0
// for at least 2.5 us. The turn around timer is used to count a SE0 condition.
// The usb_rst_en signal allows only a single interrupt to be generated during
// the entire USB reset.
assign det_rst = mcek_cnt == 5'b 11111 & usb_rst_en == 1'b 1 &
det_se0 == 1'b 1 & se0_f == 1'b 1 ? 1'b 1 :
1'b 0;
// Detect USB attach and detach
// attach is detected when the the host is currently unattached, and a J-state
// is observed for 2.5usec. This interrupt should be disabled by the
// processor when it enters the attached state.
assign hc_det_attach = hc_en == 1'b 1 & mcek_cnt == 5'b 11111 &
se0 == 1'b 0 & se0_f == 1'b 0 ? 1'b 1 :
1'b 0;
// an attach generates an interrupt to the processor.
assign hc_attach_set = hc_det_attach;
// Detect USB resume / remote wake up event.
// a resume is detected when the the host is currently suspended, and a K-state
// is observed for 2.5usec. This interrupt should be disabled by the
// processor when it exits the suspend state.
assign hc_det_resume = mcek_cnt == 5'b 11111 & (se0 == 1'b 0 &
se0_f == 1'b 0 & (jstate == 1'b 0 &
jstate_f == 1'b 0)) ? 1'b 1 :
1'b 0;
assign hc_resume_set = hc_det_resume; // a resume generates an interrupt to the
// processor.
// dettach is detected when the the host is currently attached, and a se0
// is observed for 2.5usec that is not the result of a host reset request.
// This looks the same to the SIE as a USB reset. The processor will ferret out
// the difference.
// USB reset enable data
// This signal is used to make sure that the USB reset logic will only
// assert a single USB interrupt during a reset. Because the USB reset can
// be asserted for up to 10 ms we must only decode the USB reset on the first
// 2.5 us and not any of the remaining time. This will prevent multiple
// interrupts during the same USB reset.
assign usb_rst_en_d = mcek_cnt_clr == 1'b 1 ? 1'b 1 :
det_rst == 1'b 1 ? 1'b 0 :
usb_rst_en; // No change
// This signal decodes the end of packet condition.
// se0 must have been active on the previous clock and this clock we
// are in the "J" state.
assign det_eop = eop;
// det_eop <= se0_f and rcv;
// Detect single ended zero
assign det_se0 = se0;
// Detect SYNC
// This signal looks at the last 9 bits of receive data. Looks for a
// transition from idle followed by 01/h.
assign det_sync = (tok_pstate == TOK_SYNC | tok_pstate == TOK_PROC &
rxd_pstate == RXD_SYNC) & ser2par_rg[3:0] == 4'b 0001 ? 1'b 1 :
1'b 0;
// PID check
// This logic performs the PID check.
assign pid_chk_ok = ser2par_rg[7:4] == ~ser2par_rg[3:0] ? 1'b 1 :
1'b 0;
// SOF pid
// A valid SOF PID is decoded when the following conditions have been
// satisfied:
// 1) current_token = "0101" This indicates a SOF PID
// 2) pid(3:0) = not pid(7:4) PID check field passes
assign valid_sof_pid_d = pid_chk_ok == 1'b 1 & pid_field == PID_SOF |
hc_en == 1'b 1 & hc_sof_req == 1'b 1 ? 1'b 1 :
1'b 0;
// Valid token PID
// A valid token PID is decoded when the following conditions have been
// satisfied:
// 1) pid(1:0) = "01" This indicates a Token PID
// 2) pid(3:0) = not pid(7:4) PID check field passes
assign valid_token_pid = ser2par_rg[7:6] == 2'b 10 & pid_chk_ok == 1'b 1 ? 1'b 1 :
1'b 0;
// Condition #2
// Valid data PID
// A valid data PID is decoded when the following conditions have been
// satisfied:
// NOTE: Should be able to but DTS code here!
// 1) pid(2:0) = "011" This indicates a Data PID
// 2) pid(3:0) = not pid(7:4) PID check field passes
assign valid_data_pid = (pid_field == PID_DATA0 | pid_field == PID_DATA1) &
pid_chk_ok == 1'b 1 ? 1'b 1 :
1'b 0;
// Condition #2
// Valid data toggle is true if the data toggle bit in the recieved packet
// matches the expected data toggle bit from the BDT.
assign valid_data_tgl = dts == 1'b 0 | pid_field[3] == PID_DATA0[3] &
data01 == 1'b 0 | pid_field[3] == PID_DATA1[3] &
data01 == 1'b 1 ? 1'b 1 :
1'b 0;
assign valid_stall_pid = pid_field == PID_STALL & pid_chk_ok == 1'b 1 ? 1'b 1 :
1'b 0;
// Condition #2
// 3) Endpoint enabled
// 4) CRC5 is okay
// valid_token <= '1' when (ser2par_rg(23 downto 22) = "10") and -- Condition #1
// (ser2par_rg(23 downto 20) = not(ser2par_rg(19 downto 16))) and
// -- Condition #2
// (endpt_en = '1') and -- Condition #3
// (crc5_okay = '1') else -- Condition #4
// '0';
// Token processing done
// Tell the token processing state machine that we are finished with
// IN and OUT data processing.
assign token_done = clk_en & own & ~endpt_stall & ~keep &
((tx_datpkt_done | rx_datpkt_done) & ~(reject_tx_datpkt | reject_rx_datpkt));
// Tx Data Packet process
// Enable the tx data packet state machine when the token process state machine
// reaches TOK_PROC state and our current token is SETUP or OUT.
assign txd_token = hc_en == 1'b 0 & current_token == PID_IN |
hc_en == 1'b 1 & (current_token == PID_OUT |
current_token == PID_SETUP) ? 1'b 1 :
1'b 0;
assign tx_datpkt_proc = tok_pstate == TOK_PROC & txd_token == 1'b 1 ? 1'b 1 :
1'b 0;
// Rx Data Packet process
// Enable the rx data packet state machine when the token process state machine
// reaches TOK_PROC state and our current token is SETUP or OUT.
assign rx_datpkt_proc = tok_pstate == TOK_PROC & (hc_en == 1'b 1 &
current_token == PID_IN | hc_en == 1'b 0 &
(current_token == PID_OUT | current_token == PID_SETUP)) ? 1'b 1 :
1'b 0;
// Tx Data Packet process done
assign tx_datpkt_done = txd_pstate == TXD_DONE & rxd_pstate == RXD_WAIT ? 1'b 1 :
1'b 0;
// Rx Data Packet process done
assign rx_datpkt_done = rxd_pstate == RXD_DONE & txd_pstate == TXD_WAIT ? 1'b 1 :
1'b 0;
// Reject a host TX data packet if the it is nak'ed or you get a BTO
assign reject_tx_dat_set = in_handshake_en == 1'b 1 & (rxd_pstate == RXD_IDLE &
bto_err_set == 1'b 1 | rxd_pstate == RXD_PID &
ser2par_cnt_eq7 == 1'b 1 & (pid_chk_ok == 1'b 0 |
pid_field != PID_ACK & pid_field != PID_STALL)) ? 1'b 1 :
1'b 0;
// send a stall interrupt if the recieve packet state machine gets a
// stall handshake.
assign hc_stall_set = rxd_pstate == RXD_PID & ser2par_cnt_eq7 == 1'b 1 &
valid_stall_pid == 1'b 1 ? 1'b 1 :
1'b 0;
// USB bit stuff and crc data
// The usb_sie can both transmit and reveive data. To reduce gate count
// we reuse the bit stuff logic and crc16 logic. The bit stuff and crc16
// logic only looks at the usb_bs_data signal. When we are transmitting data
// the usb_bs_data signal is the output of the parallel to serial register.
// If we are receiving data usb_bs_data is equal to the rcv signal.
assign usb_bs_data = txd_pstate != TXD_WAIT | hc_en == 1'b 1 &
tok_pstate != TOK_PROC ? usb_dout :
rcv;
assign usb_crc_data = txd_pstate != TXD_WAIT | hc_en == 1'b 1 &
rxd_pstate == RXD_WAIT ? par2ser_rg[0] :
ser2par_rg[0];
// ------------------------------------------------------------------------------
// Serial to Parallel Shift logic
// ------------------------------------------------------------------------------
// Serial to parallel register shift enable
// Always shift data except when detecting a bit stuffed '0'
// Or when holding the SOF data until the crc and bit_stuff
// errors have been checked.
assign ser2par_rg_se = zero_stuff == 1'b 1 | tok_pstate == TOK_EOP &
hc_en == 1'b 0 ? 1'b 0 :
1'b 1;
// Serial to parallel bit count enable
// The serial to parallel count enable is active in when
// ser2par_rg_se is active, but continues to shift during
// the TOK_EOP state
assign ser2par_cnt_en = ~zero_stuff;
// ------------------------------------------------------------------------------
// NOTE: To conserve power might only shift portions of the shift register
// at one time. For example in idle might only shift enough bit to detect
// a sync, as the tok state machine process farther could enable more
// of the shift register.
// ------------------------------------------------------------------------------
// This code implements a shift register.
// The ser2par_rg_d is the registered into ser2par_rg.
assign ser2par_rg_d = tok_pstate == TOK_IDLE ? {ser2par_rg[22:1], 1'b 1, rcv} :
ser2par_rg_se == 1'b 1 ? {ser2par_rg[22:0], rcv} :
ser2par_rg; // No change
// prepare for sync
// when in idle
// Shift in data
// If shift enable true
// Serial to parallel bit count load
// The serial to parallel count load enable is active in reset and idle.
assign ser2par_cnt_ld = tok_pstate == TOK_IDLE | (tok_pstate == TOK_SYNC |
rxd_pstate == RXD_SYNC) & det_sync == 1'b 1 |
rxd_pstate == RXD_IDLE | start_txd == 1'b 1 ? 1'b 1 :
1'b 0;
// (rxd_pstate = RXD_HSHK and txd_pstate = TXD_WAIT) or
// Implements serial to parallel bit counter
// This counter is used to count the serial bits as they are shifted
// into the serial to parallel register. If a stuffed bit '0' is dectected
// (i.e. ser2par_rg_se = 0) this counter will hold while the '0' is removed
// from the serial data stream.
assign ser2par_cnt_d = ser2par_cnt_ld == 1'b 1 ? 3'b 000 :
ser2par_cnt_en == 1'b 1 ? ser2par_cnt + 1 :
ser2par_cnt; // No change
// Load counter
// Inc
// Serial to parallel bit count equals 0
// Must also include ser2par_cnt_en because it's possile that ser2par_cnt_eq0
// could be active for two clocks if we get a bit-stuff when ser2par_cnt_eq0
// is true. Adding the ser2par_cnt_en makes sure that this signal will only
// be valid for one clock cycle.
assign ser2par_cnt_eq0 = ~ser2par_cnt[2] & ~ser2par_cnt[1] & ~ser2par_cnt[0] & ser2par_cnt_en;
// Serial to parallel bit count equals 1
// Must also include ser2par_cnt_en because it's possile that ser2par_cnt_eq1
// could be active for two clocks if we get a bit-stuff when ser2par_cnt_eq1
// is true. Adding the ser2par_cnt_en makes sure that this signal will only
// be valid for one clock cycle.
assign ser2par_cnt_eq1 = ~ser2par_cnt[2] & ~ser2par_cnt[1] & ser2par_cnt[0] & ser2par_cnt_en;
// Serial to parallel bit count equals 2
// Must also include ser2par_cnt_en because it's possile that ser2par_cnt_eq2
// could be active for two clocks if we get a bit-stuff when ser2par_cnt_eq2
// is true. Adding the ser2par_cnt_en makes sure that this signal will only
// be valid for one clock cycle.
assign ser2par_cnt_eq2 = ~ser2par_cnt[2] & ser2par_cnt[1] & ~ser2par_cnt[0] & ser2par_cnt_en;
// Serial to parallel bit count equals 6
// Must also include ser2par_cnt_en because it's possile that ser2par_cnt_eq6
// could be active for two clocks if we get a bit-stuff when ser2par_cnt_eq6
// is true. Adding the ser2par_cnt_en makes sure that this signal will only
// be valid for one clock cycle.
assign ser2par_cnt_eq6 = ser2par_cnt[2] & ser2par_cnt[1] & ~ser2par_cnt[0] & ser2par_cnt_en;
// Serial to parallel bit count equals 7
// Must also include ser2par_cnt_en because it's possile that ser2par_cnt_eq7
// could be active for two clocks if we get a bit-stuff when ser2par_cnt_eq7
// is true. Adding the ser2par_cnt_en makes sure that this signal will only
// be valid for one clock cycle.
assign ser2par_cnt_eq7 = ser2par_cnt[2] & ser2par_cnt[1] & ser2par_cnt[0] & ser2par_cnt_en;
// ------------------------------------------------------------------------------
// Parallel to Serial Shift logic
// ------------------------------------------------------------------------------
// Parallel to serial register load enable
assign par2ser_rg_ld = hc_en == 1'b 1 & (tok_pstate == TOK_IDLE |
hc_ls_timing_set == 1'b 1 | ser2par_cnt_eq7 == 1'b 1 &
tok_pstate != TOK_PROC & tok_pstate != TOK_WAIT) |
txd_pstate == TXD_WAIT & tok_pstate == TOK_PROC |
ser2par_cnt_eq7 == 1'b 1 & (txd_pstate == TXD_SYNC |
txd_pstate == TXD_PID | txd_pstate == TXD_DATA |
txd_pstate == TXD_CRC16L | txd_pstate == TXD_PRE |
txd_pstate == TXD_LSDLY | txd_pstate == TXD_CRC16H) ? 1'b 1 :
1'b 0;
// Parallel to serial register shift enable
// Always shift data except when detecting a bit stuffed '0'
assign par2ser_rg_se = zero_stuff == 1'b 1 | txd_pstate == TXD_DELAY ? 1'b 0 :
1'b 1;
// Do not shift in this state
// This code implements a the parallel to serial shift register.
// Data to be transmitted is loaded in this register then shifted out serially.
assign par2ser_rg_d = par2ser_rg_ld == 1'b 1 ? transmit_data :
par2ser_rg_se == 1'b 1 ? {1'b 0, par2ser_rg[7:1]} :
par2ser_rg; // No change
// Load data
// when load enable true
// Shift out data
// when shift enable true
// set an interrupt if a STALL handshake has been sent.
assign tgt_stall_set = txd_pstate == TXD_PID ? endpt_stall :
1'b 0;
// Tx Data Packet pid data
always @(hc_en or tok_pstate or hc_sof_req or low_speed_req or hc_ls_timing
or rxd_pstate or endpt_stall or own or data01 or endpt_hshk
or current_token or rx_overrun_nak or txd_pstate or hc_token_pid)
begin : txd_pid_data_proc
if (hc_en == 1'b 1 & tok_pstate == TOK_SYNC &
hc_sof_req == 1'b 1)
begin
txd_pid_data <= PID_SOF; // host SOF transmit packet
end
else if (hc_en == 1'b 1 & (tok_pstate == TOK_SYNC |
txd_pstate == TXD_SYNC) & low_speed_req == 1'b 1 &
hc_ls_timing == 1'b 0 )
begin
txd_pid_data <= PID_PRE; // host PRE_PID prefix to low speed dev
end
else if (hc_en == 1'b 1 & tok_pstate == TOK_SYNC &
hc_sof_req == 1'b 0 )
begin
txd_pid_data <= hc_token_pid; // host token packet
end
else if (rxd_pstate == RXD_WAIT & endpt_stall == 1'b 0 &
(own == 1'b 1 & data01 == 1'b 0 |
endpt_hshk == 1'b 0) )
begin
txd_pid_data <= PID_DATA0;
end
// DATA0
// ISO endpoints use DATA0
else if (rxd_pstate == RXD_WAIT & endpt_stall == 1'b 0 &
own == 1'b 1 & data01 == 1'b 1 )
begin
txd_pid_data <= PID_DATA1;
end
// DATA1
else if (endpt_stall == 1'b 1 & current_token != PID_SETUP )
begin
txd_pid_data <= PID_STALL; // STALL
end
else if (own == 1'b 0 | rx_overrun_nak == 1'b 1 )
begin
txd_pid_data <= PID_NAK; // NAK
end
else if (own == 1'b 1 )
begin
txd_pid_data <= PID_ACK; // ACK
// txd_pid_data <= "XXXX";
end
else
begin
txd_pid_data <= 4'b 0000;
end
end
// Transmit done
// We are done transmiting when the DMA engine byte count has reached 0 and
// the Tx FIFO is empty and contains no valid data.
assign transmit_done = byte_count_eq == 1'b 1 & tx_empty == 1'b 1 &
tx_valid == 1'b 0 ? 1'b 1 :
1'b 0;
// Transmit host data
assign hc_tx_data = hc_sof_req == 1'b 1 ? frame_num :
{hc_token_endpt, usb_addr};
assign hc_txd_byte = tok_pstate == TOK_PID ? hc_tx_data[7:0] :
{hc_tx_data[7:3], hc_tx_data[10:8]};
// Transmit data
assign transmit_data = zero_stuff_inhibit == 1'b 1 | force_bit_stuff_err == 1'b 1 ? 8'b 11111111 :
hc_ls_timing_set == 1'b 1 ? 8'b 10000000 :
txd_pstate == TXD_SYNC | tok_pstate == TOK_SYNC &
hc_en == 1'b 1 ? {~txd_pid_data, txd_pid_data} :
hc_en == 1'b 1 & (tok_pstate == TOK_PID |
tok_pstate == TOK_BYTE0) ? hc_txd_byte :
txd_pstate == TXD_PID | txd_pstate == TXD_DATA ? tx_rdata :
8'b 10000000; // Sync byte
// force_bit_stuff_error
// Sync byte for low speed
// Tx FIFO read enable
assign tx_re = tx_fif_re;
assign tx_fif_re = clk_en == 1'b 1 & ser2par_cnt_eq7 == 1'b 1 &
(txd_pstate == TXD_PID | txd_pstate == TXD_DATA) &
transmit_done == 1'b 0 & own == 1'b 1 &
endpt_stall == 1'b 0 & out_handshake_en == 1'b 0 ? 1'b 1 :
1'b 0;
// On FIFO underrun force a bit stuff error.
assign force_bit_stuff_err = tx_fif_re & tx_empty;
// FIFO flush enable
assign flush = det_rst | dma_rd_bdt; // clear the rx and tx FIFOs when loading a new
// DMA descriptor
// USB address equals
// Must make sure that the address within the token equals our current address.
// usb_addr_eq <= '1' when usb_addr = ser2par_rg(16 downto 10) else '0';
assign usb_addr_eq_d = usb_addr == {ser2par_rg[4], ser2par_rg[5], ser2par_rg[6],
ser2par_rg[7], ser2par_rg[8], ser2par_rg[9], ser2par_rg[10]} ? 1'b 1 :
1'b 0;
// Token processing enable
assign token_proc_en = endpt_out_en == 1'b 1 & endpt_in_en == 1'b 1 &
endpt_hshk == 1'b 1 & endpt_ctl_dis == 1'b 0 &
current_token == PID_SETUP | endpt_out_en == 1'b 1 &
current_token == PID_OUT | endpt_in_en == 1'b 1 &
current_token == PID_IN ? 1'b 1 :
1'b 0;
// SETUP TOKENS (control endpoints must enable in and out and handshake)
// RX DATA PACKETS
// TX DATA PACKETS
// In handshake enable
assign in_handshake_en = txd_pstate == TXD_HSHK ? 1'b 1 :
1'b 0;
// Out handshake enable
assign out_handshake_en = rxd_pstate == RXD_HSHK ? 1'b 1 :
1'b 0;
// Load current token register
assign current_token_ld = tok_pstate == TOK_PID & ser2par_cnt_eq7 == 1'b 1 ? 1'b 1 :
1'b 0;
// Load current endpoint register
// '1' when (tok_pstate = TOK_BYTE1) and ser2par_cnt_eq7 = '1' else '0';
assign current_endpt_ld = tok_pstate == TOK_BYTE1 & ser2par_cnt_eq2 == 1'b 1 ? 1'b 1 :
1'b 0;
// Last bit stuff enable
assign last_bit_stuff_en = usb_bs_data == 1'b 1 & one_bit_cnt == 3'b 101 &
ser2par_cnt_eq7 == 1'b 1 ? 1'b 1 :
1'b 0;
// ------------------------------------------------------------------------------
// Bit stuff logic
//
// This logic will count the number of 1's received. When this count reaches
// 6 the next bit should be a '0'. If so this bit should be removed from the
// receive data stream. If the next bit is not a '0' then a bit stuff error
// has occurred.
// ------------------------------------------------------------------------------
// One bit count load enable
// Reset this counter whenever we are in reset state or we detect a
// received '0' bit, otherwise it will always count. If this counter
// ever reaches 7 and we are not in ILDE then a bit stuff error has occured.
assign one_bit_cnt_ld = tok_pstate == TOK_IDLE | tok_pstate == TOK_EOP |
rxd_pstate == RXD_IDLE | rxd_pstate == RXD_EOP |
rxd_pstate == RXD_HSHK | zero_stuff == 1'b 1 |
usb_bs_data == 1'b 0 | se0 == 1'b 1 ? 1'b 1 :
1'b 0;
// the packet ended.
assign zero_stuff = one_bit_cnt == 3'b 110 & zero_stuff_inhibit == 1'b 0 ? 1'b 1 :
1'b 0;
assign one_bit_cnt_d = one_bit_cnt_ld == 1'b 1 ? 3'b 000 :
one_bit_cnt + 1; // Inc
// Load start count
assign bts_err_set = (hc_en == 1'b 0 & (tok_pstate == TOK_PID |
tok_pstate == TOK_BYTE0 | tok_pstate == TOK_BYTE1 |
tok_pstate == TOK_EOP) | rxd_pstate == RXD_SYNC |
rxd_pstate == RXD_PID | rxd_pstate == RXD_BYTE0 |
rxd_pstate == RXD_BYTE1 | rxd_pstate == RXD_BYTE2 |
rxd_pstate == RXD_EOP) & zero_stuff == 1'b 1 &
(rcv == 1'b 1 | se0 == 1'b 1) &
clk_en == 1'b 1 ? 1'b 1 :
1'b 0;
assign dma_rd_bdt = dev_dma_rd_bdt | hc_dma_rd_bdt;
// ------------------------------------------------------------------------------
//
// Process: rx_srst_regs -- Receive registers
//
// Parameters: clk -- Clock
//
// Description: This process implements the USB SIE receive registers
// and synchronization flip flops with syncronous resets.
//
// ------------------------------------------------------------------------------
always @(posedge clk or posedge rst_a)
begin : rx_srst_regs
if (rst_a == 1'b 1)
begin
tok_pstate <= TOK_IDLE; // Goto to reset state
txd_pstate <= TXD_WAIT; // Goto to wait state
rxd_pstate <= RXD_WAIT; // Goto to wait state
rx_overrun_nak <= 1'b 0; // Clear FIFO overrun error
mcek_cnt <= 5'b 00000;
own <= 1'b 0;
own_ok_suspend <= 1'b 0;
bit_stuff_err <= 1'b 0;
dma_re_rd_bdt <= 1'b 0;
frame_num <= {3'b 000, 8'b 00000000};
lseop_en <= 1'b 0;
sof_cnt_clr0 <= 1'b 0;
sof_cnt_clra <= 1'b 0;
sof_pid <= 1'b 0;
zero_stuff_inhibit <= 1'b 0;
usb_rst_en <= 1'b 1;
out_data01_pid <= 1'b 0;
crc16_data <= {16{1'b 1}};
if (lsdev == 1)
begin
idpo <= 1'b 0;
end
else
begin
idpo <= 1'b 1;
end
end
else
begin
if (rst == 1'b 1)
begin
tok_pstate <= TOK_IDLE; // Goto to reset state
txd_pstate <= TXD_WAIT; // Goto to wait state
rxd_pstate <= RXD_WAIT; // Goto to wait state
rx_overrun_nak <= 1'b 0; // Clear FIFO overrun error
mcek_cnt <= 5'b 00000;
own <= 1'b 0;
own_ok_suspend <= 1'b 0;
bit_stuff_err <= 1'b 0;
dma_re_rd_bdt <= 1'b 0;
frame_num <= {3'b 000, 8'b 00000000};
lseop_en <= 1'b 0;
sof_cnt_clr0 <= 1'b 0;
sof_cnt_clra <= 1'b 0;
sof_pid <= 1'b 0;
zero_stuff_inhibit <= 1'b 0;
usb_rst_en <= 1'b 1;
out_data01_pid <= 1'b 0;
crc16_data <= {16{1'b 1}};
if (lsdev == 1)
begin
idpo <= 1'b 0;
end
else
begin
idpo <= 1'b 1;
end
end
else
begin
if (clk_en == 1'b 1)
begin
if (det_rst == 1'b 1 | hc_reset == 1'b 1)
begin
tok_pstate <= TOK_IDLE; // Goto to reset state
end
// If reset active
else
begin
tok_pstate <= tok_nstate; // Else update pstate
// Register tx data packet state machine state bits
end
if (det_rst == 1'b 1 | hc_reset == 1'b 1)
begin
txd_pstate <= TXD_WAIT; // Goto to wait state
end
// If reset active
else
begin
txd_pstate <= txd_nstate; // Else update pstate
// Register rx data packet state machine state bits
end
if (det_rst == 1'b 1 | hc_reset == 1'b 1)
begin
rxd_pstate <= RXD_WAIT; // Goto to wait state
end
// If reset active
else
begin
rxd_pstate <= rxd_nstate; // Else update pstate
// Register the Rx data overrun errors so that a NAK may be generated.
end
if (txd_pstate == TXD_EOP | tok_pstate == TOK_IDLE)
begin
rx_overrun_nak <= 1'b 0; // clear when a packet is sent
end
else if (rx_fif_we == 1'b 1 & rx_full == 1'b 1 &
endpt_hshk == 1'b 1 )
begin
rx_overrun_nak <= 1'b 1;
// SIE counter
// This counter times 3 different events
// 1) USB reset: SE0 is asserted for 2.5 us.
// 2) USB attach: SE0 is false and rcv doesn't move for 2.5 us
// 3) USB Buss Time Out (BTO) if the bus is idle for 2.5 us when expecting rcv
// data or acknoledge.
// 4) USB LS EOP: When in host controller mode this counter is used to
// generate a LS EOP to terminate resume signaling.
// In any of these cases the counter is enabled when there are no transitions
// and is cleared on a transition.
end
// if not an ISO endpoint
if (mcek_cnt_clr == 1'b 1)
begin
mcek_cnt <= 5'b 00000;
end
else
begin
mcek_cnt <= mcek_cnt + 1'b 1;
// Develope 2 cycle wide sof_clr pulse to send to the clken_12 domain
end
sof_cnt_clr0 <= mcek_cnt_clr;
sof_cnt_clra <= mcek_cnt_clr | sof_cnt_clr0;
// BDT own control bit
// The bdt own bit is sampled once during each transaction. It must be
// valid by the time own_ld is active, or we will assume we do not own
// the bdt and take the approriate action.
if (own_ld == 1'b 1)
begin
if (txd_suspend == 1'b 1 & endpt_hshk == 1'b 1)
begin
own <= 1'b 0;
end
else
begin
own <= own_d;
end
end
// if txd is suspended respond to any non ISO token as if the interface is not
// ready.
// Suspend the BDT caching operation when txd_suspend is asserted, and make
// sure that a new BDT is read before allowing it to be cached.
if (txd_suspend == 1'b 1)
begin
own_ok_suspend <= 1'b 1;
end
else if (dma_rd_bdt == 1'b 1 )
begin
own_ok_suspend <= 1'b 0;
// bit stuff error in this packet
end
if (tok_pstate == TOK_SYNC | rxd_pstate == RXD_SYNC)
begin
bit_stuff_err <= 1'b 0;
end
else if (bts_err_set == 1'b 1 )
begin
bit_stuff_err <= 1'b 1;
// DMA BDT re-read request - set when there is an error in the data packet
// transmition to force a the DMA registers to be reloaded.
end
// set on error detection.
if (dma_rd_bdt == 1'b 1)
begin
dma_re_rd_bdt <= 1'b 0;
end
else if (reject_rx_dat_set == 1'b 1 | reject_tx_dat_set == 1'b 1 )
begin
dma_re_rd_bdt <= 1'b 1;
// Current frame number register
end
frame_num <= frame_num_d;
// DMA BDT re-read request - set when there is an error in the data packet
lseop_en <= lseop_en_nxt;
// register that the current token is an SOF token
// SOF tokens are NOT stored in the current_token register, because it messes
// up the owns_ok signal used for BDT caching.
if (current_token_ld == 1'b 1)
begin
sof_pid <= valid_sof_pid_d;
// Bit stuff disable for packet cancelation.
end
if (txd_pstate == TXD_EOP)
begin
zero_stuff_inhibit <= 1'b 0; // been stuffed
end
// clear after a bit should have
else if (force_bit_stuff_err == 1'b 1 )
begin
zero_stuff_inhibit <= 1'b 1;
end
// set when error is forced
usb_rst_en <= usb_rst_en_d;
// Out data01 pid register
out_data01_pid <= out_data01_pid_d;
// Implements CRC16 register
if (crc16_data_ld == 1'b 1)
begin
crc16_data <= nxt_crc16_data; // Update crc data
end
else
begin
crc16_data <= crc16_data; // No change
// Register USB outputs
end
idpo <= idpo_d;
end
// Register token state machine state bits
// clk_en
end
// srst --vsync_rst
end
// clk'event and (clk = '1')
end
// -----------------------------------------------
// Set LS EOP enable
assign set_lseop_en = ~resume_req_f & resume_req_ff;
assign lseop_en_nxt = clr_lseop_en == 1'b 1 ? 1'b 0 :
set_lseop_en == 1'b 1 ? 1'b 1 :
lseop_en;
// Clear LS EOP enable
assign clr_lseop_en = hc_en == 1'b 0 | resume_req == 1'b 1 |
lseop_en == 1'b 1 & mcek_cnt == 5'b 01111 ? 1'b 1 :
1'b 0;
// ------------------------------------------------------------------------------
//
// Process: rx_regs -- Receive registers
//
// Parameters: clk -- Clock
//
// Description: This process implements the USB SIE receive registers
// and synchronization flip flops.
//
// ------------------------------------------------------------------------------
always @(posedge clk or posedge rst_a)
begin : rx_regs
if (rst_a == 1'b 1)
begin
resume_req_ff <= 1'b 0;
resume_req_f <= 1'b 0;
reject_rx_datpkt <= 1'b 0;
reject_tx_datpkt <= 1'b 0;
se0_f <= 1'b 0;
jstate_f <= 1'b 0;
endpt_ctl_dis <= 1'b 0;
endpt_in_en <= 1'b 0;
endpt_out_en <= 1'b 0;
endpt_hshk <= 1'b 0;
ser2par_rg <= {24{1'b 0}};
par2ser_rg <= {8{1'b 0}};
ser2par_cnt <= {3{1'b 0}};
one_bit_cnt <= {3{1'b 0}};
current_token <= {4{1'b 0}};
current_token_eq <= 1'b 0;
current_endpt <= {4{1'b 0}};
current_endpt_eq <= 1'b 0;
usb_addr_eq <= 1'b 0;
usboe_i <= 1'b 0;
usboe_r <= 1'b 0;
crc5_data <= {5{1'b 0}};
end
else
begin
if (rst == 1'b 1)
begin
resume_req_ff <= 1'b 0;
resume_req_f <= 1'b 0;
reject_rx_datpkt <= 1'b 0;
reject_tx_datpkt <= 1'b 0;
se0_f <= 1'b 0;
jstate_f <= 1'b 0;
endpt_ctl_dis <= 1'b 0;
endpt_in_en <= 1'b 0;
endpt_out_en <= 1'b 0;
endpt_hshk <= 1'b 0;
ser2par_rg <= {24{1'b 0}};
par2ser_rg <= {8{1'b 0}};
ser2par_cnt <= {3{1'b 0}};
one_bit_cnt <= {3{1'b 0}};
current_token <= {4{1'b 0}};
current_token_eq <= 1'b 0;
current_endpt <= {4{1'b 0}};
current_endpt_eq <= 1'b 0;
usb_addr_eq <= 1'b 0;
usboe_i <= 1'b 0;
usboe_r <= 1'b 0;
crc5_data <= {5{1'b 0}};
end
else
begin
if (clk_en == 1'b 1)
begin
resume_req_ff <= resume_req_f;
resume_req_f <= resume_req;
// Register the Rx and Tx packet reject signals
if (tok_pstate == TOK_IDLE)
begin
reject_rx_datpkt <= 1'b 0;
end
else if (reject_rx_dat_set == 1'b 1 )
begin
reject_rx_datpkt <= 1'b 1;
end
if (tok_pstate == TOK_IDLE)
begin
reject_tx_datpkt <= 1'b 0;
end
else if (reject_tx_dat_set == 1'b 1 )
begin
reject_tx_datpkt <= 1'b 1;
end
se0_f <= se0; // registered copies for transition
jstate_f <= jstate; // detection.
// Endpoint tx data packet enabled (Input endpoint)
endpt_ctl_dis <= endpt_ctl_dis_d;
// Endpoint tx data packet enabled (Input endpoint)
endpt_in_en <= endpt_in_en_d;
// Endpoint rx direction
endpt_out_en <= endpt_out_en_d;
// Endpoint enabled
endpt_hshk <= endpt_hshk_d;
// Serial to parallel shift register
ser2par_rg <= ser2par_rg_d;
// Parallel to serial register
par2ser_rg <= par2ser_rg_d;
// Implements serial to parallel bit counter
ser2par_cnt <= ser2par_cnt_d;
// One bit count register
one_bit_cnt <= one_bit_cnt_d;
// Current token register
current_token <= current_token_d;
// Current_token comparitor
if (current_token_ld == 1'b 1)
begin
if (current_token == current_token_d)
begin
current_token_eq <= 1'b 1;
end
else
begin
current_token_eq <= 1'b 0;
end
end
// Current endpoint register
current_endpt <= current_endpt_d;
// Current_token comparitor
if (current_endpt_ld == 1'b 1)
begin
if (current_endpt == current_endpt_d)
begin
current_endpt_eq <= 1'b 1;
end
else
begin
current_endpt_eq <= 1'b 0;
end
end
// USB address equals
if (current_endpt_ld == 1'b 1)
begin
usb_addr_eq <= usb_addr_eq_d;
end
else
begin
usb_addr_eq <= usb_addr_eq;
// Register USB output enable
end
usboe_i <= usboe_r | usboe_nxt; // assert the OE for one idle clock
usboe_r <= usboe_nxt; // after EOP or reset_request.
// Implements CRC5 register
if (crc5_data_ld == 1'b 1)
begin
crc5_data <= nxt_crc5_data; // Update crc data
end
else
begin
crc5_data <= crc5_data; // No change
end
end
// Pulse generator for resume signaling
end
end
end
// -----------------------------------------------
// ------------------------------------------------------------------------------
//
// Process: usboe_early_proc
//
// Parameters: clk -- Clock
//
// Description: This process generates the pulse for the early version of usboe
// Once the early signal is triggered, it is held for four clk_en
// cycles, which will give it enough time for generating an early
// OE signal in the ratematch, after that, the regular usboe signal
// will have propagated through.
//
// ------------------------------------------------------------------------------
always @(posedge clk or posedge rst_a)
begin : usboe_early_proc
if (rst_a == 1'b 1)
begin
usboe_early_r1 <= 1'b 0;
usboe_early_r2 <= 1'b 0;
usboe_early_r3 <= 1'b 0;
usboe_early_r4 <= 1'b 0;
end
else
begin
if (rst == 1'b 1)
begin
usboe_early_r1 <= 1'b 0;
usboe_early_r2 <= 1'b 0;
usboe_early_r3 <= 1'b 0;
usboe_early_r4 <= 1'b 0;
end
else
begin
if (clk_en == 1'b 1)
begin
if (rxd_nstate == RXD_HSHK & rxd_pstate != RXD_HSHK |
tok_nstate == TOK_PROC & tok_pstate != TOK_PROC &
txd_token == 1'b 1 | tok_usboe == 1'b 1 &
tok_pstate == TOK_IDLE)
begin
usboe_early_r1 <= 1'b 1;
end
else
begin
usboe_early_r1 <= 1'b 0;
end
usboe_early_r2 <= usboe_early_r1;
usboe_early_r3 <= usboe_early_r2;
usboe_early_r4 <= usboe_early_r3;
end
// use an edge detect on state changing to generate a pulse for usboe_early
// then hold that pulse through four clk_en cycles
end
end
end
// -----------------------------------------------
assign usboe_early = usboe_early_r1 | usboe_early_r2 | usboe_early_r3 | usboe_early_r4;
// EMBEDDED HOST REMOVE ON
// ------------------------------------------------------------------------------
//
// Process: host_regs -- registers used by the embedded host controller.
//
// Parameters: clk -- Clock
//
// Description: These processies implement the USB SIE host mode registers
// The sof_regs process contains the host frame timer which runs
// off a constant 12MHz clock or clock enable.
// The host_regs processor implements the registers that change
// state based on the dpll output clock or clock enable.
//
// ------------------------------------------------------------------------------
// gate the host register outputs with the implement embedded host
// configuration constant, so that registers will be removed during
// logic optimization if host mode is not enabled.
// ------------------------------------------------------------------------------
assign hc_dma_rd_bdt = hc_dma_rd_bdt_q & hc_en;
assign hc_ls_timing = hc_ls_timing_q & hc_en;
assign hc_sof_req = hc_sof_req_q & hc_en;
assign hc_sof_req_f = hc_sof_req_fq & hc_en;
assign hc_token_busy_f = hc_token_busy_fq & hc_en;
assign hc_token_inhibit_d = hc_token_inhibit_dq & hc_en;
assign hc_token_inhibit = hc_token_inhibit_q & hc_en;
assign hc_token_inhibit_f = hc_token_inhibit_fq & hc_en;
assign hc_sof_req_set = hc_sof_req_set_q & hc_en;
assign hc_en_f = hc_en_fq;
assign hc_rxd_pid = hc_rxd_pid_q;
always @(posedge clk or posedge rst_a)
begin : host_regs
if (rst_a == 1'b 1)
begin
hc_dma_rd_bdt_q <= 1'b 0;
hc_ls_timing_q <= 1'b 0;
hc_token_busy_fq <= 1'b 0;
hc_sof_req_q <= 1'b 0;
hc_sof_req_fq <= 1'b 0;
hc_token_inhibit_q <= 1'b 0;
hc_token_inhibit_fq <= 1'b 0;
hc_sof_req_set_q <= 1'b 0;
hc_en_fq <= 1'b 0;
hc_rxd_pid_q <= 4'b 0000;
end
else
begin
if (rst == 1'b 1)
begin
hc_dma_rd_bdt_q <= 1'b 0;
hc_ls_timing_q <= 1'b 0;
hc_token_busy_fq <= 1'b 0;
hc_sof_req_q <= 1'b 0;
hc_sof_req_fq <= 1'b 0;
hc_token_inhibit_q <= 1'b 0;
hc_token_inhibit_fq <= 1'b 0;
hc_sof_req_set_q <= 1'b 0;
hc_en_fq <= 1'b 0;
hc_rxd_pid_q <= 4'b 0000;
end
else
begin
if (clk_en == 1'b 1)
begin
if (det_rst == 1'b 1 | hc_en == 1'b 0 |
usb_en == 1'b 0 | tok_pstate == TOK_EOP &
ser2par_cnt_eq1 == 1'b 1)
begin
hc_sof_req_q <= 1'b 0;
end
// EOP of the SOF packet is sent
else if (hc_sof_req_set == 1'b 1 )
begin
hc_sof_req_q <= 1'b 1;
end
//
hc_sof_req_fq <= hc_sof_req; // one clock delayed
// hc_ls_timing Host Low Speed Timing is a state bit used to generate low
// speed packets for low speed devices. Host Low Speed Timing is entered
// after the PRE_PID prefix is sent and is exited at the end of the
// transaction.
if (hc_en == 1'b 0 | host_wo_hub == 1'b 1)
begin
hc_ls_timing_q <= low_speed_req; // for devices or directly connected
// devices allow software to control the speed directly.
end
else if (hc_ls_timing_clr == 1'b 1 )
begin
hc_ls_timing_q <= 1'b 0; // reset the low speed timing state between packets
end
else if (hc_ls_timing_set == 1'b 1 )
begin
hc_ls_timing_q <= 1'b 1; // enter the low speed timing state after the
// SOF warning, token send inhibit
end
// PRE_PID prefix has been sent.
if (det_rst == 1'b 1 | hc_en == 1'b 0 |
tok_pstate == TOK_EOP & hc_sof_req == 1'b 1)
begin
hc_token_inhibit_q <= 1'b 0; // when then EOP of the SOF packet is sent
end
// reset the Inhibit
else if (hc_token_inhibit_d == 1'b 1 )
begin
hc_token_inhibit_q <= 1'b 1; // inhibit host transactions until when the SOF counter
end
// reaches the warning theshold
hc_token_inhibit_fq <= hc_token_inhibit; // one clock delayed.
// Register the host dma read request
hc_dma_rd_bdt_q <= hc_en & (hc_token_req | (tx_datpkt_done & reject_tx_datpkt |
rx_datpkt_done & reject_rx_datpkt));
// reset token dma bdt on unsuccessfull transactions
// Register the hc_token_busy signal for rising edge detection.
hc_token_busy_fq <= hc_token_busy;
// SOF token packet request request a SOF packet when the SOF
// counter reaches zero.
hc_sof_req_set_q <= ~det_rst & hc_en & usb_en & hc_sof_tc;
hc_en_fq <= hc_en; // register host mode for edge
// detection.
if (rxd_pstate == RXD_PID & ser2par_cnt_eq7 == 1'b 1)
begin
hc_rxd_pid_q <= pid_field; // record the received pid
end
else if (bto_err_set == 1'b 1 )
begin
hc_rxd_pid_q <= 4'b 0000; // use 0x0 for BTO notification
end
else if (crc16_err_set == 1'b 1 | dfn8_err_rxd == 1'b 1 |
bit_stuff_err == 1'b 1 )
begin
hc_rxd_pid_q <= 4'b 1111; // use 0xf for data error
end
// bit stuff, write 0xf to the BDT PID
end
// SOF token packet request
// clk_en = '1'
end
// srst
end
// clk'event and (clk = '1')
end
// -----------------------------------------------
always @(posedge clk or posedge rst_a)
begin : hc_token_inhibit_dq_PROC
if (rst_a == 1'b 1)
begin
hc_token_inhibit_dq <= 1'b 0;
end
else
begin
if (rst == 1'b 1)
begin
hc_token_inhibit_dq <= 1'b 0;
end
// synchronous resets
else if (clken_12 == 1'b 1 )
begin
if (det_rst == 1'b 1 | hc_en == 1'b 0)
begin
hc_token_inhibit_dq <= 1'b 0;
end
else if (hc_sof_cnt[15:11] == 5'b 00000 & hc_sof_cnt[10:3] == hc_sof_thld )
begin
hc_token_inhibit_dq <= 1'b 1;
end
else if (hc_token_inhibit == 1'b 1 )
begin
hc_token_inhibit_dq <= 1'b 0;
end
end
end
// clk_sof'event and (clk_sof = '1') then
end
assign hc_token_req = hc_token_busy & ~hc_token_busy_f;
assign hc_token_busy = txdsuspend_tokbusy & hc_en;
assign hc_reset = hc_en ^ hc_en_f; // reset the state machines on
// transitions in and out of host
// mode.
assign low_speed_en = hc_ls_timing;
// start low speed signalling
assign hc_ls_timing_set = tok_ls_timing_set | txd_ls_timing_set;
// end low speed signalling
assign hc_ls_timing_clr = tok_pstate == TOK_IDLE | txd_pstate == TXD_DONE |
txd_pstate == TXD_DELAY ? 1'b 1 :
1'b 0;
// before Tx Data packet start
assign bdt_wrt_pid = hc_en == 1'b 0 ? current_token :
hc_rxd_pid;
// Only allow failed data packets that were NAK'ed to auto repeat.
assign hc_no_retry = hc_rxd_pid != PID_NAK ? 1'b 1 :
1'b 0;
// EMBEDDED HOST REMOVE OFF
// ------------------------------------------------------------------------------
//
// Process: sof_regs -- SOF registers
//
// Parameters: clk_sof -- Clock
//
// Description: This process implements the SOF register. This consists of a
// host frame timer. The host frame timer has to different modes
// of operation depending if you are operating in host controller
// mode or not. When operating in host controller mode (i.e.
// hc_en=1) the hc_sof_cnt is used to determine when to issue a
// SOF. When operating in device mode (i.e. hc_en=0) it is used
// to determine when to set the sleep interrupt. When it counts 3
// ms of inactivity the sleep interrupt will be set.
//
// ------------------------------------------------------------------------------
always @(posedge clk or posedge rst_a)
begin : sof_regs
if (rst_a == 1'b 1)
begin
sof_cnt_clr <= 1'b 0;
hc_sof_tc <= 1'b 0;
if (IMPLEMENT_EMBEDED_HOST == 1'b 0)
begin
if (lsdev == 1)
begin
hc_sof_cnt <= SUSPEND_TERM_CNT_LS;
end
else
begin
hc_sof_cnt <= SUSPEND_TERM_CNT_HS;
end
end
else
begin
hc_sof_cnt <= SOF_TERM_CNT_HS;
end
end
else
begin
if (rst == 1'b 1)
begin
sof_cnt_clr <= 1'b 0;
hc_sof_tc <= 1'b 0;
if (hc_en == 1'b 0)
begin
if (lsdev == 1)
begin
hc_sof_cnt <= SUSPEND_TERM_CNT_LS;
end
else
begin
hc_sof_cnt <= SUSPEND_TERM_CNT_HS;
end
end
else
begin
hc_sof_cnt <= SOF_TERM_CNT_HS;
// hc_reset is generated from clken of the other clock so it may or may not
// be around when this reset is active so pull this outside of the clken_12
// block
end
end
// synchronous resets
else if (hc_reset == 1'b 1 )
begin
hc_sof_cnt <= SOF_TERM_CNT_HS;
end
else if (clken_12 == 1'b 1 )
begin
sof_cnt_clr <= sof_cnt_clra;
// If not in host controller mode operate as a USB sleep counter
if (hc_en == 1'b 0)
begin
if (sof_cnt_clr == 1'b 1)
begin
if (lsdev == 1)
begin
hc_sof_cnt <= SUSPEND_TERM_CNT_LS;
end
else
begin
hc_sof_cnt <= SUSPEND_TERM_CNT_HS;
end
end
else if (hc_sof_cnt != {8'b 11111111, 8'b 11111111} )
begin
hc_sof_cnt <= hc_sof_cnt - 1'b 1;
end
else
begin
hc_sof_cnt <= hc_sof_cnt;
// We are operating in host controller mode run as a SOF frametimer
end
end
else
begin
if (det_rst == 1'b 1 | hc_sof_cnt == {8'b 11111111,
8'b 11111111})
begin
hc_sof_cnt <= SOF_TERM_CNT_HS;
end
else
begin
hc_sof_cnt <= hc_sof_cnt - 1'b 1;
end
end
// generate a minimum two cycle wide terminal count to pass from the clken12
// domain to the clken_dpll domain.
if (hc_sof_cnt[15:1] == {8'b 00000000, 7'b 0000000})
begin
hc_sof_tc <= 1'b 1;
end
else if (hc_sof_req_set == 1'b 1 | hc_en == 1'b 0 )
begin
hc_sof_tc <= 1'b 0; // in the clken_dpll domain.
end
// hold until registered
end
end
// clk_sof'event and (clk_sof = '1') then
end
// generate a two cycle wide terminal count to pass from the clken12 domain to
// the clken_dpll domain.
assign hc_sof_err_set = hc_sof_req == 1'b 1 & hc_sof_req_f == 1'b 0 &
tok_pstate != TOK_IDLE ? hc_en :
1'b 0;
// issue an error interrupt if a transfer is in progress
// when the SOF packet is supposed to be sent.
// In host mode set the sof interrupt when the SOF threshold is reached
assign hc_sof_thld_set = hc_en == 1'b 1 & hc_token_inhibit == 1'b 1 &
hc_token_inhibit_f == 1'b 0 & clk_en == 1'b 1 ? 1'b 1 :
1'b 0;
// single ended zeros are used to signal reset and end of packet
assign usb_se0_req = txd_pstate == TXD_EOP | tok_pstate == TOK_EOP &
hc_en == 1'b 1 & zero_stuff == 1'b 0 |
hc_rst_req == 1'b 1 & hc_en == 1'b 1 |
lseop_en == 1'b 1 & hc_en == 1'b 1 ? 1'b 1 :
1'b 0;
// The J-state is the idle state on usb.
assign usb_jstate_req = resume_req_ff == 1'b 0 & (txd_pstate == TXD_WAIT |
txd_pstate == TXD_DELAY | txd_pstate == TXD_HSHK |
txd_pstate == TXD_DONE) & ~(hc_en == 1'b 1 &
~(tok_pstate == TOK_IDLE | tok_pstate == TOK_PROC |
tok_pstate == TOK_WAIT)) | hc_en == 1'b 1 &
hc_ls_timing == 1'b 0 & low_speed_req == 1'b 1 &
hc_sof_req == 1'b 0 & (tok_pstate == TOK_BYTE0 |
txd_pstate == TXD_LSDLY) ? 1'b 1 :
1'b 0;
// (rst = '1') or
// The K-state is the resume state on usb.
assign usb_kstate_req = resume_req_ff == 1'b 1 ? 1'b 1 :
1'b 0;
// USB output enable data
assign usboe_nxt = txd_usboe | resume_req_f | hc_en & (hc_rst_req |
lseop_en_nxt | tok_usboe);
// USB data minus out data
// low_speed_signaling - This signal causes the SIE to invert the
// signaling of the J and K bus states for low speed signalling.
assign idmo_d = usb_se0_req == 1'b 1 | low_speed_signaling == 1'b 0 &
usb_jstate_req == 1'b 1 | low_speed_signaling == 1'b 1 &
usb_kstate_req == 1'b 1 ? 1'b 0 :
low_speed_signaling == 1'b 1 & usb_jstate_req == 1'b 1 |
low_speed_signaling == 1'b 0 & usb_kstate_req == 1'b 1 ? 1'b 1 :
~usb_nrzo;
// USB data plus out data
assign idpo_d = usb_se0_req == 1'b 1 | low_speed_signaling == 1'b 1 &
usb_jstate_req == 1'b 1 | low_speed_signaling == 1'b 0 &
usb_kstate_req == 1'b 1 ? 1'b 0 :
low_speed_signaling == 1'b 0 & usb_jstate_req == 1'b 1 |
low_speed_signaling == 1'b 1 & usb_kstate_req == 1'b 1 ? 1'b 1 :
usb_nrzo;
// Low speed signaling is true if constant in cfg_usb is true or we are a
// point to point single port root hub and low_speed_req is true.
assign low_speed_signaling = lsdev == 1 ? 1'b 1 :
hc_en == 1'b 1 & host_wo_hub == 1'b 0 ? 1'b 0 :
low_speed_req; // this term allow devices to become
// low speed under software control
// USB data dout
// This is the USB serial transmit data that must be NRZI encoded.
assign usb_dout = zero_stuff == 1'b 1 ? 1'b 0 :
txd_pstate == TXD_CRC16L | txd_pstate == TXD_CRC16H ? ~crc16_data[15] :
crc5_data_se == 1'b 1 ? ~crc5_data[4] :
par2ser_rg[0];
assign usb_nrzo = usb_dout == 1'b 1 ? idpo :
~idpo;
// Current token register write data
assign pid_field = {ser2par_rg[4], ser2par_rg[5], ser2par_rg[6], ser2par_rg[7]};
assign current_token_d = hc_en == 1'b 1 ? hc_token_pid :
current_token_ld == 1'b 1 & pid_chk_ok == 1'b 1 &
valid_sof_pid_d == 1'b 0 ? pid_field :
current_token_ld == 1'b 1 & pid_chk_ok == 1'b 0 ? 4'b 0000 :
current_token;
// Current endpoint register write data
assign current_endpt_d = hc_en == 1'b 1 ? 4'b 0000 :
current_endpt_ld == 1'b 1 & sof_pid == 1'b 0 ? {ser2par_rg[0],
ser2par_rg[1], ser2par_rg[2], ser2par_rg[3]} :
current_endpt;
// ser2par_rg(5) & ser2par_rg(6) & ser2par_rg(7) &
// ser2par_rg(8) when current_endpt_ld = '1' else
// current_endpt;
// Out data01 pid register
// Store SETUP and Rx Data Packet data pid values.
assign out_data01_pid_d = txd_pstate == TXD_WAIT & rxd_pstate == RXD_PID &
ser2par_cnt_eq7 == 1'b 1 ? ser2par_rg[4] :
out_data01_pid;
// Current frame number write data
// In device mode capture the frame number.
assign frame_num_d = frame_num_ld == 1'b 1 & hc_en == 1'b 0 ? {ser2par_rg[6],
ser2par_rg[7], ser2par_rg[8], ser2par_rg[9], ser2par_rg[10],
ser2par_rg[11], ser2par_rg[12], ser2par_rg[13], ser2par_rg[14],
ser2par_rg[15], ser2par_rg[16]} :
hc_sof_req == 1'b 1 & hc_sof_req_f == 1'b 0 ? frame_num +
1 :
frame_num;
// in host mode increment the frame number.
// on rising edge of request.
// ------------------------------------------------------------------------------
// SIE counter signals
// ------------------------------------------------------------------------------
// NOTE: After plug fest might want to investigate if usb_sie can get away with
// only one counter to check for resets, bit_stuff, and bto's!
// Counter data
// cnt_d <= "00000" when srst = '1' or (cnt_en = '1' and cnt_en_d1 = '0') else
// unsigned(cnt) + 1 when cnt_en = '1' else
// cnt -- No change
// Misc Counter clear
// This counter times 3 different events
// 1) USB resets is SE0 is asserted for 2.5 us.
// 2) USB attach is SE0 is false and rcv doesn't move for 2.5 us
// 3) USB Buss Time Out (BTO) if the bus is idle for 2.5 us when expecting rcv
// data or acknoledge.
// 4) USB LS EOP: When in host controller mode this counter is used to
// generate a LS EOP to terminate resume signaling.
// In any of these cases the counter is enabled when there are no transitions
// and is cleared on a transition.
assign mcek_cnt_clr = ~lseop_en & (usboe_i | se0 ^ se0_f) |
~se0 & ~se0_f & (jstate ^ jstate_f); // a transition on the USB siganls
// is cleared.
// USB RESET counter
// restarts the BTO and ATTACH counter
// cnt_en <= '1' when det_se0 = '1' or (rxd_pstate = RXD_IDLE) else
// '0';
// ------------------------------------------------------------------------------
// CRC5 logic
// ------------------------------------------------------------------------------
assign crc5_okay = crc5_data == 5'b 01100 ? 1'b 1 :
1'b 0;
assign crc5_data_ld = ser2par_rg_se;
// shift the crc data out in hc mode into the crc5 field
assign crc5_data_se = hc_en == 1'b 1 & tok_pstate == TOK_BYTE1 &
(ser2par_cnt[2] == 1'b 1 | ser2par_cnt[1] == 1'b 1 &
ser2par_cnt[0] == 1'b 1) ? 1'b 1 :
1'b 0;
assign crc5_data_clr = tok_pstate == TOK_PID ? 1'b 1 :
1'b 0;
// This logic will set nxt_crc5_data=1f\h when we detect a flag else it
// will compute the crc value.
// Compute next crc high data byte
assign nxt_crc5_data = crc5_data_clr == 1'b 1 ? 5'b 11111 :
crc5_data_se == 1'b 1 ? {crc5_data[3:0], 1'b 1} :
{crc5_data[3], crc5_data[2], (crc5_data[1] ^ crc5_data[4] ^
usb_crc_data), crc5_data[0], (usb_crc_data ^ crc5_data[4])}; // bit 0
// shift enable
// Compute crc data
// bit 4
// bit 3
// bit 2
// (crc5_data(1) xor crc5_data(4) xor ser2par_rg(0)) & -- bit 2
// bit 1
// (ser2par_rg(0) xor crc5_data(4)); -- bit 0
// ------------------------------------------------------------------------------
// CRC16 logic
// ------------------------------------------------------------------------------
assign crc16_okay = crc16_data == 16'b 1000000000001101 ? 1'b 1 :
1'b 0;
// CRC16 data load enable when srst active, during data control state Tx_OFLG,
// or when crc_data_comp oTx_DATA,
// Tx_CRCL, and Tx_CRCH.
assign crc16_data_ld = txd_pstate == TXD_PID | rxd_pstate == RXD_PID |
ser2par_rg_se == 1'b 1 & (crc16_data_comp == 1'b 1 |
crc16_data_se == 1'b 1) ? 1'b 1 :
1'b 0;
// CRC16 data compute enable during data control state Tx_DATA.
assign crc16_data_comp = rxd_pstate == RXD_BYTE0 | rxd_pstate == RXD_BYTE1 |
rxd_pstate == RXD_BYTE2 | txd_pstate == TXD_DATA ? 1'b 1 :
1'b 0;
// CRC16 data shift enable during tx data packet states TXD_CRC16L or TXD_CRC16H.
assign crc16_data_se = txd_pstate == TXD_CRC16L | txd_pstate == TXD_CRC16H ? 1'b 1 :
1'b 0;
// (bit_stuff_en = '0' and ((dtx_ctl_pres_state = Tx_CRCL) or
// (dtx_ctl_pres_state = Tx_CRCH))) else '0';
// This logic computes the next CRC data based on CRC data shift enable, CRC
// data compute enable else it loads FFFF\h.
// Compute next crc data
assign nxt_crc16_data = crc16_data_se == 1'b 1 ? {crc16_data[14:0], 1'b 1} :
crc16_data_comp == 1'b 1 ? comp_crc16_data :
16'b 1111111111111111; // Else force to 1F\h
// Shift out CRC data
// Compute CRC data
// Compute crc data
// This logic will compute the crc on transmitted data.
assign comp_crc16_data = {(crc16_data[14] ^ crc16_data[15] ^ usb_crc_data), crc16_data[13],
crc16_data[12], crc16_data[11], crc16_data[10], crc16_data[9],
crc16_data[8], crc16_data[7], crc16_data[6], crc16_data[5],
crc16_data[4], crc16_data[3], crc16_data[2], (crc16_data[1] ^
crc16_data[15] ^ usb_crc_data), crc16_data[0], (usb_crc_data ^
crc16_data[15])}; // bit 0
// bit 15
// bit 14
// bit 13
// bit 12
// bit 11
// bit 10
// bit 9
// bit 8
// bit 7
// bit 6
// bit 5
// bit 4
// bit 3
// bit 2
// bit 1
// ------------------------------------------------------------------------------
//
// Process: tok_nsl -- Token state machine next state logic
//
// Parameters: tok_pstate -- Token state machine present state bits
// crc5_okay -- CRC5 okay
// det_eop -- Detect end of packet
// det_se0 -- Detect single ended zero
// det_sync -- Detect USB sync
// rcv -- USB Receive Data
// reject_rx_dat_set -- Reject rx data packet enable--
// reject_tx_dat_set -- Reject tx data packet enable
// rx_datpkt_done -- Rx Data Packet process done
// ser2par_cnt -- Serial to parallel bit count
// ser2par_cnt_eq7 -- Serial to parallel bit count equals 7
// sof_pid -- SOF pid detect
// token_proc_en -- Token processing enable
// tx_datpkt_done -- Tx Data Packet process done
// usb_addr_eq -- USB address equals
// valid_token_pid -- Valid token PID
//
// Description: This process implements next state logic for the token
// processing state machine.
//
// State Diagram: TBD
//
// ------------------------------------------------------------------------------
always @(bdt_valid or bit_stuff_err or crc5_okay or current_token or det_eop
or det_se0 or det_sync or dma_re_rd_bdt or hc_en or hc_ls_timing
or hc_sof_req or hc_token_busy or hc_token_inhibit or low_speed_req or hc_no_retry
or hc_retry_disable or host_wo_hub or own_d or own_ok or rcv
or reject_rx_datpkt or reject_tx_datpkt or rx_datpkt_done or rxd_pstate or ser2par_cnt
or ser2par_cnt_eq1 or ser2par_cnt_eq7 or sof_pid or tok_pstate or token_proc_en
or tx_datpkt_done or txd_pstate or usb_addr_eq or valid_token_pid or usboe_early_r1)
begin : tok_nsl
tok_nstate <= TOK_IDLE;
dev_dma_rd_bdt <= 1'b 0; // device DMA read BDT (4 bytes)
dma_wrt_bdt <= 1'b 0; // DMA write BDT (4 bytes)
hc_token_done <= 1'b 0; // embedded host token transaction complete
txd_suspend_set <= 1'b 0; // set the transmit suspend register.
endpt_stall_clr <= 1'b 0; // clear the protocol stall on receipt
dfn8_err_tok <= 1'b 0; // don't set the dfn8 error indication
tok_ls_timing_set <= 1'b 0; // leave the low speed timing alone.
// Load current frame number register
frame_num_ld <= 1'b 0;
tok_usboe <= 1'b 0;
// When present state is token idle state
case (tok_pstate)
TOK_IDLE:
begin
if (hc_en == 1'b 1)
begin
if (txd_pstate == TXD_WAIT & rxd_pstate == RXD_WAIT &
(hc_token_busy == 1'b 1 & hc_token_inhibit == 1'b 0 &
own_d == 1'b 1 & bdt_valid == 1'b 1 |
hc_sof_req == 1'b 1))
begin
tok_usboe <= 1'b 1;
if (usboe_early_r1 == 1'b 1)
begin
tok_nstate <= TOK_SYNC; // Goto token sync state
end
// hold off until usboe_early pulse is generated
else
begin
tok_nstate <= TOK_IDLE; // Stay here
// no host requsests active
end
end
else
begin
tok_nstate <= TOK_IDLE; // Stay here
// target / device operation
// If detect a change on rcv
end
// hc_token_busy
end
// host operation
else
begin
if (rcv == 1'b 0)
begin
tok_nstate <= TOK_SYNC; // Goto token sync state
end
else
begin
tok_nstate <= TOK_IDLE; // Stay here
end
end
// hc_en
// When present state is token sync state
end
TOK_SYNC:
begin
if (hc_en == 1'b 1)
begin
tok_usboe <= 1'b 1;
if (ser2par_cnt_eq7 == 1'b 1)
begin
tok_nstate <= TOK_PID; // Goto token wait state
end
else
begin
tok_nstate <= TOK_SYNC; // Stay here
// target / device operation
// If false eop abort token
end
// ser2par_cnt_eq7
end
// host operation
else
begin
if (det_se0 == 1'b 1)
begin
tok_nstate <= TOK_WAIT; // Goto token wait state
// If detect a sync
end
else if (det_sync == 1'b 1 )
begin
tok_nstate <= TOK_PID; // Goto token pid state
end
else
begin
tok_nstate <= TOK_SYNC; // Stay here
end
end
// hc_en
// When present state is token pid state
end
TOK_PID:
begin
if (hc_en == 1'b 1)
begin
tok_usboe <= 1'b 1;
if (ser2par_cnt_eq7 == 1'b 1)
begin
tok_nstate <= TOK_BYTE0; // Goto token byte0 state
end
else
begin
tok_nstate <= TOK_PID; // Stay here
// target / device operation
// If false eop or not a valid token equal abort token
end
// ser2par_cnt_eq7
end
// host operation
else
begin
if (det_se0 == 1'b 1 | ser2par_cnt_eq7 == 1'b 1 &
valid_token_pid == 1'b 0 | bit_stuff_err == 1'b 1)
begin
tok_nstate <= TOK_WAIT; // Goto token wait state
if (det_se0 == 1'b 1 & ser2par_cnt_eq7 == 1'b 0)
begin
dfn8_err_tok <= 1'b 1; // set the dfn8 error indication
// Make sure we have received a valid token
end
end
// bit stuff error
else if (ser2par_cnt_eq7 == 1'b 1 & valid_token_pid == 1'b 1 )
begin
tok_nstate <= TOK_BYTE0; // Goto token byte0 state
end
else
begin
tok_nstate <= TOK_PID; // Stay here
end
end
// hc_en
// When present state is token byte0 state
end
TOK_BYTE0:
begin
if (hc_en == 1'b 1)
begin
tok_usboe <= 1'b 1;
// when operating as a host with a hub. To support low speed devices
// through a hub, the TOK state machine sends a sync and a PRE_PID
// at high speed. Then is switches the speed to low speed and starts
// the transaction again from the TOK sync state. The hc_sof_req term
// prevents SOF packets from being sent at low speed.
if (host_wo_hub == 1'b 0 & hc_ls_timing == 1'b 0 &
low_speed_req == 1'b 1 & ser2par_cnt_eq7 == 1'b 1 &
hc_sof_req == 1'b 0)
begin
tok_nstate <= TOK_SYNC;
tok_ls_timing_set <= 1'b 1;
end
else if (ser2par_cnt_eq7 == 1'b 1 )
begin
tok_nstate <= TOK_BYTE1; // Goto token byte1 state
end
else
begin
tok_nstate <= TOK_BYTE0; // Stay here
// target / device operation
// If false eop or usb address not equal abort token
end
// ser2par_cnt_eq7
end
// host operation
else
begin
if (det_se0 == 1'b 1 | bit_stuff_err == 1'b 1)
begin
tok_nstate <= TOK_WAIT; // Goto token wait state
if (det_se0 == 1'b 1 & ser2par_cnt_eq7 == 1'b 0)
begin
dfn8_err_tok <= 1'b 1; // set the dfn8 error indication
end
end
else if (ser2par_cnt_eq7 == 1'b 1 )
begin
tok_nstate <= TOK_BYTE1; // Goto token byte1 state
end
else
begin
tok_nstate <= TOK_BYTE0; // Stay here
end
end
// hc_en
// When present state is token byte1 state
end
TOK_BYTE1:
begin
if (hc_en == 1'b 1)
begin
tok_usboe <= 1'b 1;
if (ser2par_cnt_eq7 == 1'b 1)
begin
tok_nstate <= TOK_EOP; // Goto token eop state
end
else
begin
tok_nstate <= TOK_BYTE1; // Stay here
// target / device operation
end
// ser2par_cnt_eq7
end
// host operation
else
begin
if (det_se0 == 1'b 1 & ser2par_cnt_eq7 == 1'b 0)
begin
tok_nstate <= TOK_WAIT; // Goto token wait state
if (det_se0 == 1'b 1 & ser2par_cnt_eq7 == 1'b 0)
begin
dfn8_err_tok <= 1'b 1; // set the dfn8 error indication
end
end
// False eop
else if (bit_stuff_err == 1'b 1 )
begin
tok_nstate <= TOK_WAIT; // Goto token wait state
end
else if (det_se0 == 1'b 1 & ser2par_cnt_eq7 == 1'b 1 )
begin
tok_nstate <= TOK_EOP; // Goto token eop state
end
else
begin
tok_nstate <= TOK_BYTE1; // Stay here
end
end
// hc_en
// When present state is token eop state
end
TOK_EOP:
begin
if (hc_en == 1'b 1)
begin
if (ser2par_cnt_eq1 == 1'b 1)
begin
if (hc_sof_req == 1'b 1)
begin
tok_nstate <= TOK_IDLE; // Goto token idle state
end
else
begin
tok_nstate <= TOK_PROC; // Goto token process state
end
//
end
else
begin
tok_usboe <= 1'b 1;
tok_nstate <= TOK_EOP; // Stay here
// target / device operation
// Wait for EOP
end
// ser2par_cnt_eq7
end
// host operation
else
begin
if (det_eop == 1'b 1)
begin
if (sof_pid == 1'b 1 & crc5_okay == 1'b 1 &
bit_stuff_err == 1'b 0)
begin
frame_num_ld <= 1'b 1; // Load current frame number register
tok_nstate <= TOK_IDLE; // Goto token idle state
end
else if (token_proc_en == 1'b 1 & usb_addr_eq == 1'b 1 &
crc5_okay == 1'b 1 & bit_stuff_err == 1'b 0 )
begin
dev_dma_rd_bdt <= ~own_ok | dma_re_rd_bdt; // or the DMA values need to be re-read.
if (current_token == PID_SETUP)
begin
endpt_stall_clr <= 1'b 1; // clear the protocol stall on receipt
// of a valid SETUP token.
end
// may need to add OUT tokens also
tok_nstate <= TOK_PROC; // Goto token process state
end
else
begin
tok_nstate <= TOK_IDLE; // Goto token idle state
// We only want to wait for the EOP for a short
// period of time, if we do not get it return to IDLE
end
end
else if (ser2par_cnt[2] == 1'b 1 )
begin
tok_nstate <= TOK_IDLE; // Goto token idle state
end
else
begin
tok_nstate <= TOK_EOP; // Stay here
end
end
// hc_en
// When present state is token process state
end
TOK_PROC:
begin
if (tx_datpkt_done == 1'b 1 | rx_datpkt_done == 1'b 1)
begin
if (reject_tx_datpkt == 1'b 1 | reject_rx_datpkt == 1'b 1)
begin
if (hc_en == 1'b 1)
begin
if (hc_no_retry == 1'b 1 | hc_retry_disable == 1'b 1)
begin
dma_wrt_bdt <= 1'b 1; // Write the recieved PID out to the
hc_token_done <= 1'b 1; // BDT control word
end
// as a host don't repeat failed transaction automatically when
// no retry is set or the failure is not retry worthy.
end
// if operating as a host
tok_nstate <= TOK_IDLE; // Transmission failed
// If the packet is OK write the BDT
end
else
begin
dma_wrt_bdt <= 1'b 1; // DMA write BDT (4 bytes)
tok_nstate <= TOK_IDLE; // Goto token idle state
if (hc_en == 1'b 1)
begin
hc_token_done <= 1'b 1;
end
else if (current_token == PID_SETUP )
begin
txd_suspend_set <= 1'b 1; // hold off any new tokens until
// software catches up.
end
end
end
else
begin
tok_nstate <= TOK_PROC; // Stay here
// When present state is token wait state
end
end
// If the in or rx data packet state machines reject a token for any reason
// the token processing state machine must return to idle
TOK_WAIT:
begin
if (det_eop == 1'b 1)
begin
tok_nstate <= TOK_IDLE; // Goto token idle state
end
else
begin
tok_nstate <= TOK_WAIT; // Stay here
// Default next state, eliminates feedback loops
end
end
default:
begin
tok_nstate <= TOK_IDLE;
end
endcase
end
// ------------------------------------------------------------------------------
//
// Process: txd_nsl -- Tx Data Packet state machine next state logic
//
// Parameters: txd_pstate -- Tx Data Packet state machine present state bits
// tx_datpkt_proc -- Tx Data Packet process
// out_handshake_en -- Out handshake enable
// ser2par_cnt_eq2 -- Serial to parallel bit count equals 2
// ser2par_cnt_eq7 -- Serial to parallel bit count equals 7
// endpt_hshk -- Endpoint hand shake enable
// own -- BDT own control bit
// transmit_done -- Transmit done
// in_handshake_done -- In handshake done
// last_bit_stuff_en -- Last bit stuff enable
//
// Description: This process implements next state logic for the tx data packet
// processing state machine.
//
// State Diagram: TBD
//
// ------------------------------------------------------------------------------
// SIE DMA requests default output values
always @(txd_pstate or tx_datpkt_proc or out_handshake_en or ser2par_cnt_eq1 or ser2par_cnt_eq7
or endpt_hshk or own or hc_en or hc_ls_timing or low_speed_req
or endpt_stall or byte_count_eq or in_handshake_done or transmit_done or last_bit_stuff_en
or zero_stuff_inhibit or host_wo_hub)
begin : txd_nsl
out_handshake_done <= 1'b 0; // Default output value
start_txd <= 1'b 0; // Default output value
txd_ls_timing_set <= 1'b 0; // by default leave the low speed timing alone.
txd_usboe <= 1'b 0;
// When present state is tx data packet wait state
case (txd_pstate)
TXD_WAIT:
begin
if (tx_datpkt_proc == 1'b 1 | out_handshake_en == 1'b 1)
begin
start_txd <= 1'b 1; // Signal sie logic that we are starting a tx data packet
txd_usboe <= 1'b 1;
txd_nstate <= TXD_SYNC; // Goto tx data packet sync state
// txd_nstate <= TXD_DELAY; -- Goto tx data packet delay state
end
else
begin
txd_nstate <= TXD_WAIT; // Stay here
// When present state is tx data packet wait state
end
end
// If detect a tx data packet process
TXD_DELAY:
begin
start_txd <= 1'b 1; // Signal sie logic that we are starting
// a tx data packet
txd_nstate <= TXD_SYNC; // Goto tx data packet sync state
// When present state is tx data packet sync state
end
// If detect a tx data packet process
TXD_SYNC:
begin
txd_usboe <= 1'b 1;
if (ser2par_cnt_eq7 == 1'b 1)
begin
if (hc_en == 1'b 1 & host_wo_hub == 1'b 0 &
hc_ls_timing == 1'b 0 & low_speed_req == 1'b 1)
begin
txd_nstate <= TXD_PRE;
end
else
begin
txd_nstate <= TXD_PID; // Goto tx data packet pid state
end
end
// If this is a host sending to a low speed device and the
// timing has not yet been switched to low speed. Go to the
// send a PRE pid state.
else
begin
txd_nstate <= TXD_SYNC; // Stay here
// When present state is tx data packet PRE pid state
end
end
// Transmit a sync
TXD_PRE:
begin
txd_usboe <= 1'b 1;
// Transmit a PRE PID
if (ser2par_cnt_eq7 == 1'b 1)
begin
txd_nstate <= TXD_LSDLY; // Go to Low Speed delay
end
else
begin
txd_nstate <= TXD_PRE; // Stay here finish sending PRE pid
// When present state is low speed delay
end
end
TXD_LSDLY:
begin
txd_usboe <= 1'b 1;
// Wait before switching the clock to low speed.
if (ser2par_cnt_eq7 == 1'b 1)
begin
txd_nstate <= TXD_SYNC; // Start sending Low Speed Sync
txd_ls_timing_set <= 1'b 1;
end
else
begin
txd_nstate <= TXD_LSDLY; // Stay here and wait
// When present state is tx data packet pid state
end
end
TXD_PID:
begin
txd_usboe <= 1'b 1;
// Transmit a PID
if (ser2par_cnt_eq7 == 1'b 1)
begin
if (endpt_stall == 1'b 1 | out_handshake_en == 1'b 1)
begin
txd_nstate <= TXD_EOP; // Handshake was sent; Goto eop state
// Check for NAK condition
end
else if (own == 1'b 0 )
begin
if (endpt_hshk == 1'b 0)
begin
txd_nstate <= TXD_CRC16L; // Sent a zero length ISO Pkt
// Non-ISO endpoint
end
// ISO endpoint?
else
begin
txd_nstate <= TXD_EOP; // NAK was sent; goto eop state
end
end
// BDT not ready
else
begin
if (transmit_done == 1'b 0)
begin
txd_nstate <= TXD_DATA; // Goto tx data byte state
end
else
begin
txd_nstate <= TXD_CRC16L; // Goto tx data packet CRC16L state
end
end
end
// Check for STALL, or handshake condition
else
begin
txd_nstate <= TXD_PID; // Stay here
// When present state is tx data packet data state
end
end
TXD_DATA:
begin
txd_usboe <= 1'b 1;
// Transmit a data
if (ser2par_cnt_eq7 == 1'b 1 & zero_stuff_inhibit == 1'b 1)
begin
txd_nstate <= TXD_EOP; // After forcing a bit stuff error end packet
end
else if (ser2par_cnt_eq7 == 1'b 1 & transmit_done == 1'b 1 )
begin
txd_nstate <= TXD_CRC16L; // Goto tx data packet crc16l state
end
else
begin
txd_nstate <= TXD_DATA; // Stay here
// When present state is tx data packet crc16l state
end
end
TXD_CRC16L:
begin
txd_usboe <= 1'b 1;
// Transmit low order byte of crc16
if (ser2par_cnt_eq7 == 1'b 1)
begin
txd_nstate <= TXD_CRC16H; // Goto tx data packet crc16h state
end
else
begin
txd_nstate <= TXD_CRC16L; // Stay here
// When present state is tx data packet crc16h state
end
end
TXD_CRC16H:
begin
txd_usboe <= 1'b 1;
// Transmit high order byte of crc16
if (last_bit_stuff_en == 1'b 1)
begin
txd_nstate <= TXD_LBS; // Goto tx data packet last bit stuff state
end
else if (ser2par_cnt_eq7 == 1'b 1 )
begin
txd_nstate <= TXD_EOP; // Goto tx data packet eop state
end
else
begin
txd_nstate <= TXD_CRC16H; // Stay here
// Special state to force the insertion of a bit stuff after CRC
end
end
TXD_LBS:
begin
txd_usboe <= 1'b 1;
txd_nstate <= TXD_EOP; // Goto tx data packet eop state
// When present state is tx data packet eop state
end
TXD_EOP:
begin
if (ser2par_cnt_eq1 == 1'b 1)
begin
if (own == 1'b 0 | endpt_stall == 1'b 1 |
endpt_hshk == 1'b 0 | out_handshake_en == 1'b 1)
begin
txd_nstate <= TXD_DONE; // Iso endpoint (hand shake disabled) goto
// tx data packet done state
end
else
begin
txd_nstate <= TXD_HSHK; // Goto tx data packet handshake state
end
end
else
begin
txd_usboe <= 1'b 1;
txd_nstate <= TXD_EOP; // Stay here
// When present state is tx data packet handshake state
end
end
// Transmit a EOP
// if ser2par_cnt_eq2 = '1' then
TXD_HSHK:
begin
if (in_handshake_done == 1'b 1)
begin
txd_nstate <= TXD_DONE; // Goto tx data packet done state
end
else
begin
txd_nstate <= TXD_HSHK; // Stay here
// When present state is tx data packet done state
end
end
TXD_DONE:
begin
out_handshake_done <= 1'b 1; // Rx Data Packet handshake done
txd_nstate <= TXD_WAIT; // Goto tx data packet wait state
// Default next state, eliminates feedback loops
end
// tx_datpkt_done <= '1'; -- Tx Data Packet process done
default:
begin
txd_nstate <= TXD_WAIT;
end
endcase
end
// ------------------------------------------------------------------------------
//
// Process: rxd_nsl -- Rx Data Packet state machine next state logic
//
// Parameters:
// bit_stuff_err
// bto_err_set -- Bus timeout error interrupt set
// crc16_err_set -- CRC16 error detected
// current_token -- Current token
// det_eop -- Detected end of packet
// det_se0 -- Detected Single ended Zero
// det_sync -- Detected USB sync
// endpt_stall -- Endpoint stalled
// endpt_hshk -- Endpoint hand shake enable
// in_handshake_en -- In handshake enable
// out_handshake_done -- Out handshake done
// own -- BDT owned by SIE
// rcv -- USB Receive Data
// rx_datpkt_proc -- Rx Data Packet process
// rx_overrun_nak -- Force a Nak responce to this Rx Packet
// rxd_pstate -- Rx Data Packet state machine present state bits
// ser2par_cnt_eq7 -- Serial to parallel bit count equals 7
// valid_data_pid -- Valid data PID
// valid_data_tgl -- Valid data toggle bit on this data PID
// valid_stall_pid -- Valid data STALL
//
// Description: This process implements next state logic for the token
// processing state machine.
//
// State Diagram: TBD
//
// ------------------------------------------------------------------------------
// tx_datpkt_done <= '0'; -- Default output value
always @(bit_stuff_err or bto_err_set or crc16_err_set or current_token or det_eop
or det_se0 or det_sync or endpt_hshk or in_handshake_en or out_handshake_done
or own or rcv or rx_datpkt_proc or rx_overrun_nak or rxd_pstate
or ser2par_cnt_eq7 or valid_data_pid or valid_data_tgl or valid_stall_pid)
begin : rxd_nsl
in_handshake_done <= 1'b 0; // Default output value
dfn8_err_rxd <= 1'b 0; // Default output value
reject_rx_dat_set <= 1'b 0; // Default output value
// When present state is rx data packet wait state
case (rxd_pstate)
RXD_WAIT:
begin
if (rx_datpkt_proc == 1'b 1 | in_handshake_en == 1'b 1)
begin
rxd_nstate <= RXD_IDLE; // Goto rx data packet idle state
end
else
begin
rxd_nstate <= RXD_WAIT; // Stay here
// When present state is rx data packet idle state
end
end
// If detect a rx data packet process
RXD_IDLE:
begin
if (bto_err_set == 1'b 1)
begin
if (endpt_hshk == 1'b 1)
begin
reject_rx_dat_set <= 1'b 1; // BTO, reject rx data packet
end
// ISO packets that BTO just update the BDT.
rxd_nstate <= RXD_DONE; // BTO, goto wait state
// If detect a change on rcv
end
else if (rcv == 1'b 0 )
begin
rxd_nstate <= RXD_SYNC; // Goto rx data packet sync state
end
else
begin
rxd_nstate <= RXD_IDLE; // Stay here
// When present state is rx data packet sync state
end
end
// If detect a bus timeout error
RXD_SYNC:
begin
if (det_sync == 1'b 1)
begin
rxd_nstate <= RXD_PID; // Goto rx data packet pid state
end
else if (bto_err_set == 1'b 1 )
begin
if (endpt_hshk == 1'b 1)
begin
reject_rx_dat_set <= 1'b 1; // BTO, reject rx data packet
end
// ISO packets that BTO just update the BDT.
rxd_nstate <= RXD_DONE; // BTO, goto wait state
end
else
begin
rxd_nstate <= RXD_SYNC; // Stay here
// When present state is rx data packet pid state
end
end
// If detect a sync
RXD_PID:
begin
if (bit_stuff_err == 1'b 1)
begin
reject_rx_dat_set <= 1'b 1; // not valid, reject rx data packet
rxd_nstate <= RXD_DONE; // Goto rx data packet wait state
// If false eop
end
else if (ser2par_cnt_eq7 == 1'b 0 & det_se0 == 1'b 1 )
begin
dfn8_err_rxd <= 1'b 1; // Data field not 8-bits error interrupt set
reject_rx_dat_set <= 1'b 1; // not valid, reject rx data packet
rxd_nstate <= RXD_DONE; // Goto rx data packet wait state
// If received a byte,
end
else if (ser2par_cnt_eq7 == 1'b 1 )
begin
if (in_handshake_en == 1'b 1)
begin
rxd_nstate <= RXD_EOP; // go directly to EOP
end
// if receiving a handshake
else
begin
if (valid_stall_pid == 1'b 1)
begin
rxd_nstate <= RXD_EOP; // go directly to EOP
end
// if stall
else if (valid_data_pid == 1'b 1 )
begin
if (valid_data_tgl == 1'b 0 & endpt_hshk == 1'b 1 &
current_token != PID_SETUP)
begin
reject_rx_dat_set <= 1'b 1; // reject rx data packet, but
// complete the the packet and send
// an Acknowledge handshake
end
// and it is not a SETUP packet
// data toggle
rxd_nstate <= RXD_BYTE0; // Goto rx data packet byte0 state
end
// if it is a data pid
else
begin
reject_rx_dat_set <= 1'b 1; // PID not valid, reject rx data packet
rxd_nstate <= RXD_DONE; // Goto rx data packet wait state
end
end
end
else
begin
rxd_nstate <= RXD_PID; // Stay here
// When present state is rx data packet byte0 state
end
end
// bit stuff error
RXD_BYTE0:
begin
if (bit_stuff_err == 1'b 1)
begin
rxd_nstate <= RXD_DONE; // Goto rx data packet wait state
reject_rx_dat_set <= 1'b 1; // not valid, reject rx data packet
end
// bit stuff error or
else if (det_se0 == 1'b 1 )
begin
rxd_nstate <= RXD_DONE; // Goto rx data packet wait state
reject_rx_dat_set <= 1'b 1; // not valid, reject rx data packet
if (ser2par_cnt_eq7 == 1'b 0)
begin
dfn8_err_rxd <= 1'b 1; // Data field not 8-bits error interrupt set
end
end
// elsif det_eop = '1' then
else if (ser2par_cnt_eq7 == 1'b 1 )
begin
rxd_nstate <= RXD_BYTE1; // Goto rx data packet byte1 state
end
else
begin
rxd_nstate <= RXD_BYTE0; // Stay here
// When present state is rx data packet byte1 state
end
end
// If false eop or usb address not equal abort token
RXD_BYTE1:
begin
if (bit_stuff_err == 1'b 1)
begin
rxd_nstate <= RXD_DONE; // Goto rx data packet wait state
reject_rx_dat_set <= 1'b 1; // not valid, reject rx data packet
end
// bit stuff error or
else if (det_se0 == 1'b 1 & ser2par_cnt_eq7 == 1'b 1 )
begin
rxd_nstate <= RXD_EOP; // Goto rx data packet eop state
end
// Detect single ended 0
else if (det_se0 == 1'b 1 )
begin
rxd_nstate <= RXD_DONE; // Goto rx data packet wait state
reject_rx_dat_set <= 1'b 1; // not valid, reject rx data packet
dfn8_err_rxd <= 1'b 1; // Data field not 8-bits error interrupt set
end
else if (ser2par_cnt_eq7 == 1'b 1 )
begin
rxd_nstate <= RXD_BYTE2; // Goto rx data packet byte2 state
end
else
begin
rxd_nstate <= RXD_BYTE1; // Stay here
// When present state is rx data packet byte2 state
end
end
RXD_BYTE2:
begin
if (bit_stuff_err == 1'b 1)
begin
rxd_nstate <= RXD_DONE; // Goto rx data packet wait state
reject_rx_dat_set <= 1'b 1; // not valid, reject rx data packet
end
// bit stuff error or
else if (det_se0 == 1'b 1 & ser2par_cnt_eq7 == 1'b 1 )
begin
rxd_nstate <= RXD_EOP; // Goto rx data packet eop state
end
// Detect single ended 0
else if (det_se0 == 1'b 1 )
begin
rxd_nstate <= RXD_DONE; // Reject rx data packet goto rx data packet wait state
reject_rx_dat_set <= 1'b 1; // not valid, reject rx data packet
dfn8_err_rxd <= 1'b 1; // Data field not 8-bits error interrupt set
end
// False eop
else
begin
rxd_nstate <= RXD_BYTE2; // Stay here
// When present state is rx data packet byte2 state
end
end
RXD_EOP:
begin
if (crc16_err_set == 1'b 1)
begin
rxd_nstate <= RXD_DONE; // Abort the rxd packet on crc16 error detect
reject_rx_dat_set <= 1'b 1; // reject rx data packet
end
else if (det_eop == 1'b 1 & current_token == PID_SETUP &
own == 1'b 0 )
begin
rxd_nstate <= RXD_DONE; // IF you couldn't accept a setup packet then
reject_rx_dat_set <= 1'b 1; // reject the rx packet and allow the USB to
// time out
end
else if (det_eop == 1'b 1 & (in_handshake_en == 1'b 1 |
endpt_hshk == 1'b 0) )
begin
rxd_nstate <= RXD_DONE; // Goto rx data packet done state, no hand
// shake is sent.
end
// on ISO packets interrupt even if own is 0
else if (det_eop == 1'b 1 )
begin
if (rx_overrun_nak == 1'b 1)
begin
reject_rx_dat_set <= 1'b 1; // stop the BDT write, but go ahead
if (current_token == PID_SETUP)
begin
rxd_nstate <= RXD_DONE; // Goto rx data packet done state, no hand
// shake is sent.
end
else
begin
rxd_nstate <= RXD_HSHK; // Goto rx data packet handshake state
end
// and send a NAK handshake.
end
// if non-ISO overrun error
else
begin
rxd_nstate <= RXD_HSHK; // Goto rx data packet handshake state
end
end
// otherwise send the appropriate handshake.
else
begin
rxd_nstate <= RXD_EOP; // Stay here
// When present state is rx data packet handshake state
end
end
// Wait for EOP
// No handshake needed if we meet any of the following conditions
// Processing SETUP and own=0 or
// Doing a handshake in response to TX DATA PACKET (in_handshake_en=1)
// or we are an isochronous endpoint type (endpt_hshk=0)
RXD_HSHK:
begin
if (out_handshake_done == 1'b 1)
begin
rxd_nstate <= RXD_DONE; // Goto rx data packet done state
end
else
begin
rxd_nstate <= RXD_HSHK; // Stay here
// When present state is rx data packet done state
end
end
RXD_DONE:
begin
in_handshake_done <= 1'b 1; // Tx Data Packet handshake done
rxd_nstate <= RXD_WAIT; // Goto rx data packet wait state
// Default next state, eliminates feedback loops
end
default:
begin
rxd_nstate <= RXD_WAIT;
end
endcase
end
// ------------------------------------------------------------------------------
//
// Process: tok_monitor
//
// Parameters: tok_pstate -- Token state machine state bits
//
// Description: This process monitors the token present state bit and
// converts them in to an enumerated type. This is helpful when
// simulating the USB sie because present states information is
// displayed as the enumerated type instead of a signal.
//
// ------------------------------------------------------------------------------
always @(tok_pstate)
begin : tok_monitor
case (tok_pstate)
TOK_IDLE:
begin
tok_enum <= tok_states_TOK_IDLE_E; // When present state is token idle state
// When present state is token sync state
end
TOK_SYNC:
begin
tok_enum <= tok_states_TOK_SYNC_E;
// When present state is token pid state
end
TOK_PID:
begin
tok_enum <= tok_states_TOK_PID_E;
// When present state is token byte0 state
end
TOK_BYTE0:
begin
tok_enum <= tok_states_TOK_BYTE0_E;
// When present state is token byte1 state
end
TOK_BYTE1:
begin
tok_enum <= tok_states_TOK_BYTE1_E;
// When present state is token eop state
end
TOK_EOP:
begin
tok_enum <= tok_states_TOK_EOP_E;
// When present state is token process state
end
TOK_PROC:
begin
tok_enum <= tok_states_TOK_PROC_E;
// When present state is token wait state
end
TOK_WAIT:
begin
tok_enum <= tok_states_TOK_WAIT_E;
// Default next state
end
default:
begin
tok_enum <= tok_states_ERROR_E;
end
endcase
end
// ------------------------------------------------------------------------------
//
// Process: txd_monitor
//
// Parameters: txd_pstate -- Tx Data Packet state machine state bits
//
// Description: This process monitors the tx data packet present state bit and
// converts them in to an enumerated type. This is helpful when
// simulating the USB sie because present states information is
// displayed as the enumerated type instead of a signal.
//
// ------------------------------------------------------------------------------
always @(txd_pstate)
begin : txd_monitor
case (txd_pstate)
TXD_WAIT:
begin
txd_enum <= txd_states_TXD_WAIT_E;
end
TXD_SYNC:
begin
txd_enum <= txd_states_TXD_SYNC_E;
end
TXD_PID:
begin
txd_enum <= txd_states_TXD_PID_E;
end
TXD_DATA:
begin
txd_enum <= txd_states_TXD_DATA_E;
end
TXD_CRC16L:
begin
txd_enum <= txd_states_TXD_CRC16L_E;
end
TXD_CRC16H:
begin
txd_enum <= txd_states_TXD_CRC16H_E;
end
TXD_EOP:
begin
txd_enum <= txd_states_TXD_EOP_E;
end
TXD_HSHK:
begin
txd_enum <= txd_states_TXD_HSHK_E;
end
TXD_DONE:
begin
txd_enum <= txd_states_TXD_DONE_E;
end
TXD_DELAY:
begin
txd_enum <= txd_states_TXD_DELAY_E;
end
TXD_PRE:
begin
txd_enum <= txd_states_TXD_PRE_E;
end
TXD_LSDLY:
begin
txd_enum <= txd_states_TXD_LSDLY_E;
end
default:
begin
txd_enum <= txd_states_TXD_WAIT_E;
end
endcase
end
// ------------------------------------------------------------------------------
//
// Process: rxd_monitor
//
// Parameters: rxd_pstate -- Rx Data Packet state machine state bits
//
// Description: This process monitors the rx data packet present state bit and
// converts them in to an enumerated type. This is helpful when
// simulating the USB sie because present states information is
// displayed as the enumerated type instead of a signal.
//
// ------------------------------------------------------------------------------
always @(rxd_pstate)
begin : rxd_monitor
case (rxd_pstate)
RXD_WAIT:
begin
rxd_enum <= rxd_states_RXD_WAIT_E;
end
RXD_IDLE:
begin
rxd_enum <= rxd_states_RXD_IDLE_E;
end
RXD_SYNC:
begin
rxd_enum <= rxd_states_RXD_SYNC_E;
end
RXD_PID:
begin
rxd_enum <= rxd_states_RXD_PID_E;
end
RXD_BYTE0:
begin
rxd_enum <= rxd_states_RXD_BYTE0_E;
end
RXD_BYTE1:
begin
rxd_enum <= rxd_states_RXD_BYTE1_E;
end
RXD_BYTE2:
begin
rxd_enum <= rxd_states_RXD_BYTE2_E;
end
RXD_EOP:
begin
rxd_enum <= rxd_states_RXD_EOP_E;
end
RXD_HSHK:
begin
rxd_enum <= rxd_states_RXD_HSHK_E;
end
RXD_DONE:
begin
rxd_enum <= rxd_states_RXD_DONE_E;
end
default:
begin
rxd_enum <= rxd_states_RXD_WAIT_E;
end
endcase
end
// The following were added to support SLOW and FULL SUSPEND of 3ms
endmodule // module vusb_sie