mt46v4m32_tsop.v
49.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
/****************************************************************************************
*
* File Name: MT46V4M32_TSOP.V
* Version: 2.1
* Date: March 19th, 2002
* Model: BUS Functional
* Simulator: Aldec, ModemSim, NCDesktop
*
* Dependencies: None
*
* Author: Son P. Huynh
* Email: sphuynh@micron.com
* Phone: (208) 368-3825
* Company: Micron Technology, Inc.
* Part Number: MT46V4M32 TSOP Package (1Meg x 32 x 4 Banks)
*
* Description: Micron 128Mb SDRAM DDR (Double Data Rate)
*
* Limitation: - Doesn't check for 8K-cycle refresh
*
* Note: - Set simulator resolution to "ps" accuracy
* - Set Debug = 0 to disable $display messages
* - Model assume Clk and Clk# crossing at both edge
*
* Disclaimer: THESE DESIGNS ARE PROVIDED "AS IS" WITH NO WARRANTY
* WHATSOEVER AND MICRON SPECIFICALLY DISCLAIMS ANY
* IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
* A PARTICULAR PURPOSE, OR AGAINST INFRINGEMENT.
*
* Copyright 1998 Micron Semiconductor Products, Inc.
* All rights researved
*
* Rev Author Phone Date Changes
* --- -------------- ------------ ---------- ---------------------------------------
* 2.1 Son Huynh 208-368-3825 03/19/2002 - Second Release
* Micron Technology Inc. - Fix tWR and several incompatability
* between different simulators
*
****************************************************************************************/
// DO NOT CHANGE THE TIMESCALE
// MAKE SURE YOUR SIMULATOR USE "PS" RESOLUTION
`timescale 1ns / 1ps
module mt46v4m32_tsop (Dq, Dqs, Addr, Ba, Clk, Clk_n, Cke, Cs_n, Ras_n, Cas_n, We_n, Dm);
// Timing Parameters for -5 (CL = 2)
parameter tCK = 5.0;
parameter tMRD = 2.0; // 2 tCK
parameter tRAS = 40.0;
parameter tRC = 60.0;
parameter tRFC = 60.0;
parameter tRCDR = 20.0;
parameter tRCDW = 10.0;
parameter tRP = 20.0;
parameter tRRD = 2.0; // 2 tCK
parameter tWR = 2.0; // 2 tCK
// Constant Parameters
parameter addr_bits = 12;
parameter data_bits = 32;
parameter cols_bits = 8;
parameter mem_sizes = 1048575;
// Port Declarations
inout [data_bits - 1 : 0] Dq;
inout [3 : 0] Dqs;
input [addr_bits - 1 : 0] Addr;
input [1 : 0] Ba;
input Clk;
input Clk_n;
input Cke;
input Cs_n;
input Ras_n;
input Cas_n;
input We_n;
input [3 : 0] Dm;
// Data pair
reg [3 : 0] Dm_temp;
reg [7 : 0] Dm_pair;
reg [31 : 0] Dq_temp;
reg [63 : 0] Dq_pair;
// Mode Register
reg [addr_bits - 1 : 0] Mode_reg;
// Internal System Clock
reg CkeZ, Sys_clk;
// Internal Dqs initialize
reg Dqs_int;
// Dqs buffer
reg [3 : 0] Dqs_out;
// Dq buffer
reg [data_bits - 1 : 0] Dq_out, Dq_buf;
// Read pipeline variables
reg Read_cmnd [0 : 8];
reg [1 : 0] Read_bank [0 : 8];
reg [cols_bits - 1 : 0] Read_cols [0 : 8];
// Write pipeline variables
reg Write_cmnd [0 : 2];
reg [1 : 0] Write_bank [0 : 2];
reg [cols_bits - 1 : 0] Write_cols [0 : 2];
// Auto precharge variables
reg Read_precharge [0 : 3];
reg Write_precharge [0 : 3];
integer Count_precharge [0 : 3];
// Manual precharge variables
reg A8_precharge [0 : 8];
reg [1 : 0] Bank_precharge [0 : 8];
reg Cmnd_precharge [0 : 8];
// Burst terminate variables
reg Cmnd_bst [0 : 8];
// Memory Banks
reg [data_bits - 1 : 0] Bank0 [0 : mem_sizes];
reg [data_bits - 1 : 0] Bank1 [0 : mem_sizes];
reg [data_bits - 1 : 0] Bank2 [0 : mem_sizes];
reg [data_bits - 1 : 0] Bank3 [0 : mem_sizes];
// Burst counter
reg [cols_bits - 1 : 0] Burst_counter;
// Burst Direction (only used in x32 part)
reg Burst_dir;
reg Burst_dir_pipe [0 : 8];
// Precharge variables
reg Pc_b0, Pc_b1, Pc_b2, Pc_b3;
// Activate variables
reg Act_b0, Act_b1, Act_b2, Act_b3;
// Data IO variables
reg Data_in_enable;
reg Data_out_enable;
// Internal address mux variables
//reg [cols_bits - 1 : 0] Col_brst;
reg [1 : 0] Prev_bank;
reg [1 : 0] Bank_addr;
reg [cols_bits - 1 : 0] Cols_addr, Cols_brst, Cols_temp;
reg [addr_bits - 1 : 0] Rows_addr;
reg [addr_bits - 1 : 0] B0_row_addr;
reg [addr_bits - 1 : 0] B1_row_addr;
reg [addr_bits - 1 : 0] B2_row_addr;
reg [addr_bits - 1 : 0] B3_row_addr;
// DLL Reset variable
reg DLL_enable;
reg DLL_reset;
reg DLL_done;
integer DLL_count;
// Commands Decode
wire Active_enable = ~Cs_n & ~Ras_n & Cas_n & We_n;
wire Aref_enable = ~Cs_n & ~Ras_n & ~Cas_n & We_n;
wire Burst_term = ~Cs_n & Ras_n & Cas_n & ~We_n;
wire Ext_mode_enable = ~Cs_n & ~Ras_n & ~Cas_n & ~We_n & Ba[0] & ~Ba[1];
wire Mode_reg_enable = ~Cs_n & ~Ras_n & ~Cas_n & ~We_n & ~Ba[0] & ~Ba[1];
wire Prech_enable = ~Cs_n & ~Ras_n & Cas_n & ~We_n;
wire Read_enable = ~Cs_n & Ras_n & ~Cas_n & We_n;
wire Write_enable = ~Cs_n & Ras_n & ~Cas_n & ~We_n;
// Burst Length Decode
wire Burst_length_2 = ~Mode_reg[2] & ~Mode_reg[1] & Mode_reg[0];
wire Burst_length_4 = ~Mode_reg[2] & Mode_reg[1] & ~Mode_reg[0];
wire Burst_length_8 = ~Mode_reg[2] & Mode_reg[1] & Mode_reg[0];
wire Burst_length_f = Mode_reg[2] & Mode_reg[1] & Mode_reg[0];
// CAS Latency Decode
wire Cas_latency_15 = Mode_reg[6] & ~Mode_reg[5] & Mode_reg[4];
wire Cas_latency_2 = ~Mode_reg[6] & Mode_reg[5] & ~Mode_reg[4];
wire Cas_latency_25 = Mode_reg[6] & Mode_reg[5] & ~Mode_reg[4];
wire Cas_latency_3 = ~Mode_reg[6] & Mode_reg[5] & Mode_reg[4];
wire Cas_latency_4 = Mode_reg[6] & ~Mode_reg[5] & ~Mode_reg[4];
// DQS Buffer
assign Dqs = Dqs_out;
// DQ Buffer
assign Dq = Dq_out;
// Debug message
wire Debug = 1'b0;
// Timing Check
integer MRD_chk;
time RFC_chk;
integer RRD_chk;
time RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3;
time RC_chk0, RC_chk1, RC_chk2, RC_chk3;
time RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3;
time RP_chk0, RP_chk1, RP_chk2, RP_chk3;
integer WR_chk0, WR_chk1, WR_chk2, WR_chk3;
initial begin
CkeZ = 1'b0;
Sys_clk = 1'b0;
{Pc_b0, Pc_b1, Pc_b2, Pc_b3} = 4'b0000;
{Act_b0, Act_b1, Act_b2, Act_b3} = 4'b1111;
Dqs_int = 1'b0;
Dqs_out = 4'bz;
Dq_out = {data_bits{1'bz}};
Data_in_enable = 1'b0;
Data_out_enable = 1'b0;
DLL_enable = 1'b0;
DLL_reset = 1'b0;
DLL_done = 1'b0;
DLL_count = 0;
MRD_chk = 0;
RFC_chk = 0;
RRD_chk = 0;
{RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3} = 0;
{RC_chk0, RC_chk1, RC_chk2, RC_chk3} = 0;
{RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3} = 0;
{RP_chk0, RP_chk1, RP_chk2, RP_chk3} = 0;
{WR_chk0, WR_chk1, WR_chk2, WR_chk3} = 0;
end
// System Clock
always begin
@ (posedge Clk) begin
Sys_clk = CkeZ;
CkeZ = Cke;
end
@ (negedge Clk) begin
Sys_clk = 1'b0;
end
end
// Burst Decode
task Burst_Decode;
begin
// Advance Burst Counter
Burst_counter = Burst_counter + 1;
// Burst Type
if (Mode_reg[3] === 1'b0) begin // Sequential Burst
if (Burst_dir === 1'b0) begin // Forward Direction
Cols_temp = Cols_addr + 1;
end else begin // Reverse Direction (x32 only)
Cols_temp = Cols_addr - 1;
end
end else if (Mode_reg[3] === 1'b1) begin // Interleaved Burst
Cols_temp[2] = Burst_counter[2] ^ Cols_brst[2];
Cols_temp[1] = Burst_counter[1] ^ Cols_brst[1];
Cols_temp[0] = Burst_counter[0] ^ Cols_brst[0];
end
// Burst Length
if (Burst_length_2 === 1'b1) begin // Burst Length = 2
Cols_addr [0] = Cols_temp [0];
end else if (Burst_length_4 === 1'b1) begin // Burst Length = 4
Cols_addr [1 : 0] = Cols_temp [1 : 0];
end else if (Burst_length_8 === 1'b1) begin // Burst Length = 8
Cols_addr [2 : 0] = Cols_temp [2 : 0];
end else begin // Burst Length = FULL
Cols_addr = Cols_temp;
end
// Data Counter
if (Burst_length_2 === 1'b1) begin
if (Burst_counter >= 2) begin
if (Data_in_enable === 1'b1) begin
Data_in_enable = 1'b0;
end else if (Data_out_enable === 1'b1) begin
Data_out_enable = 1'b0;
end
end
end else if (Burst_length_4 === 1'b1) begin
if (Burst_counter >= 4) begin
if (Data_in_enable === 1'b1) begin
Data_in_enable = 1'b0;
end else if (Data_out_enable === 1'b1) begin
Data_out_enable = 1'b0;
end
end
end else if (Burst_length_8 === 1'b1) begin
if (Burst_counter >= 8) begin
if (Data_in_enable === 1'b1) begin
Data_in_enable = 1'b0;
end else if (Data_out_enable === 1'b1) begin
Data_out_enable = 1'b0;
end
end
end
end
endtask
// Manual Precharge Pipeline
task Manual_Precharge_Pipeline;
begin
// A8 Precharge Pipeline
A8_precharge[0] = A8_precharge[1];
A8_precharge[1] = A8_precharge[2];
A8_precharge[2] = A8_precharge[3];
A8_precharge[3] = A8_precharge[4];
A8_precharge[4] = A8_precharge[5];
A8_precharge[5] = A8_precharge[6];
A8_precharge[6] = A8_precharge[7];
A8_precharge[7] = A8_precharge[8];
A8_precharge[8] = 1'b0;
// Bank Precharge Pipeline
Bank_precharge[0] = Bank_precharge[1];
Bank_precharge[1] = Bank_precharge[2];
Bank_precharge[2] = Bank_precharge[3];
Bank_precharge[3] = Bank_precharge[4];
Bank_precharge[4] = Bank_precharge[5];
Bank_precharge[5] = Bank_precharge[6];
Bank_precharge[6] = Bank_precharge[7];
Bank_precharge[7] = Bank_precharge[8];
Bank_precharge[8] = 2'b0;
// Command Precharge Pipeline
Cmnd_precharge[0] = Cmnd_precharge[1];
Cmnd_precharge[1] = Cmnd_precharge[2];
Cmnd_precharge[2] = Cmnd_precharge[3];
Cmnd_precharge[3] = Cmnd_precharge[4];
Cmnd_precharge[4] = Cmnd_precharge[5];
Cmnd_precharge[5] = Cmnd_precharge[6];
Cmnd_precharge[6] = Cmnd_precharge[7];
Cmnd_precharge[7] = Cmnd_precharge[8];
Cmnd_precharge[8] = 1'b0;
// Terminate a Read if same bank or all banks
if (Cmnd_precharge[0] === 1'b1) begin
if (Bank_precharge[0] === Bank_addr || A8_precharge[0] === 1'b1) begin
if (Data_out_enable === 1'b1) begin
Data_out_enable = 1'b0;
end
end
end
end
endtask
// Burst Terminate Pipeline
task Burst_Terminate_Pipeline;
begin
// Command Precharge Pipeline
Cmnd_bst[0] = Cmnd_bst[1];
Cmnd_bst[1] = Cmnd_bst[2];
Cmnd_bst[2] = Cmnd_bst[3];
Cmnd_bst[3] = Cmnd_bst[4];
Cmnd_bst[4] = Cmnd_bst[5];
Cmnd_bst[5] = Cmnd_bst[6];
Cmnd_bst[6] = Cmnd_bst[7];
Cmnd_bst[7] = Cmnd_bst[8];
Cmnd_bst[8] = 1'b0;
// Terminate a Read regardless of banks
if (Cmnd_bst[0] === 1'b1 && Data_out_enable === 1'b1) begin
Data_out_enable = 1'b0;
end
end
endtask
// Burst Direction Pipeline (x32 only)
task Burst_Direction_Pipeline;
begin
// read command pipeline
Burst_dir_pipe [0] = Burst_dir_pipe [1];
Burst_dir_pipe [1] = Burst_dir_pipe [2];
Burst_dir_pipe [2] = Burst_dir_pipe [3];
Burst_dir_pipe [3] = Burst_dir_pipe [4];
Burst_dir_pipe [4] = Burst_dir_pipe [5];
Burst_dir_pipe [5] = Burst_dir_pipe [6];
Burst_dir_pipe [6] = Burst_dir_pipe [7];
Burst_dir_pipe [7] = Burst_dir_pipe [8];
Burst_dir_pipe [8] = 1'b0;
end
endtask
// Dq and Dqs Drivers
task Dq_Dqs_Drivers;
begin
// read command pipeline
Read_cmnd [0] = Read_cmnd [1];
Read_cmnd [1] = Read_cmnd [2];
Read_cmnd [2] = Read_cmnd [3];
Read_cmnd [3] = Read_cmnd [4];
Read_cmnd [4] = Read_cmnd [5];
Read_cmnd [5] = Read_cmnd [6];
Read_cmnd [6] = Read_cmnd [7];
Read_cmnd [7] = Read_cmnd [8];
Read_cmnd [8] = 1'b0;
// read bank pipeline
Read_bank [0] = Read_bank [1];
Read_bank [1] = Read_bank [2];
Read_bank [2] = Read_bank [3];
Read_bank [3] = Read_bank [4];
Read_bank [4] = Read_bank [5];
Read_bank [5] = Read_bank [6];
Read_bank [6] = Read_bank [7];
Read_bank [7] = Read_bank [8];
Read_bank [8] = 2'b0;
// read column pipeline
Read_cols [0] = Read_cols [1];
Read_cols [1] = Read_cols [2];
Read_cols [2] = Read_cols [3];
Read_cols [3] = Read_cols [4];
Read_cols [4] = Read_cols [5];
Read_cols [5] = Read_cols [6];
Read_cols [6] = Read_cols [7];
Read_cols [7] = Read_cols [8];
Read_cols [8] = 0;
// Initialize Read command
if (Read_cmnd [0] === 1'b1) begin
Data_out_enable = 1'b1;
Bank_addr = Read_bank [0];
Cols_addr = Read_cols [0];
Cols_brst = Cols_addr [2 : 0];
Burst_counter = 0;
Burst_dir = Burst_dir_pipe [0];
// Row Address Mux
case (Bank_addr)
2'd0 : Rows_addr = B0_row_addr;
2'd1 : Rows_addr = B1_row_addr;
2'd2 : Rows_addr = B2_row_addr;
2'd3 : Rows_addr = B3_row_addr;
default : $display ("At time %t ERROR: Invalid Bank Address", $time);
endcase
end
// Toggle Dqs during Read command
if (Data_out_enable === 1'b1) begin
Dqs_int = 1'b0;
if (Dqs_out === 4'b0000) begin
Dqs_out = 4'b1111;
end else if (Dqs_out === 4'b1111) begin
Dqs_out = 4'b0000;
end else begin
Dqs_out = 4'b0000;
end
end else if (Data_out_enable === 1'b0 && Dqs_int === 1'b0) begin
Dqs_out = 4'bzzzz;
end
// Initialize dqs for Read command
if (Read_cmnd [2] === 1'b1) begin
if (Data_out_enable === 1'b0) begin
Dqs_int = 1'b1;
Dqs_out = 4'b0000;
end
end
// Read latch
if (Data_out_enable === 1'b1) begin
// output data
case (Bank_addr)
2'd0 : Dq_out = Bank0 [{Rows_addr, Cols_addr}];
2'd1 : Dq_out = Bank1 [{Rows_addr, Cols_addr}];
2'd2 : Dq_out = Bank2 [{Rows_addr, Cols_addr}];
2'd3 : Dq_out = Bank3 [{Rows_addr, Cols_addr}];
default : $display ("At time %t ERROR: Invalid Bank Address", $time);
endcase
// Increase burst counter
Burst_Decode;
end else begin
Dq_out = {data_bits{1'bz}};
end
end
endtask
// Write FIFO and DM Mask Logic
task Write_FIFO_DM_Mask_Logic;
begin
// Write command pipeline
Write_cmnd [0] = Write_cmnd [1];
Write_cmnd [1] = Write_cmnd [2];
Write_cmnd [2] = 1'b0;
// Write command pipeline
Write_bank [0] = Write_bank [1];
Write_bank [1] = Write_bank [2];
Write_bank [2] = 2'b0;
// Write column pipeline
Write_cols [0] = Write_cols [1];
Write_cols [1] = Write_cols [2];
Write_cols [2] = {cols_bits{1'b0}};
// Initialize Write command
if (Write_cmnd [0] === 1'b1) begin
Data_in_enable = 1'b1;
Bank_addr = Write_bank [0];
Cols_addr = Write_cols [0];
Cols_brst = Cols_addr [2 : 0];
Burst_counter = 0;
Burst_dir = Burst_dir_pipe [0];
// Row address mux
case (Bank_addr)
2'd0 : Rows_addr = B0_row_addr;
2'd1 : Rows_addr = B1_row_addr;
2'd2 : Rows_addr = B2_row_addr;
2'd3 : Rows_addr = B3_row_addr;
default : $display ("At time %t ERROR: Invalid Row Address", $time);
endcase
end
// Write data
if (Data_in_enable === 1'b1) begin
// Write first data
if (Dm_pair [0] === 1'b0 || Dm_pair [1] === 1'b0 || Dm_pair [2] === 1'b0 || Dm_pair [3] === 1'b0) begin
// Data Buffer
case (Bank_addr)
2'd0 : Dq_buf = Bank0 [{Rows_addr, Cols_addr}];
2'd1 : Dq_buf = Bank1 [{Rows_addr, Cols_addr}];
2'd2 : Dq_buf = Bank2 [{Rows_addr, Cols_addr}];
2'd3 : Dq_buf = Bank3 [{Rows_addr, Cols_addr}];
default : $display ("At time %t ERROR: Invalid Bank Address", $time);
endcase
// Data mask
if (Dm_pair [0] === 1'b0) begin
Dq_buf [7 : 0] = Dq_pair [7 : 0];
end
if (Dm_pair [1] === 1'b0) begin
Dq_buf [15 : 8] = Dq_pair [15 : 8];
end
if (Dm_pair [2] === 1'b0) begin
Dq_buf [23 : 16] = Dq_pair [23 : 16];
end
if (Dm_pair [3] === 1'b0) begin
Dq_buf [31 : 24] = Dq_pair [31 : 24];
end
// Write Data
case (Bank_addr)
2'd0 : Bank0 [{Rows_addr, Cols_addr}] = Dq_buf;
2'd1 : Bank1 [{Rows_addr, Cols_addr}] = Dq_buf;
2'd2 : Bank2 [{Rows_addr, Cols_addr}] = Dq_buf;
2'd3 : Bank3 [{Rows_addr, Cols_addr}] = Dq_buf;
default : $display ("At time %t ERROR: Invalid Bank Address", $time);
endcase
end
// Increase Burst Counter
Burst_Decode;
// Write second data
if (Dm_pair [4] === 1'b0 || Dm_pair [5] === 1'b0 || Dm_pair [6] === 1'b0 || Dm_pair [7] === 1'b0) begin
// Data Buffer
case (Bank_addr)
2'd0 : Dq_buf = Bank0 [{Rows_addr, Cols_addr}];
2'd1 : Dq_buf = Bank1 [{Rows_addr, Cols_addr}];
2'd2 : Dq_buf = Bank2 [{Rows_addr, Cols_addr}];
2'd3 : Dq_buf = Bank3 [{Rows_addr, Cols_addr}];
default : $display ("At time %t ERROR: Invalid Bank Address", $time);
endcase
// Data mask
if (Dm_pair [4] === 1'b0) begin
Dq_buf [7 : 0] = Dq_pair [39 : 32];
end
if (Dm_pair [5] === 1'b0) begin
Dq_buf [15 : 8] = Dq_pair [47 : 40];
end
if (Dm_pair [6] === 1'b0) begin
Dq_buf [23 : 16] = Dq_pair [55 : 48];
end
if (Dm_pair [7] === 1'b0) begin
Dq_buf [31 : 24] = Dq_pair [63 : 56];
end
// Write Data
case (Bank_addr)
2'd0 : Bank0 [{Rows_addr, Cols_addr}] = Dq_buf;
2'd1 : Bank1 [{Rows_addr, Cols_addr}] = Dq_buf;
2'd2 : Bank2 [{Rows_addr, Cols_addr}] = Dq_buf;
2'd3 : Bank3 [{Rows_addr, Cols_addr}] = Dq_buf;
default : $display ("At time %t ERROR: Invalid Bank Address", $time);
endcase
end
// Increase Burst Counter
Burst_Decode;
// tWR start and tWTR check
if (Dm_pair [0] === 1'b0 || Dm_pair [1] === 1'b0 || Dm_pair [2] === 1'b0 || Dm_pair [3] === 1'b0 ||
Dm_pair [4] === 1'b0 || Dm_pair [5] === 1'b0 || Dm_pair [6] === 1'b0 || Dm_pair [7] === 1'b0) begin
case (Bank_addr)
2'd0 : WR_chk0 = 0;
2'd1 : WR_chk1 = 0;
2'd2 : WR_chk2 = 0;
2'd3 : WR_chk3 = 0;
default : $display ("At time %t ERROR: Invalid Bank Address (tWR)", $time);
endcase
// tWTR check
if (Read_enable === 1'b1 && Bank_addr === Ba) begin
$display ("At time %t ERROR: tWTR violation during Read", $time);
end
end
end
end
endtask
// Auto Precharge Calculation
task Auto_Precharge_Calculation;
begin
// Precharge counter
if (Read_precharge [0] === 1'b1 || Write_precharge [0] === 1'b1) begin
Count_precharge [0] = Count_precharge [0] + 1;
end
if (Read_precharge [1] === 1'b1 || Write_precharge [1] === 1'b1) begin
Count_precharge [1] = Count_precharge [1] + 1;
end
if (Read_precharge [2] === 1'b1 || Write_precharge [2] === 1'b1) begin
Count_precharge [2] = Count_precharge [2] + 1;
end
if (Read_precharge [3] === 1'b1 || Write_precharge [3] === 1'b1) begin
Count_precharge [3] = Count_precharge [3] + 1;
end
// Read with AutoPrecharge Calculation
// The device start internal precharge when:
// 1. Meet tRAS requirement
// 2. BL/2 cycles after command
if ((Read_precharge[0] === 1'b1) && ($time - RAS_chk0 >= tRAS)) begin
if ((Burst_length_2 === 1'b1 && Count_precharge[0] >= 1) ||
(Burst_length_4 === 1'b1 && Count_precharge[0] >= 2) ||
(Burst_length_8 === 1'b1 && Count_precharge[0] >= 4)) begin
Pc_b0 = 1'b1;
Act_b0 = 1'b0;
RP_chk0 = $time;
Read_precharge[0] = 1'b0;
end
end
if ((Read_precharge[1] === 1'b1) && ($time - RAS_chk1 >= tRAS)) begin
if ((Burst_length_2 === 1'b1 && Count_precharge[1] >= 1) ||
(Burst_length_4 === 1'b1 && Count_precharge[1] >= 2) ||
(Burst_length_8 === 1'b1 && Count_precharge[1] >= 4)) begin
Pc_b1 = 1'b1;
Act_b1 = 1'b0;
RP_chk1 = $time;
Read_precharge[1] = 1'b0;
end
end
if ((Read_precharge[2] === 1'b1) && ($time - RAS_chk2 >= tRAS)) begin
if ((Burst_length_2 === 1'b1 && Count_precharge[2] >= 1) ||
(Burst_length_4 === 1'b1 && Count_precharge[2] >= 2) ||
(Burst_length_8 === 1'b1 && Count_precharge[2] >= 4)) begin
Pc_b2 = 1'b1;
Act_b2 = 1'b0;
RP_chk2 = $time;
Read_precharge[2] = 1'b0;
end
end
if ((Read_precharge[3] === 1'b1) && ($time - RAS_chk3 >= tRAS)) begin
if ((Burst_length_2 === 1'b1 && Count_precharge[3] >= 1) ||
(Burst_length_4 === 1'b1 && Count_precharge[3] >= 2) ||
(Burst_length_8 === 1'b1 && Count_precharge[3] >= 4)) begin
Pc_b3 = 1'b1;
Act_b3 = 1'b0;
RP_chk3 = $time;
Read_precharge[3] = 1'b0;
end
end
// Write with AutoPrecharge Calculation
// The device start internal precharge when:
// 1. Meet tRAS requirement
// 2. Two clock after last burst
if ((Write_precharge[0] === 1'b1) && ($time - RAS_chk0 >= tRAS)) begin
if ((Burst_length_2 === 1'b1 && Count_precharge [0] >= 4) ||
(Burst_length_4 === 1'b1 && Count_precharge [0] >= 5) ||
(Burst_length_8 === 1'b1 && Count_precharge [0] >= 7)) begin
Pc_b0 = 1'b1;
Act_b0 = 1'b0;
RP_chk0 = $time;
Write_precharge[0] = 1'b0;
end
end
if ((Write_precharge[1] === 1'b1) && ($time - RAS_chk1 >= tRAS)) begin
if ((Burst_length_2 === 1'b1 && Count_precharge [1] >= 4) ||
(Burst_length_4 === 1'b1 && Count_precharge [1] >= 5) ||
(Burst_length_8 === 1'b1 && Count_precharge [1] >= 7)) begin
Pc_b1 = 1'b1;
Act_b1 = 1'b0;
RP_chk1 = $time;
Write_precharge[1] = 1'b0;
end
end
if ((Write_precharge[2] === 1'b1) && ($time - RAS_chk2 >= tRAS)) begin
if ((Burst_length_2 === 1'b1 && Count_precharge [2] >= 4) ||
(Burst_length_4 === 1'b1 && Count_precharge [2] >= 5) ||
(Burst_length_8 === 1'b1 && Count_precharge [2] >= 7)) begin
Pc_b2 = 1'b1;
Act_b2 = 1'b0;
RP_chk2 = $time;
Write_precharge[2] = 1'b0;
end
end
if ((Write_precharge[3] === 1'b1) && ($time - RAS_chk3 >= tRAS)) begin
if ((Burst_length_2 === 1'b1 && Count_precharge [3] >= 4) ||
(Burst_length_4 === 1'b1 && Count_precharge [3] >= 5) ||
(Burst_length_8 === 1'b1 && Count_precharge [3] >= 7)) begin
Pc_b3 = 1'b1;
Act_b3 = 1'b0;
RP_chk3 = $time;
Write_precharge[3] = 1'b0;
end
end
end
endtask
// Timing Check Counter
task Timing_Check_Counter;
begin
// tMRD Counter
MRD_chk = MRD_chk + 1;
// tRRD Counter
RRD_chk = RRD_chk + 1;
// tWR Counter
WR_chk0 = WR_chk0 + 1;
WR_chk1 = WR_chk0 + 1;
WR_chk2 = WR_chk0 + 1;
WR_chk3 = WR_chk0 + 1;
end
endtask
// DLL Counter
task DLL_Counter;
begin
if (DLL_reset === 1'b1 && DLL_done === 1'b0) begin
DLL_count = DLL_count + 1;
if (DLL_count >= 200) begin
DLL_done = 1'b1;
end
end
end
endtask
// Control Logic
task Control_Logic;
begin
// Auto Refresh
if (Aref_enable === 1'b1) begin
// Display Debug Message
if (Debug) begin
$display ("At time %t AREF : Auto Refresh", $time);
end
// Auto Refresh to Auto Refresh
if ($time - RFC_chk < tRFC) begin
$display ("At time %t ERROR: tRFC violation during Auto Refresh", $time);
end
// Precharge to Auto Refresh
if (($time - RP_chk0 < tRP) || ($time - RP_chk1 < tRP) ||
($time - RP_chk2 < tRP) || ($time - RP_chk3 < tRP)) begin
$display ("At time %t ERROR: tRP violation during Auto Refresh", $time);
end
// Precharge to Auto Refresh
if (Pc_b0 === 1'b0 || Pc_b1 === 1'b0 || Pc_b2 === 1'b0 || Pc_b3 === 1'b0) begin
$display ("At time %t ERROR: All banks must be Precharge before Auto Refresh", $time);
end
// Record Current tRFC time
RFC_chk = $time;
end
// Extended Mode Register
if (Ext_mode_enable === 1'b1) begin
if (Debug) begin
$display ("At time %t EMR : Extended Mode Register", $time);
end
if (Pc_b0 === 1'b1 && Pc_b1 === 1'b1 && Pc_b2 === 1'b1 && Pc_b3 === 1'b1) begin
if (Addr[0] === 1'b0) begin
DLL_enable = 1'b1;
if (Debug) begin
$display ("At time %t EMR : Enable DLL", $time);
end
end else begin
DLL_enable = 1'b0;
if (Debug) begin
$display ("At time %t EMR : Disable DLL", $time);
end
end
end else begin
$display ("At time %t ERROR: all banks must be Precharge before Extended Mode Register", $time);
end
// Precharge to EMR
if (($time - RP_chk0 < tRP) || ($time - RP_chk1 < tRP) ||
($time - RP_chk2 < tRP) || ($time - RP_chk3 < tRP)) begin
$display ("At time %t ERROR: tRP violation during Extended Mode Register", $time);
end
// LMR/EMR to LMR/EMR
if (MRD_chk < tMRD) begin
$display ("At time %t ERROR: tMRD violation during Extended Mode Register", $time);
end
// Record current tMRD time
MRD_chk = 0;
end
// Load Mode Register
if (Mode_reg_enable === 1'b1) begin
if (Debug) begin
$display ("At time %t LMR : Load Mode Register", $time);
end
// Register Mode
Mode_reg = Addr;
// DLL Reset
if (DLL_enable === 1'b1 && Addr [8] === 1'b1) begin
DLL_reset = 1'b1;
DLL_done = 1'b0;
DLL_count = 0;
end else if (DLL_enable === 1'b1 && DLL_reset === 1'b0 && Addr [8] === 1'b0) begin
$display ("At time %t ERROR: DLL is ENABLE: DLL RESET is required.", $time);
end else if (DLL_enable === 1'b0 && Addr [8] === 1'b1) begin
$display ("At time %t ERROR: DLL is DISABLE: DLL RESET will be ignored.", $time);
end
// Precharge to LMR
if (Pc_b0 === 1'b0 || Pc_b1 === 1'b0 || Pc_b2 === 1'b0 || Pc_b3 === 1'b0) begin
$display ("At time %t ERROR: all banks must be Precharge before Load Mode Register", $time);
end
// Precharge to LMR
if (($time - RP_chk0 < tRP) || ($time - RP_chk1 < tRP) ||
($time - RP_chk2 < tRP) || ($time - RP_chk3 < tRP)) begin
$display ("At time %t ERROR: tRP violation during Load Mode Register", $time);
end
// LMR/EMR to LMR/EMR
if (MRD_chk < tMRD) begin
$display ("At time %t ERROR: tMRD violation during Load Mode Register", $time);
end
// Burst Length
if (~((Addr[2 : 0] === 3'b001) ||
(Addr[2 : 0] === 3'b010) ||
(Addr[2 : 0] === 3'b011) ||
(Addr[3 : 0] === 4'b0111))) begin
$display ("At time %t ERROR: Burst Length not supported", $time);
end
// CAS Latency
if (~((Addr[6 : 4] === 3'b010) ||
(Addr[6 : 4] === 3'b011) ||
(Addr[6 : 4] === 3'b100) ||
(Addr[6 : 4] === 3'b110))) begin
$display ("At time %t ERROR: CAS Latency not supported", $time);
end
// Record current tMRD time
MRD_chk = 0;
end
// Activate Block
if (Active_enable === 1'b1) begin
// Display Debug Message
if (Debug) begin
$display ("At time %t ACT : Bank = %d Row = %d", $time, Ba, Addr);
end
// Activate an open bank can corrupted.
if ((Ba === 2'b00 && Pc_b0 === 1'b0) || (Ba === 2'b01 && Pc_b1 === 1'b0) ||
(Ba === 2'b10 && Pc_b2 === 1'b0) || (Ba === 2'b11 && Pc_b3 === 1'b0)) begin
$display ("At time %t ERROR: Bank = %d is already activated - data can be corrupted", $time, Ba);
end
// Activate Bank 0
if (Ba === 2'b00 && Pc_b0 === 1'b1) begin
// Activate to Activate (same bank)
if ($time - RC_chk0 < tRC) begin
$display ("At time %t ERROR: tRC violation during Activate bank %d", $time, Ba);
end
// Precharge to Activate
if ($time - RP_chk0 < tRP) begin
$display ("At time %t ERROR: tRP violation during Activate bank %d", $time, Ba);
end
// Record variables for checking violation
Act_b0 = 1'b1;
Pc_b0 = 1'b0;
B0_row_addr = Addr;
RC_chk0 = $time;
RCD_chk0 = $time;
RAS_chk0 = $time;
end
// Activate Bank 1
if (Ba === 2'b01 && Pc_b1 === 1'b1) begin
// Activate to Activate (same bank)
if ($time - RC_chk1 < tRC) begin
$display ("At time %t ERROR: tRC violation during Activate bank %d", $time, Ba);
end
// Precharge to Activate
if ($time - RP_chk1 < tRP) begin
$display ("At time %t ERROR: tRP violation during Activate bank %d", $time, Ba);
end
// Record variables for checking violation
Act_b1 = 1'b1;
Pc_b1 = 1'b0;
B1_row_addr = Addr;
RC_chk1 = $time;
RCD_chk1 = $time;
RAS_chk1 = $time;
end
// Activate Bank 2
if (Ba === 2'b10 && Pc_b2 === 1'b1) begin
// Activate to Activate (same bank)
if ($time - RC_chk2 < tRC) begin
$display ("At time %t ERROR: tRC violation during Activate bank %d", $time, Ba);
end
// Precharge to Activate
if ($time - RP_chk2 < tRP) begin
$display ("At time %t ERROR: tRP violation during Activate bank %d", $time, Ba);
end
// Record variables for checking violation
Act_b2 = 1'b1;
Pc_b2 = 1'b0;
B2_row_addr = Addr;
RC_chk2 = $time;
RCD_chk2 = $time;
RAS_chk2 = $time;
end
// Activate Bank 3
if (Ba === 2'b11 && Pc_b3 === 1'b1) begin
// Activate to Activate (same bank)
if ($time - RC_chk3 < tRC) begin
$display ("At time %t ERROR: tRC violation during Activate bank %d", $time, Ba);
end
// Precharge to Activate
if ($time - RP_chk3 < tRP) begin
$display ("At time %t ERROR: tRP violation during Activate bank %d", $time, Ba);
end
// Record variables for checking violation
Act_b3 = 1'b1;
Pc_b3 = 1'b0;
B3_row_addr = Addr;
RC_chk3 = $time;
RCD_chk3 = $time;
RAS_chk3 = $time;
end
// Activate to Activate (different bank)
if ((Prev_bank != Ba) && (RRD_chk < tRRD)) begin
$display ("At time %t ERROR: tRRD violation during Activate bank = %d", $time, Ba);
end
// AutoRefresh to Activate
if ($time - RFC_chk < tRFC) begin
$display ("At time %t ERROR: tRFC violation during Activate bank %d", $time, Ba);
end
// Record variable for checking violation
RRD_chk = 0;
Prev_bank = Ba;
end
// Precharge Block - consider NOP if bank already precharged or in process of precharging
if (Prech_enable === 1'b1) begin
// Display Debug Message
if (Debug) begin
$display ("At time %t PRE : Addr[8] = %b, Bank = %b, ", $time, Addr[8], Ba);
end
// EMR or LMR to Precharge
if (MRD_chk < tMRD) begin
$display ("At time %t ERROR: tMRD violation during Precharge", $time);
end
// Precharge bank 0
if ((Addr[8] === 1'b1 || (Addr[8] === 1'b0 && Ba === 2'b00)) && Act_b0 === 1'b1) begin
Act_b0 = 1'b0;
Pc_b0 = 1'b1;
RP_chk0 = $time;
// Activate to Precharge Bank
if ($time - RAS_chk0 < tRAS) begin
$display ("At time %t ERROR: tRAS violation during Precharge", $time);
end
// tWR violation check for Write
if (WR_chk0 < tWR) begin
$display ("At time %t ERROR: tWR violation during Precharge", $time);
end
end
// Precharge bank 1
if ((Addr[8] === 1'b1 || (Addr[8] === 1'b0 && Ba === 2'b01)) && Act_b1 === 1'b1) begin
Act_b1 = 1'b0;
Pc_b1 = 1'b1;
RP_chk1 = $time;
// Activate to Precharge Bank 1
if ($time - RAS_chk1 < tRAS) begin
$display ("At time %t ERROR: tRAS violation during Precharge", $time);
end
// tWR violation check for Write
if (WR_chk1 < tWR) begin
$display ("At time %t ERROR: tWR violation during Precharge", $time);
end
end
// Precharge bank 2
if ((Addr[8] === 1'b1 || (Addr[8] === 1'b0 && Ba === 2'b10)) && Act_b2 === 1'b1) begin
Act_b2 = 1'b0;
Pc_b2 = 1'b1;
RP_chk2 = $time;
// Activate to Precharge Bank 2
if ($time - RAS_chk2 < tRAS) begin
$display ("At time %t ERROR: tRAS violation during Precharge", $time);
end
// tWR violation check for Write
if (WR_chk2 < tWR) begin
$display ("At time %t ERROR: tWR violation during Precharge", $time);
end
end
// Precharge bank 3
if ((Addr[8] === 1'b1 || (Addr[8] === 1'b0 && Ba === 2'b11)) && Act_b3 === 1'b1) begin
Act_b3 = 1'b0;
Pc_b3 = 1'b1;
RP_chk3 = $time;
// Activate to Precharge Bank 3
if ($time - RAS_chk3 < tRAS) begin
$display ("At time %t ERROR: tRAS violation during Precharge", $time);
end
// tWR violation check for Write
if (WR_chk3 < tWR) begin
$display ("At time %t ERROR: tWR violation during Precharge", $time);
end
end
// Pipeline for READ
if (Cas_latency_15 === 1'b1) begin
A8_precharge[3] = Addr[8];
Bank_precharge[3] = Ba;
Cmnd_precharge[3] = 1'b1;
end else if (Cas_latency_2 === 1'b1) begin
A8_precharge[4] = Addr[8];
Bank_precharge[4] = Ba;
Cmnd_precharge[4] = 1'b1;
end else if (Cas_latency_25 === 1'b1) begin
A8_precharge[5] = Addr[8];
Bank_precharge[5] = Ba;
Cmnd_precharge[5] = 1'b1;
end else if (Cas_latency_3 === 1'b1) begin
A8_precharge[6] = Addr[8];
Bank_precharge[6] = Ba;
Cmnd_precharge[6] = 1'b1;
end else if (Cas_latency_4 === 1'b1) begin
A8_precharge[8] = Addr[8];
Bank_precharge[8] = Ba;
Cmnd_precharge[8] = 1'b1;
end
end
// Burst terminate
if (Burst_term === 1'b1) begin
// Display Debug Message
if (Debug) begin
$display ("At time %t BST : Burst Terminate",$time);
end
// Burst Terminate Command Pipeline for Read
if (Cas_latency_15 === 1'b1) begin
Cmnd_bst [3] = 1'b1;
end else if (Cas_latency_2 === 1'b1) begin
Cmnd_bst [4] = 1'b1;
end else if (Cas_latency_25 === 1'b1) begin
Cmnd_bst [5] = 1'b1;
end else if (Cas_latency_3 === 1'b1) begin
Cmnd_bst [6] = 1'b1;
end else if (Cas_latency_4 === 1'b1) begin
Cmnd_bst [8] = 1'b1;
end
// Illegal to burst terminate a Write
if (Data_in_enable === 1'b1) begin
$display ("At time %t ERROR: It's illegal to burst terminate a Write", $time);
end
// Illegal to burst terminate a Read with Auto Precharge
if (Read_precharge[0] === 1'b1 || Read_precharge[1] === 1'b1 ||
Read_precharge[2] === 1'b1 || Read_precharge[3] === 1'b1) begin
$display ("At time %t ERROR: It's illegal to burst terminate a Read with Auto Precharge", $time);
end
end
// Read Command
if (Read_enable === 1'b1) begin
// Display Debug Message
if (Debug) begin
$display ("At time %t READ : Bank = %d Col = %d", $time, Ba, Addr [7 : 0]);
end
// CAS Latency pipeline
if (Cas_latency_15 === 1'b1) begin
Read_cmnd [3] = 1'b1;
Read_bank [3] = Ba;
Read_cols [3] = Addr [9 : 0];
Burst_dir_pipe [3] = Burst_length_f & Addr [0];
end else if (Cas_latency_2 === 1'b1) begin
Read_cmnd [4] = 1'b1;
Read_bank [4] = Ba;
Read_cols [4] = Addr [9 : 0];
Burst_dir_pipe [4] = Burst_length_f & Addr [0];
end else if (Cas_latency_25 === 1'b1) begin
Read_cmnd [5] = 1'b1;
Read_bank [5] = Ba;
Read_cols [5] = Addr [9 : 0];
Burst_dir_pipe [5] = Burst_length_f & Addr [0];
end else if (Cas_latency_3 === 1'b1) begin
Read_cmnd [6] = 1'b1;
Read_bank [6] = Ba;
Read_cols [6] = Addr [9 : 0];
Burst_dir_pipe [6] = Burst_length_f & Addr [0];
end else if (Cas_latency_4 === 1'b1) begin
Read_cmnd [8] = 1'b1;
Read_bank [8] = Ba;
Read_cols [8] = Addr [9 : 0];
Burst_dir_pipe [8] = Burst_length_f & Addr [0];
end
// Terminate a Write
if (Data_in_enable === 1'b1) begin
Data_in_enable = 1'b0;
end
// Interrupt a Read with Auto Precharge (same bank only)
if (Read_precharge [Ba] === 1'b1) begin
$display ("At time %t ERROR: It's illegal to interrupt a Write with Auto Precharge", $time);
end
// Activate to Read
if ((Ba === 2'b00 && Pc_b0 === 1'b1) || (Ba === 2'b01 && Pc_b1 === 1'b1) ||
(Ba === 2'b10 && Pc_b2 === 1'b1) || (Ba === 2'b11 && Pc_b3 === 1'b1)) begin
$display("At time %t ERROR: Bank is not Activated for Read", $time);
end
// Activate to Read
if ((Ba === 2'b00 && $time - RCD_chk0 < tRCDR) ||
(Ba === 2'b01 && $time - RCD_chk1 < tRCDR) ||
(Ba === 2'b10 && $time - RCD_chk2 < tRCDR) ||
(Ba === 2'b11 && $time - RCD_chk3 < tRCDR)) begin
$display("At time %t ERROR: tRCD violation during Read", $time);
end
// Auto Precharge
if (Addr[8] === 1'b1) begin
Read_precharge [Ba]= 1'b1;
Count_precharge [Ba]= 0;
end
// Check for DLL reset before Read
if (DLL_reset === 1'b1 && DLL_done === 1'b0) begin
$display ("At time %t ERROR: DLL Reset not complete", $time);
end
end
// Write Command
if (Write_enable === 1'b1) begin
// Display Debug Message
if (Debug) begin
$display ("At time %t WRITE: Bank = %d Col = %d", $time, Ba, Addr [7 : 0]);
end
// Pipeline for Write
Write_cmnd [2] = 1'b1;
Write_bank [2] = Ba;
Write_cols [2] = Addr [9 : 0];
Burst_dir_pipe [2] = Burst_length_f & Addr [0];
// Interrupt a Write with Auto Precharge (same bank only)
if (Write_precharge [Ba] === 1'b1) begin
$display ("At time %t ERROR: It's illegal to interrupt a Write with Auto Precharge", $time);
end
// Activate to Write
if ((Ba === 2'b00 && Pc_b0 === 1'b1) || (Ba === 2'b01 && Pc_b1 === 1'b1) ||
(Ba === 2'b10 && Pc_b2 === 1'b1) || (Ba === 2'b11 && Pc_b3 === 1'b1)) begin
$display("At time %t ERROR: Bank is not Activated for Write", $time);
end
// Activate to Write
if ((Ba === 2'b00 && $time - RCD_chk0 < tRCDW) ||
(Ba === 2'b01 && $time - RCD_chk1 < tRCDW) ||
(Ba === 2'b10 && $time - RCD_chk2 < tRCDW) ||
(Ba === 2'b11 && $time - RCD_chk3 < tRCDW)) begin
$display("At time %t ERROR: tRCD violation during Write to Bank %d", $time, Ba);
end
// Auto Precharge
if (Addr[8] === 1'b1) begin
Write_precharge [Ba]= 1'b1;
Count_precharge [Ba]= 0;
end
end
end
endtask
// Main Logic
always @ (posedge Sys_clk) begin
Manual_Precharge_Pipeline;
Burst_Terminate_Pipeline;
Burst_Direction_Pipeline;
Dq_Dqs_Drivers;
Write_FIFO_DM_Mask_Logic;
Auto_Precharge_Calculation;
Timing_Check_Counter;
DLL_Counter;
Control_Logic;
end
always @ (negedge Sys_clk) begin
Manual_Precharge_Pipeline;
Burst_Terminate_Pipeline;
Burst_Direction_Pipeline;
Dq_Dqs_Drivers;
end
// Dqs Receiver
always @ (posedge Dqs) begin
// Latch data at posedge Dqs
Dq_temp = Dq;
Dm_temp = Dm;
end
always @ (negedge Dqs[0]) begin
// Latch data at negedge Dqs
Dq_pair = {Dq, Dq_temp};
Dm_pair = {Dm, Dm_temp};
end
// Timing Check for -7 (CAS Latency = 2)
specify
specparam
tCH = 3.375, // 0.45 * tCK
tCL = 3.375, // 0.45 * tCK
tDH = 0.500,
tDS = 0.500,
tIH = 0.900,
tIS = 0.900;
$setuphold(posedge Clk, Cke, tIS, tIH);
$setuphold(posedge Clk, Cs_n, tIS, tIH);
$setuphold(posedge Clk, Cas_n, tIS, tIH);
$setuphold(posedge Clk, Ras_n, tIS, tIH);
$setuphold(posedge Clk, We_n, tIS, tIH);
$setuphold(posedge Clk, Addr, tIS, tIH);
$setuphold(posedge Clk, Ba, tIS, tIH);
endspecify
endmodule