TC58128FT.v
66.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
////////////////////////////////////////////////////////////////////////////////
// TC58512FT 512Mbit(x8) NAND Flash Memory Verilog Simulation Model //
// Version: 1.2 //
// Date: 2001/07/18 //
// Programmed By Y.Motizuki at FLASH MEMORY TECHNICAL MARKETING GROUP //
// module : TC58512FT //
// //
// Copyright (c) 2001 TOSHIBA CORPORATION, All Rights Reserved. //
////////////////////////////////////////////////////////////////////////////////
// Revision History Description //
// : 1.1 2001/06/10 1st Release //
// : 1.2 2001/07/18 Timing Check modify //
////////////////////////////////////////////////////////////////////////////////
`timescale 1ns/1ns
//------------------------------------------------------------------------------
// Memory Initialize Option
//------------------------------------------------------------------------------
// If This value is defined "1", whole CHIP data "1" except for Bad Block.
// It is better to define "0" to speed up simulation.
//------------------------------------------------------------------------------
`define MemoryInitEnable 0 // Not Memory Initialize (recommended)
//------------------------------------------------------------------------------
// Difinitions Size of Memory
//------------------------------------------------------------------------------
// "blk_bit" is width of bits for block address in a chip 1Chip=1024Blocks, 10bits requires
//------------------------------------------------------------------------------
`define blk_bit (10) // Width of bits for block address
//------------------------------------------------------------------------------
// Definition regarding AC Specification
//------------------------------------------------------------------------------
`define tCLS (0)
`define tCLH (10)
`define tCS (0)
`define tCH (10)
`define tWP (25)
`define tALS (0)
`define tALH (10)
`define tDS (20)
`define tDH (10)
`define tWC (50)
`define tWH (15)
`define tWW (100)
`define tRR (20)
`define tRP (35)
`define tRC (50)
`define tREA (35)
`define tCEH (100)
`define tREAID (35)
`define tOH (10)
`define tRHZ (30)
`define tCHZ (20)
`define tREH (15)
`define tIR (0)
`define tRSTO (35)
`define tCSTO (45)
`define tRHW (0)
`define tWHC (30)
`define tWHR (30)
`define tAR1 (100)
`define tCR (100)
`define tWB (200)
`define tAR2 (50)
`define tRB (200)
`define tCRY (1000)
`ifdef FLASH_FAST
`define tRST_program (1200)
`define tRST_erase (1300)
`define tRST_read (1100)
`define tR (1000)
`define tPROG (5000) // Typical
`define tDBSY (500) // Typical
`define tMBPBSY (5000) // Typical
`define tBERASE (5000) // Typical
`else
`define tRST_program (10000)
`define tRST_erase (500000)
`define tRST_read (6000)
`define tR (25000)
`define tPROG (200000) // Typical
`define tDBSY (2000) // Typical
`define tMBPBSY (200000) // Typical
`define tBERASE (2000000) // Typical
`endif
/*
`define tRST_program (10000)
`define tRST_erase (20000)
`define tRST_read (6000)
`define tR (2000)
`define tPROG (3000)
`define tDBSY (1000)
`define tMBPBSY (10000)
`define tBERASE (10000)
*/
//------------------------------------------------------------------------------
// tCERY : In case of sequential read, if CE gets 1 with in 30nsec, R/B will not go 0.
// This 30nsec is defined tCERY.
//------------------------------------------------------------------------------
`define tCERY (30) // tCERY
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// TC58512FT Simulation Model
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
module TC58128FT (
IO,
CE,
WE,
RE,
CLE,
ALE,
WP,
RY_BY
) ;
//------------------------------------------------------------------------------
// Definition Fail Address & Fail bit
//------------------------------------------------------------------------------
// Format is following;
// ------------------------------------
// FAIL_ADD[n] = 27'hxxxxxxx
// FAIL_BIT[n] = 8'byyyyyyyy
// ------------------------------------
// xxxxxxx is address in the memory in hexadecimal number and 27bits are effective.
// from LSB, 10bit = Column Address
// 5bit = Page Address
// 12bit = Block Address
// yyyyyyyy is fail bit in Fail Address.
// n is fail Address ID Number. (n<FAIL_NUM)
//
// For example, in case of Block=7 , Page=8 , Column=3 , bit=2,
// discription is
//
// FAIL_ADD[0] = 27'h003a003
// FAIL_BIT[0] = 8'b00000100
//
//------------------------------------------------------------------------------
parameter FAIL_NUM = 5 ; // The Number of Total Fail Address
parameter ADD_BIT = 27 ; // Width of bits for address
reg [ADD_BIT-1:0] FAIL_ADD [0:FAIL_NUM-1] ; // FAIL ADD Register
reg [7:0] FAIL_BIT[0:FAIL_NUM-1] ; // FAIL BIT Register
initial begin
FAIL_ADD[0] = 27'h0000000 ;
FAIL_ADD[1] = 27'h0000c00 ;
FAIL_ADD[2] = 27'h0ff7e0f ;
FAIL_ADD[3] = 27'h0ffbe0f ;
FAIL_ADD[4] = 27'h0fffe0f ;
FAIL_BIT[0] = 8'b00001000 ;
FAIL_BIT[1] = 8'b00010000 ;
FAIL_BIT[2] = 8'b00100000 ;
FAIL_BIT[3] = 8'b01000000 ;
FAIL_BIT[4] = 8'b10000000 ;
end
//------------------------------------------------------------------------------
// Parameters regarding memory size
//------------------------------------------------------------------------------
parameter D_WIDTH = 8 ; // Data Width
parameter COL_IN_PAGE = 528 ; // Number of columns per 1 page
parameter PAGE_IN_BLOCK = 32 ; // Number of pages per 1 block
parameter ADD_COL = 9 ; // Width of bits for colmn address
parameter COL_BIT = 10 ; // Width of bits for colmn
parameter PAG_BIT = 5 ; // Width of bits for page address
parameter BLK_BIT = `blk_bit ; // Width of bits for block address
parameter CHP_BIT = BLK_BIT+PAG_BIT+COL_BIT ;
// Width of bits for addressing whole chip
parameter AREA_SIZ_A = 256 ; // Number of column in AREA-A/page
parameter AREA_SIZ_B = 256 ; // Number of column in AREA-B/page
parameter AREA_SIZ_C = 16 ; // Number of column in AREA-C/page
parameter AREA_BIT_A = 8 ; // Width of bits for address in AREA-A
parameter AREA_BIT_B = 8 ; // Width of bits for address in AREA-B
parameter AREA_BIT_C = 4 ; // Width of bits for address in AREA-C
parameter ADD_DIV = 4 ; // How many cycles address is devided and input
parameter ID_ADD_BIT = 3 ; // The Number of Total Bad Block
parameter DISTRICT_NUM = 4 ; // Number of District
parameter DISTRICT_BIT_NUM = 2 ; // Width of bits for District
//------------------------------------------------------------------------------
// Difinition regarding input/output signal
//------------------------------------------------------------------------------
inout [7:0] IO ;
input CE ;
input WE ;
input RE ;
input CLE ;
input ALE ;
input WP ;
output RY_BY ;
//------------------------------------------------------------------------------
// Parameters regarding Command
//------------------------------------------------------------------------------
parameter CMD_SERIAL_DATA_INPUT = 8'h80 ;
parameter CMD_READ_MODE_1 = 8'h00 ;
parameter CMD_READ_MODE_2 = 8'h01 ;
parameter CMD_READ_MODE_3 = 8'h50 ;
parameter CMD_RESET = 8'hff ;
parameter CMD_AUTO_PROGRAM_TRUE = 8'h10 ;
parameter CMD_AUTO_BLOCK_ERASE_1 = 8'h60 ;
parameter CMD_AUTO_BLOCK_ERASE_2 = 8'hd0 ;
parameter CMD_STATUS_READ_1 = 8'h70 ;
parameter CMD_ID_READ_1 = 8'h90 ;
parameter CMD_AUTO_PROGRAM_DUMMY = 8'h11 ;
parameter CMD_AUTO_PROGRAM_MULTI = 8'h15 ;
parameter CMD_STATUS_READ_2 = 8'h71 ;
parameter CMD_ID_READ_2 = 8'h91 ;
//------------------------------------------------------------------------------
// Parameters regarding Others
//------------------------------------------------------------------------------
// PROGRAM,ERASE,INIT : mem_write parameter used in task
//
// PROGRAM: indicates memory cells are written by Program
// ERASE: indicates memory cells are erased by Erase
// INIT: indicates memory cells are initialized by Erase
// XPROGRAM: Before Program, make memory cells unknown
// XERASE: Before Erase, make memory cells unknown
//
//------------------------------------------------------------------------------
parameter PROGRAM = 0 ;
parameter ERASE = 1 ;
parameter INIT = 2 ;
parameter XPROGRAM = 3 ;
parameter XERASE = 4 ;
//------------------------------------------------------------------------------
// Main registers
//------------------------------------------------------------------------------
//
// MEM : Core of memory
// Data Width 8bit, number of words 2^27
//
// Because of column address 10bit, 1Page=1024words exist,
// but only 528 words are used.
//
//
// 7 6 5 4 3 2 1 0
// +-----------------+ --- --- ---
// | | 0 | | |
// +-----------------+ : | | |
// | | : | | |
// | | : 0 Page | |
// | | : | | |
// +-----------------+ : | | |
// | | 527 | | |
// +-----------------+ : --- | |
// |XXXXXXXXXXXXXXXXX| : | 0 Block |
// |XXXXXXXXXXXXXXXXX| : | | |
// |XXXXXXXXXXXXXXXXX| : Not used | |
// +-----------------+ : | | |
// |XXXXXXXXXXXXXXXXX| 1023 | | |
// +-----------------+ ---- | |
// | |
// 1 Page | |
// : | |
// : | |
// : | |
// 31 Page | |
// --- |
// 1 Block |
// : |
// : |
// : |
// 4095 Block |
// ---
//
//------------------------------------------------------------------------------
reg [D_WIDTH-1:0] MEM [0:(1<<CHP_BIT)-1] ; // Memory-Core
reg [D_WIDTH-1:0] RCOD ; // Command Register
reg [ADD_BIT-1:0] RADD ; // Address Register
reg [ADD_BIT-1:0] RADD0 ; // Address Register (District0)
reg [ADD_BIT-1:0] RADD1 ; // Address Register (District1)
reg [ADD_BIT-1:0] RADD2 ; // Address Register (District2)
reg [ADD_BIT-1:0] RADD3 ; // Address Register (District3)
reg [D_WIDTH-1:0] RSTAT ; // Status Register
reg [COL_BIT-1:0] DPNT ; // Data Register Pointer
reg [D_WIDTH-1:0] DATA0[0:(1<<COL_BIT)-1] ; // Data Register (District0)
reg [D_WIDTH-1:0] DATA1[0:(1<<COL_BIT)-1] ; // Data Register (District1)
reg [D_WIDTH-1:0] DATA2[0:(1<<COL_BIT)-1] ; // Data Register (District2)
reg [D_WIDTH-1:0] DATA3[0:(1<<COL_BIT)-1] ; // Data Register (District3)
//------------------------------------------------------------------------------
// Declaration regarding RY_BY output signal(Busy signal)
//------------------------------------------------------------------------------
//
// Final RY_BY signal is generated by AND calculated with the above signals
// (except BUSY_by_read_sched)
//
//------------------------------------------------------------------------------
reg BUSY_by_read ; // for generating RY_BY signal in Read sequence
reg BUSY_by_program ; // for generating RY_BY signal in Program sequence
reg BUSY_by_erase ; // for generating RY_BY signal in Erase sequence
reg BUSY_by_reset ; // for cancellation RY_BY signal by Reset Command
reg BUSY_by_ce ; // for cancellation RY_BY signal by CE=1
reg BUSY_by_read_sched ; // for scheduling BUSY_by_read
reg bBUSY_by_read ;
reg bBUSY_by_program ;
reg bBUSY_by_erase ;
reg bBUSY_by_reset ;
reg bBUSY_by_ce ;
//==============================================================================
// Declaration for variables
//==============================================================================
integer column ;
reg read_flg ;
reg DIN_COMPLETE ;
reg read_ok ;
time rCE, fCE, rWE, fWE ;
time rCLE, fCLE, rALE, fALE, rRE, fRE, rCEorRE, fCEorRE ;
time rfIO, rRY_BY, fRY_BY, rWP, fWP ;
time fWE2, fRE2, rCE_RST ;
time IO_hiz ;
//==============================================================================
// From here, main functions are described
//==============================================================================
//------------------------------------------------------------------------------
// Generate Power On Signal
//------------------------------------------------------------------------------
reg Power_on ;
initial begin
Power_on = 1'b0 ;
#10 Power_on = 1'b1 ;
#10 Power_on = 1'b0 ;
end
//------------------------------------------------------------------------------
// Set ID registers & Reset timing variables
//------------------------------------------------------------------------------
reg [D_WIDTH-1:0] RID1[0:4] ; // ID Register (1)
reg [D_WIDTH-1:0] RID2[0:4] ; // ID Register (2)
initial begin
RID1[0] = 8'h98 ; RID1[1] = 8'h73 ; RID1[2] = 8'hA5 ;
RID1[3] = 8'hC0 ; RID1[4] = 8'h01 ;
RID2[0] = 8'h20 ; RID2[1] = 8'h46 ; RID2[2] = 8'h3A ;
RID2[3] = 8'h00 ; RID2[4] = 8'h00 ;
rCE = 0 ; fCE = 0 ;
rWE = 0 ; fWE = 0 ;
rCLE = 0 ; fCLE = 0 ;
rALE = 0 ; fALE = 0 ;
rRE = 0 ; fRE = 0 ;
rCEorRE = 0 ; fCEorRE = 0 ;
rRY_BY = 0 ; fRY_BY = 0 ;
rfIO = 0 ;
rWP = 0 ; fWP = 0 ;
read_flg = 1'b0 ;
DIN_COMPLETE = 1'b0 ;
read_ok = 1'b0 ;
end
parameter ID_NUM = 5 ;
//------------------------------------------------------------------------------
// Named with the rule: for input signals, attach 'i'
// for output signals, attach 'o'
//
// Since regarding Output signal RY_BY, output '0' is Strong and output '1' is
// Weak, it should be output through buffer.
//------------------------------------------------------------------------------
wire [D_WIDTH-1:0] iIO ;
wire [D_WIDTH-1:0] oIO ;
wire eIO ;
wire iCE ;
wire iWE ;
wire iRE ;
wire iCLE ;
wire iALE ;
wire iWP ;
wire oRY_BY ;
assign iIO = IO & {D_WIDTH{1'b1}} ;
assign IO = (eIO) ? oIO : {D_WIDTH{1'bz}} ;
assign iCE = CE & 1'b1 ;
assign iWE = WE & 1'b1 ;
assign iRE = RE & 1'b1 ;
assign iCLE = CLE & 1'b1 ;
assign iALE = ALE & 1'b1 ;
assign iWP = WP & 1'b1 ;
buf (strong0,weak1) (RY_BY,oRY_BY) ;
//------------------------------------------------------------------------------
// Back up initial values of input signals
//------------------------------------------------------------------------------
// Named by addition 'b'.
//------------------------------------------------------------------------------
reg [D_WIDTH-1:0] bIO ;
reg bCE ;
reg bWE ;
reg bRE ;
reg bCLE ;
reg bALE ;
reg bWP ;
always @(iIO) bIO <= iIO ;
always @(iCE) bCE <= iCE ;
always @(iWE) bWE <= iWE ;
always @(iRE) bRE <= iRE ;
always @(iCLE) bCLE <= iCLE ;
always @(iALE) bALE <= iALE ;
always @(iWP) bWP <= iWP ;
//------------------------------------------------------------------------------
// Genarate Reset_on signal
//------------------------------------------------------------------------------
// Reset_on : has initial value 0, after issueing Reset Command, gets to 1
// indicates if Reset Command has been issued or not.
//------------------------------------------------------------------------------
reg Reset_on ;
always @(posedge Power_on or posedge iWE) begin
if ( Power_on ) begin
`ifdef TOSHIBA_ORIGINAL
Reset_on <= 1'b0 ;
`else
Reset_on <= 1'b1 ;
RADD <= {ADD_BIT{1'b0}};
RADD0 <= {ADD_BIT{1'b0}} ;
RADD1 <= {ADD_BIT{1'b0}} ;
RADD2 <= {ADD_BIT{1'b0}} ;
RADD3 <= {ADD_BIT{1'b0}} ;
`endif
end
else if ( {iCE,iCLE,iALE,iRE}===4'b0101 ) begin
if ( iIO == CMD_RESET )
Reset_on <= 1'b1 ;
end
end
//------------------------------------------------------------------------------
// Write to Command Register
//------------------------------------------------------------------------------
//
// In Command Write, write IO[8:1] to Command Register,
// with checking the command is valid or not by the function cmd_check.
// Only valid commands are issued into Command Register.
//
//------------------------------------------------------------------------------
always @(posedge iWE)
if ( {iCE,iCLE,iALE,iRE}===4'b0101 )
if ( cmd_check(RCOD,iIO) ) begin
RCOD <= iIO ;
read_flg = 1'b0 ;
end
//------------------------------------------------------------------------------
// Generate mode signals by decoding Command Register
//------------------------------------------------------------------------------
wire MOD_SERIAL_DATA_INPUT ;
wire MOD_READ_MODE_1 ;
wire MOD_READ_MODE_2 ;
wire MOD_READ_MODE_3 ;
wire MOD_RESET ;
wire MOD_AUTO_PROGRAM_TRUE ;
wire MOD_AUTO_PROGRAM_DUMMY ;
wire MOD_AUTO_PROGRAM_MULTI ;
wire MOD_AUTO_BLOCK_ERASE_1 ;
wire MOD_AUTO_BLOCK_ERASE_2 ;
wire MOD_STATUS_READ_1 ;
wire MOD_STATUS_READ_2 ;
wire MOD_ID_READ_1 ;
wire MOD_ID_READ_2 ;
wire MOD_READ_MODE ; // Read mode (1),(2),(3)
wire MOD_AUTO_PROGRAM ; // Auto Program (Treu),(Dummy),(Multi)
wire MOD_AUTO_BLOCK_ERASE ; // Auto Block Erase (1),(2)
wire MOD_STATUS_READ ; // Status Read (1),(2)
wire MOD_ID_READ ; // ID Read (1),(2)
assign MOD_SERIAL_DATA_INPUT = ( RCOD === CMD_SERIAL_DATA_INPUT ) ;
assign MOD_READ_MODE_1 = ( RCOD === CMD_READ_MODE_1 ) ||
( RCOD === CMD_RESET ) ;
assign MOD_READ_MODE_2 = ( RCOD === CMD_READ_MODE_2 ) ;
assign MOD_READ_MODE_3 = ( RCOD === CMD_READ_MODE_3 ) ;
assign MOD_RESET = ( RCOD === CMD_RESET ) ;
assign MOD_AUTO_PROGRAM_TRUE = ( RCOD === CMD_AUTO_PROGRAM_TRUE ) ;
assign MOD_AUTO_PROGRAM_DUMMY = ( RCOD === CMD_AUTO_PROGRAM_DUMMY ) ;
assign MOD_AUTO_PROGRAM_MULTI = ( RCOD === CMD_AUTO_PROGRAM_MULTI ) ;
assign MOD_AUTO_BLOCK_ERASE_1 = ( RCOD === CMD_AUTO_BLOCK_ERASE_1 ) ;
assign MOD_AUTO_BLOCK_ERASE_2 = ( RCOD === CMD_AUTO_BLOCK_ERASE_2 ) ;
assign MOD_STATUS_READ_1 = ( RCOD === CMD_STATUS_READ_1 ) ;
assign MOD_STATUS_READ_2 = ( RCOD === CMD_STATUS_READ_2 ) ;
assign MOD_ID_READ_1 = ( RCOD === CMD_ID_READ_1 ) ;
assign MOD_ID_READ_2 = ( RCOD === CMD_ID_READ_2 ) ;
assign MOD_READ_MODE = MOD_READ_MODE_1 |
MOD_READ_MODE_2 |
MOD_READ_MODE_3 ;
assign MOD_AUTO_PROGRAM = MOD_AUTO_PROGRAM_TRUE |
MOD_AUTO_PROGRAM_DUMMY |
MOD_AUTO_PROGRAM_MULTI ;
assign MOD_AUTO_BLOCK_ERASE = MOD_AUTO_BLOCK_ERASE_1 |
MOD_AUTO_BLOCK_ERASE_2 ;
assign MOD_STATUS_READ = MOD_STATUS_READ_1 |
MOD_STATUS_READ_2 ;
assign MOD_ID_READ = MOD_ID_READ_1 |
MOD_ID_READ_2 ;
//------------------------------------------------------------------------------
// Generate signals which indicate the Area in one Page.
// Since one Page consists of Area A,B,C, the information which
// area is selected is needed.
//------------------------------------------------------------------------------
//
// area_a : is '1' when Area A is selected.
// area_b : is '1' when Area B is selected.
// area_c : is '1' when Area C is selected.
//
// area_[abc] doesn't change in case of Serial Data Input
// area_a = 1 , area_b = 0 , area_c = 0 in case of Read Mode (1)
// area_a = 0 , area_b = 1 , area_c = 0 in case of Read Mode (2)
// area_a = 0 , area_b = 0 , area_c = 1 in case of Read Mode (3)
// area_a = 1 , area_b = 0 , area_c = 0 in case of Reset
// area_[abc] doesn't change in case of other commands
//
//------------------------------------------------------------------------------
reg area_a ;
reg area_b ;
reg area_c ;
always @(posedge iWE)
if ( {iCE,iCLE,iALE,oRY_BY,iRE}===5'b01011 )
case (iIO)
CMD_SERIAL_DATA_INPUT : {area_a,area_b,area_c} <= {area_a,area_b,area_c} ;
CMD_READ_MODE_1 : {area_a,area_b,area_c} <= 3'b100 ;
CMD_READ_MODE_2 : {area_a,area_b,area_c} <= 3'b010 ;
CMD_READ_MODE_3 : {area_a,area_b,area_c} <= 3'b001 ;
CMD_RESET : {area_a,area_b,area_c} <= 3'b100 ;
default : {area_a,area_b,area_c} <= {area_a,area_b,area_c} ;
endcase
//------------------------------------------------------------------------------
// district : has 2bit and indicates which District is selected.
// This signal is equivalent to RADD[15:14]
//------------------------------------------------------------------------------
wire [1:0] district ;
assign district = RADD[(PAG_BIT+ADD_COL+DISTRICT_BIT_NUM-1):(PAG_BIT+ADD_COL)] ;
//------------------------------------------------------------------------------
// Generate position signal of Address, add_pos
//------------------------------------------------------------------------------
//
// add_pos : counts the cycles of inputs of address
//
// This variable has initial value 0, and counts up with address inputs.
//
// Address input is issued into RADD[ 8:0] in case of add_pos = 0.
// Address input is issued into RADD[16:9] in case of add_pos = 1.
// Address input is issued into RADD[24:17] in case of add_pos = 2.
// Address input is issued into RADD[25] in case of add_pos = 3.
// Address input is not issued, nor counts up incase of add_pos = 4.
//
//------------------------------------------------------------------------------
integer add_pos ;
always @(posedge iWE or posedge oRY_BY ) begin
if ( {bWE,iWE,iRE}===3'b011 ) begin
if ( {iCE,iCLE,iALE,oRY_BY}===4'b0101 )
if ( (iIO === CMD_AUTO_BLOCK_ERASE_1)&&(iWP===1'b1) ) add_pos <= 1 ;
else add_pos <= 0 ;
else if ( {iCE,iCLE,iALE,oRY_BY}===4'b0011 )
if ( MOD_SERIAL_DATA_INPUT || MOD_READ_MODE || MOD_AUTO_BLOCK_ERASE_1 )
add_pos <= (add_pos == ADD_DIV) ? ADD_DIV : add_pos + 1 ;
else if ( MOD_ID_READ )
add_pos <= 0 ;
end
else begin
add_pos <= 0 ;
end
end
//------------------------------------------------------------------------------
// Input address to Address Register
//------------------------------------------------------------------------------
//
// At address input, write IO[8:1] to Address Register RADD.
//
// Address Register consists of not only RADD but also RADD0,RADD1,RADD2 and RADD3
// used in Program/Erase, for each District.
// RADD0,RADD1,RADD2 and RADD3 are also described here.
//
// [Operation]
//
// Note that in Multi Block Program, same page number in blocks belonging
// to other Distrcts is valid.
// In case of different page nambers, the last input page is valid.
// Therefore, RADD?[13:9] must always be input the last page address regardless
// of the number of Districts.
//
//------------------------------------------------------------------------------
always @(posedge iWE or posedge iRE) begin
//
// WE signal rising
//
if ( {bWE,iWE,iRE}===3'b011 ) begin
if ( {iCE,iCLE,iALE,oRY_BY}===4'b0100 ) begin
RADD <= ( iIO == CMD_RESET ) ? {ADD_BIT{1'b0}} : RADD ;
end
else if ( {iCE,iCLE,iALE,oRY_BY}===4'b0101 ) begin
RADD <= ( iIO == CMD_RESET ) ? {ADD_BIT{1'b0}} : {ADD_BIT{1'bx}} ;
if ( iIO == CMD_RESET ) begin
RADD0 <= {ADD_BIT{1'b0}} ;
RADD1 <= {ADD_BIT{1'b0}} ;
RADD2 <= {ADD_BIT{1'b0}} ;
RADD3 <= {ADD_BIT{1'b0}} ;
end
end
else if ( {iCE,iCLE,iALE,oRY_BY}===4'b0011 ) begin
if ( MOD_SERIAL_DATA_INPUT || MOD_READ_MODE )
case (add_pos)
0 : RADD <= {RADD[25:9],area_b,iIO} ;
1 : RADD <= {RADD[25:17],iIO,RADD[8:0]} ;
2 : RADD <= {RADD[25],iIO,RADD[16:0]} ;
3 : begin
RADD <= {iIO,RADD[24:0]} ;
case (district)
0: RADD0[25:14] <= {iIO,RADD[24:14]} ;
1: RADD1[25:14] <= {iIO,RADD[24:14]} ;
2: RADD2[25:14] <= {iIO,RADD[24:14]} ;
3: RADD3[25:14] <= {iIO,RADD[24:14]} ;
endcase
RADD0[13:9] <= RADD[13:9] ;
RADD1[13:9] <= RADD[13:9] ;
RADD2[13:9] <= RADD[13:9] ;
RADD3[13:9] <= RADD[13:9] ;
case (district)
0: RADD0[8:0] <= {RADD[8:0]} ;
1: RADD1[8:0] <= {RADD[8:0]} ;
2: RADD2[8:0] <= {RADD[8:0]} ;
3: RADD3[8:0] <= {RADD[8:0]} ;
endcase
end
default : RADD <= RADD ;
endcase
else if ( MOD_AUTO_BLOCK_ERASE_1 )
case (add_pos)
1 : RADD <= {RADD[25:17],iIO,{ADD_COL{1'b0}}} ;
2 : RADD <= {RADD[25],iIO,RADD[16:0]} ;
3 : begin
RADD <= {iIO,RADD[24:0]} ;
case (district)
0: RADD0 <= {iIO,RADD[24:0]} ;
1: RADD1 <= {iIO,RADD[24:0]} ;
2: RADD2 <= {iIO,RADD[24:0]} ;
3: RADD3 <= {iIO,RADD[24:0]} ;
endcase
end
default : RADD <= RADD ;
endcase
else if ( MOD_ID_READ ) begin
case (add_pos)
0 : RADD <= {iIO[2:0]} ;
default : RADD <= RADD ;
endcase
end
end
end
//
// RE signal rising
//
if ( {bRE,iRE}===2'b01 ) begin
if ( {iCE,iCLE,iALE,oRY_BY,iWE}===5'b00011 ) begin
if ( MOD_READ_MODE ) begin
if ( (DPNT==COL_IN_PAGE-1) ) begin
if ( (RADD>>ADD_COL) < {(BLK_BIT+PAG_BIT){1'b1}} ) begin
// RADD <= RADD + (1<<ADD_COL) ;
end
end
end
if ( MOD_ID_READ ) begin
if (RADD < ID_NUM-1 ) RADD <= RADD + 1 ;
end
end
end
end
//------------------------------------------------------------------------------
// Flag indicating selected District(for Program)
//------------------------------------------------------------------------------
// program_stack_flag : register of 4bits(bit0 to bit3)
// for Program operation, a bit related to a selected District is '1'.
//
//------------------------------------------------------------------------------
reg [DISTRICT_NUM-1:0] program_stack_flag ;
always @(posedge Power_on or posedge iWE) begin
if ( Power_on ) begin
program_stack_flag <= {DISTRICT_NUM{1'b0}} ;
end
else if ( {iCE,oRY_BY,iRE}===3'b011 ) begin
if ( {iCLE,iALE}===2'b10 ) begin
if ( (iIO !== CMD_SERIAL_DATA_INPUT ) &&
(iIO !== CMD_AUTO_PROGRAM_DUMMY) &&
(iIO !== CMD_STATUS_READ_1 ) &&
(iIO !== CMD_STATUS_READ_2 ) ) begin
program_stack_flag <= {DISTRICT_NUM{1'b0}} ;
end
end
else if ( {iCLE,iALE}===2'b01 ) begin
if ( MOD_SERIAL_DATA_INPUT ) begin
if ( add_pos == 1 ) begin
program_stack_flag[iIO[6:5]] <= 1'b1 ;
end
end
end
end
end
reg [DISTRICT_NUM-1:0] program_stack_flag2 ;
always @(posedge Power_on or posedge iWE) begin
if ( Power_on ) begin
program_stack_flag2 <= {DISTRICT_NUM{1'b0}} ;
end
else if ( {iCE,oRY_BY,iRE}===3'b011 ) begin
if ( {iCLE,iALE}===2'b10 ) begin
if ( ((iIO === CMD_AUTO_PROGRAM_TRUE) || (iIO === CMD_AUTO_PROGRAM_MULTI))
&& (iWP === 1'b1) ) begin
program_stack_flag2 <= program_stack_flag ;
end
end
end
end
//------------------------------------------------------------------------------
// Flag indicating selected District(for Erase)
//------------------------------------------------------------------------------
// erase_stack_flag : register of 4bits(bit0 to bit3)
// for Erase operation, same definition as program_stack_flag.
//
//------------------------------------------------------------------------------
reg [DISTRICT_NUM-1:0] erase_stack_flag ;
always @(posedge Power_on or posedge iWE) begin
if ( Power_on ) begin
erase_stack_flag <= {DISTRICT_NUM{1'b0}} ;
end
else if ( {iCE,oRY_BY,iRE}===3'b011 ) begin
if ( {iCLE,iALE}===2'b10 ) begin
if ( (iIO !== CMD_AUTO_BLOCK_ERASE_1 ) &&
(iIO !== CMD_STATUS_READ_1 ) &&
(iIO !== CMD_STATUS_READ_2 ) ) begin
erase_stack_flag <= {DISTRICT_NUM{1'b0}} ;
end
end
else if ( {iCLE,iALE,iRE}===3'b011 ) begin
if ( MOD_AUTO_BLOCK_ERASE_1 ) begin
if ( add_pos == 1 ) begin
erase_stack_flag[iIO[6:5]] <= 1'b1 ;
end
end
end
end
end
reg [DISTRICT_NUM-1:0] erase_stack_flag2 ;
always @(posedge Power_on or posedge iWE) begin
if ( Power_on ) begin
erase_stack_flag2 <= {DISTRICT_NUM{1'b0}} ;
end
else if ( {iCE,oRY_BY,iRE}===3'b011 ) begin
if ( {iCLE,iALE}===2'b10 ) begin
if ( (iIO === CMD_AUTO_BLOCK_ERASE_2) && (iWP === 1'b1) ) begin
erase_stack_flag2 <= erase_stack_flag ;
end
end
end
end
//------------------------------------------------------------------------------
// Input to Data Register Pointer DPNT and increment
//------------------------------------------------------------------------------
//
// This is a pointer for addressing Data Registers.
// Since Data Registers have 528 words, 10bit width is necessary for this register.
// Lower 8bits are input value of IO by address input.
// Upper 2bits depend on Area,
// in case of Area-A, 00
// in case of Area-B, 01
// in case of Area-C, 10
//
// Data Register Pointer is set by address input basically, and is incremented by
// Data Input and Data Read operation.
//
//------------------------------------------------------------------------------
always @(posedge iWE or posedge iRE )
if ( {iCE,oRY_BY}===2'b01 ) begin
//
// WE signal rising
//
if ( {bWE,iWE,iRE}===3'b011 ) begin
if ( {iCLE,iALE}===2'b01 ) begin
if ( MOD_SERIAL_DATA_INPUT || MOD_READ_MODE ) begin
if (add_pos == 0 ) DPNT <= {area_c,area_b,iIO & (MOD_READ_MODE_3? 8'h0f : 8'hff)} ;
end
else if ( MOD_AUTO_BLOCK_ERASE_1 ) begin
if (add_pos == 1 ) DPNT <= {COL_BIT{1'bx}} ;
end
else if ( MOD_ID_READ ) begin
if (add_pos == 0 ) DPNT <= iIO[ID_ADD_BIT-1:0] ;
end
end
else if ( {iCLE,iALE}===2'b00 ) begin
if (MOD_SERIAL_DATA_INPUT) begin
if ( DPNT < COL_IN_PAGE ) DPNT <= DPNT + 1 ;
if ( DPNT == COL_IN_PAGE-1 ) DIN_COMPLETE <= 1'b1 ;
if ( ^DPNT === 1'bx ) DPNT <= {COL_BIT{1'bx}} ;
end
end
end
//
// RE signal rising
//
if ( {bRE,iRE,iWE}===3'b011 ) begin
if ( {iCLE,iALE}===2'b00 ) begin
if (MOD_READ_MODE && BUSY_by_read_sched) begin
if ( DPNT < COL_IN_PAGE - 1 ) begin
DPNT <= DPNT + 1 ;
end
else if ( DPNT == COL_IN_PAGE - 1 ) begin
if ( (RADD>>ADD_COL) < {(BLK_BIT+PAG_BIT){1'b1}} ) begin
// DPNT <= (area_c) ? (AREA_SIZ_A + AREA_SIZ_B) : 0 ;
end
end
else if ( ^DPNT === 1'bx ) begin
DPNT <= {COL_BIT{1'bx}} ;
end
end
end
end
end
//------------------------------------------------------------------------------
// Input to Data Register
//------------------------------------------------------------------------------
//
// This function describes that Data input to Data Register in Serial Data Input and
// Data transfer from memory cell to Data Register.
//
// At Data input, DATA0,DATA1,DATA2 and DATA3 are used and corresponding to each
// District.
//
//------------------------------------------------------------------------------
always @(posedge iWE or BUSY_by_read ) begin
//
// WE signal rising
//
if ( {bWE,iWE,iRE}===3'b011 ) begin
if ( {iCE,iCLE,iALE,oRY_BY}===4'b0101 ) begin
if ( ( iIO == CMD_SERIAL_DATA_INPUT ) || ( iIO == CMD_RESET ) ) begin
for ( column=0 ; column < COL_IN_PAGE ; column=column+1 )
begin
if(~program_stack_flag[0]) DATA0[column]<={D_WIDTH{1'b1}} ;
if(~program_stack_flag[1]) DATA1[column]<={D_WIDTH{1'b1}} ;
if(~program_stack_flag[2]) DATA2[column]<={D_WIDTH{1'b1}} ;
if(~program_stack_flag[3]) DATA3[column]<={D_WIDTH{1'b1}} ;
end
end
end
if ( {iCE,iCLE,iALE,oRY_BY}===4'b0001 ) begin
if (MOD_SERIAL_DATA_INPUT) begin
if ( DPNT < COL_IN_PAGE ) begin
if (district==0) DATA0[DPNT] <= iIO ;
if (district==1) DATA1[DPNT] <= iIO ;
if (district==2) DATA2[DPNT] <= iIO ;
if (district==3) DATA3[DPNT] <= iIO ;
end
if ( ^DPNT === 1'bx ) begin
for ( column=0 ; column < COL_IN_PAGE ; column=column+1 )
begin
if (district==0) DATA0[column] <= {D_WIDTH{1'bx}} ;
if (district==1) DATA1[column] <= {D_WIDTH{1'bx}} ;
if (district==2) DATA2[column] <= {D_WIDTH{1'bx}} ;
if (district==3) DATA3[column] <= {D_WIDTH{1'bx}} ;
end
end
end
end
end
//
// BUSY_by_read signal falling
//
if ( {bBUSY_by_read,BUSY_by_read}===2'b10 ) begin
for ( column = 0 ; column < COL_IN_PAGE ; column=column+1 )
DATA0[column] <= {D_WIDTH{1'b1}} ;
end
//
// BUSY_by_read signal rising
//
if ( {bBUSY_by_read,BUSY_by_read}===2'b01 ) begin
if ( BUSY_by_ce ) begin
for ( column = 0 ; column < COL_IN_PAGE ; column=column+1 )
DATA0[column] <=
( ^RADD === 1'bx )
? {D_WIDTH{1'bx}}
: MEM[(RADD[(ADD_BIT-1):(ADD_COL)]<<COL_BIT)+column] ;
end
end
end
//------------------------------------------------------------------------------
// Input to Memory Cell
//------------------------------------------------------------------------------
// Describe the function of Write(Program/Erase) to memory cell.
// mem_write task is formed as following;
// Form: mem_write(mode,address)
//
//------------------------------------------------------------------------------
reg RSTAT_clear ;
always @(posedge Power_on or posedge iWE)
if (Power_on) begin
RSTAT[4:0] = {5'b00000} ;
RSTAT_clear <= 1'b1 ;
mem_init ; // initializing memory
end
else if ( {iCE,iCLE,iRE}===3'b011 )
if ( iIO === CMD_RESET ) begin
RSTAT[4:0] = {5'b00000} ;
RSTAT_clear <= 1'b1 ;
if ( ~BUSY_by_program ) begin
if (program_stack_flag2[0]) mem_write(XPROGRAM,RADD0) ;
if (program_stack_flag2[1]) mem_write(XPROGRAM,RADD1) ;
if (program_stack_flag2[2]) mem_write(XPROGRAM,RADD2) ;
if (program_stack_flag2[3]) mem_write(XPROGRAM,RADD3) ;
program_stack_flag2 <= {DISTRICT_NUM{1'b0}} ;
end
if ( ~BUSY_by_erase ) begin
if (erase_stack_flag2[0]) mem_write(XERASE,RADD0) ;
if (erase_stack_flag2[1]) mem_write(XERASE,RADD1) ;
if (erase_stack_flag2[2]) mem_write(XERASE,RADD2) ;
if (erase_stack_flag2[3]) mem_write(XERASE,RADD3) ;
erase_stack_flag2 <= {DISTRICT_NUM{1'b0}} ;
end
end
else if ( MOD_SERIAL_DATA_INPUT && ( (iIO === CMD_AUTO_PROGRAM_TRUE ) ||
(iIO === CMD_AUTO_PROGRAM_MULTI) ) )
begin
if (iWP) begin
if (RSTAT_clear) RSTAT[4:0] = {5'b00000} ;
if (program_stack_flag[0]) mem_write(PROGRAM,RADD0) ;
if (program_stack_flag[1]) mem_write(PROGRAM,RADD1) ;
if (program_stack_flag[2]) mem_write(PROGRAM,RADD2) ;
if (program_stack_flag[3]) mem_write(PROGRAM,RADD3) ;
if ( iIO === CMD_AUTO_PROGRAM_TRUE ) RSTAT_clear <= 1'b1 ;
if ( iIO === CMD_AUTO_PROGRAM_MULTI ) RSTAT_clear <= 1'b0 ;
end
end
else if ( MOD_AUTO_BLOCK_ERASE_1 && (iIO===CMD_AUTO_BLOCK_ERASE_2) )
begin
if (iWP) begin
RSTAT[4:0] = {5'b00000} ;
if (erase_stack_flag[0]) mem_write(ERASE,RADD0) ;
if (erase_stack_flag[1]) mem_write(ERASE,RADD1) ;
if (erase_stack_flag[2]) mem_write(ERASE,RADD2) ;
if (erase_stack_flag[3]) mem_write(ERASE,RADD3) ;
end
end
//------------------------------------------------------------------------------
// Generate Ready/Busy signal
//------------------------------------------------------------------------------
always @(posedge Power_on or posedge iWE or posedge iRE )
if (Power_on)
begin
BUSY_by_reset <= 1'b1 ;
BUSY_by_read <= 1'b1 ;
BUSY_by_read_sched <= 1'b1 ;
BUSY_by_program <= 1'b1 ;
BUSY_by_erase <= 1'b1 ;
BUSY_by_ce <= 1'b1 ;
end
//
//
//
else if ( {iCE,oRY_BY}==2'b00 ) begin
if ( {bWE,iWE,iRE}==3'b011 ) begin
if ( {iCLE,iALE}===2'b10 ) begin
if ( (iIO == CMD_RESET) && (BUSY_by_reset===1'b1) ) begin
BUSY_by_reset <= 1'b0 ;
if ( MOD_AUTO_BLOCK_ERASE_2 ) begin
BUSY_by_reset <= #(`tRST_erase) 1'b1 ;
BUSY_by_erase <= #(`tRST_erase) 1'b1 ;
end
else if ( MOD_AUTO_PROGRAM ) begin
BUSY_by_reset <= #(`tRST_program) 1'b1 ;
BUSY_by_program <= #(`tRST_program) 1'b1 ;
end
else begin
BUSY_by_reset <= #(`tRST_read) 1'b1 ;
BUSY_by_read <= #(`tRST_read) 1'b1 ;
end
end
end
end
end
else if ( {iCE,oRY_BY}==2'b01 ) begin
if ( {bWE,iWE,iRE}==3'b011 ) begin
if ( {iCLE,iALE}===2'b10 ) begin
if ( iIO === CMD_RESET ) begin
BUSY_by_reset <= #(`tWB) 1'b0 ;
BUSY_by_reset <= #(`tRST_read) 1'b1 ;
end
end
if ( MOD_READ_MODE && ({iCLE,iALE}===2'b01) ) begin
if ( add_pos == 3 ) begin
BUSY_by_read <= #(`tWB) 1'b0 ;
BUSY_by_read <= #(`tR) 1'b1 ;
end
end
if ( MOD_SERIAL_DATA_INPUT && ({iCLE,iALE}===2'b10) ) begin
if ( (iIO === CMD_AUTO_PROGRAM_TRUE) && (iWP === 1'b1) ) begin
BUSY_by_program <= #(`tWB) 1'b0 ;
BUSY_by_program <= #(`tPROG) 1'b1 ;
end
if ( (iIO === CMD_AUTO_PROGRAM_DUMMY) && (iWP === 1'b1) ) begin
BUSY_by_program <= #(`tWB) 1'b0 ;
BUSY_by_program <= #(`tDBSY) 1'b1 ;
end
if ( (iIO === CMD_AUTO_PROGRAM_MULTI) && (iWP === 1'b1) ) begin
BUSY_by_program <= #(`tWB) 1'b0 ;
BUSY_by_program <= #(`tMBPBSY) 1'b1 ;
end
end
if ( MOD_AUTO_BLOCK_ERASE_1 && ({iCLE,iALE}===2'b10) ) begin
if ( (iIO === CMD_AUTO_BLOCK_ERASE_2) && (iWP === 1'b1) ) begin
BUSY_by_erase <= #(`tWB) 1'b0 ;
BUSY_by_erase <= #(`tBERASE) 1'b1 ;
end
end
end
if ( {bRE,iRE,iWE}===3'b011 ) begin
if ( MOD_READ_MODE && ({iCLE,iALE}===2'b00) ) begin
if ( (DPNT==COL_IN_PAGE-1) ) begin
if ( (RADD>>ADD_COL) < {(BLK_BIT+PAG_BIT){1'b1}} ) begin
BUSY_by_read_sched <= 1'b0 ;
end
end
end
end
end
always @( negedge BUSY_by_read ) begin
if ( BUSY_by_read_sched === 1'b0 ) begin
if ( (RADD>>ADD_COL) < {(BLK_BIT+PAG_BIT){1'b1}} ) begin
DPNT <= (area_c) ? (AREA_SIZ_A + AREA_SIZ_B) : 0 ;
RADD <= RADD + (1<<ADD_COL) ;
end
end
end
always @( negedge BUSY_by_read_sched ) begin
#(`tCERY) begin
if ( iCE === 1'b0 ) begin
BUSY_by_read <= #((`tRB)-(`tCERY)) 1'b0 ;
BUSY_by_read <= #((`tR )-(`tCERY)) 1'b1 ;
BUSY_by_read_sched <= #((`tR )-(`tCERY)) 1'b1 ;
end
else begin
BUSY_by_read_sched <= #((`tRB)-(`tCERY)) 1'b1 ;
end
end
end
always @( posedge iCE ) begin
if ( (BUSY_by_read===1'b0) && (BUSY_by_read_sched===1'b0) ) begin
BUSY_by_ce <= 1'b0 ;
BUSY_by_ce <= #(`tCRY) 1'b1 ;
BUSY_by_read <= #(`tCRY-1) 1'b1 ;
BUSY_by_read_sched <= #(`tCRY-1) 1'b1 ;
end
else if ( (BUSY_by_read===1'b0) && (BUSY_by_read_sched===1'b1) ) begin
BUSY_by_ce <= 1'b0 ;
BUSY_by_ce <= #(`tCRY) 1'b1 ;
BUSY_by_read <= #(`tCRY-1) 1'b1 ;
end
else if ( (BUSY_by_read===1'b1) && (BUSY_by_read_sched===1'b0) ) begin
BUSY_by_read_sched <= #(`tCRY) 1'b1 ;
end
end
always @(BUSY_by_reset) bBUSY_by_reset <= BUSY_by_reset ;
always @(BUSY_by_read) bBUSY_by_read <= BUSY_by_read ;
always @(BUSY_by_program) bBUSY_by_program <= BUSY_by_program ;
always @(BUSY_by_erase) bBUSY_by_erase <= BUSY_by_erase ;
always @(BUSY_by_erase) bBUSY_by_ce <= BUSY_by_ce ;
assign oRY_BY = BUSY_by_reset & BUSY_by_read & BUSY_by_program & BUSY_by_erase &
BUSY_by_ce ;
always @( MOD_SERIAL_DATA_INPUT ) begin
DIN_COMPLETE = 1'b0 ;
end
always @( BUSY_by_read ) begin
if ( Reset_on) begin
if ( BUSY_by_read==1'b0 )
read_ok = 1'b0 ;
else
read_ok = 1'b1 ;
end
end
//------------------------------------------------------------------------------
// Status Register (bit8,bit7,bit6)
//------------------------------------------------------------------------------
initial RSTAT[5] <= 1'b0 ; // IO6
always @( oRY_BY ) RSTAT[6] <= oRY_BY ; // IO7
always @( iWP ) RSTAT[7] <= iWP ; // IO8
//------------------------------------------------------------------------------
// Generate output value and output enable signal
//------------------------------------------------------------------------------
reg xRE ;
always @(posedge iRE) begin
xRE <= iRE ;
xRE <= #(`tRHZ-`tOH) 1'b0 ;
end
// output enable signal oIO
assign #(`tOH) oIO = ({iCE,iRE,xRE,iWE}===4'b0001) ? (MOD_STATUS_READ_1)? RSTAT&(8'hc1) :
(MOD_STATUS_READ_2)? RSTAT&(8'hdf) :
(~oRY_BY )?{D_WIDTH{1'bx}}:
(MOD_READ_MODE )? DATA0[DPNT] :
(MOD_ID_READ_1 )? RID1[RADD] :
(MOD_ID_READ_2 )? RID2[RADD] :
{D_WIDTH{1'bx}}
: {D_WIDTH{1'bx}}
;
// tREA == tREAID == tRSTO
wire iCE_d ;
wire iRE_d ;
localbuf #(`tOH,`tREA) localbuf_RE (iRE_d,iRE) ;
localbuf #(`tCHZ,`tCSTO) localbuf_CE (iCE_d,iCE) ;
assign eIO = ( (iCE_d === 1'b0) &&
(iCLE === 1'b0) &&
(iALE === 1'b0) &&
(iRE_d === 1'b0)
) ? 1'b1 : 1'b0 ;
//------------------------------------------------------------------------------
// Function checking Commands
//------------------------------------------------------------------------------
// cmd_check returns '1' in case of valid command,
// '0' in case of invalid command.
//
//------------------------------------------------------------------------------
function cmd_check ;
input [D_WIDTH-1:0] now_val ;
input [D_WIDTH-1:0] new_val ;
begin
case (new_val)
CMD_SERIAL_DATA_INPUT : cmd_check = ( oRY_BY && iWP ) ? 1'b1 : 1'b0 ;
CMD_READ_MODE_1 : cmd_check = ( oRY_BY ) ? 1'b1 : 1'b0 ;
CMD_READ_MODE_2 : cmd_check = ( oRY_BY ) ? 1'b1 : 1'b0 ;
CMD_READ_MODE_3 : cmd_check = ( oRY_BY ) ? 1'b1 : 1'b0 ;
CMD_RESET : cmd_check = 1'b1 ;
CMD_AUTO_PROGRAM_TRUE : cmd_check = ( oRY_BY && iWP ) ? 1'b1 : 1'b0 ;
CMD_AUTO_PROGRAM_DUMMY : cmd_check = ( oRY_BY && iWP ) ? 1'b1 : 1'b0 ;
CMD_AUTO_PROGRAM_MULTI : cmd_check = ( oRY_BY && iWP ) ? 1'b1 : 1'b0 ;
CMD_AUTO_BLOCK_ERASE_1 : cmd_check = ( oRY_BY && iWP ) ? 1'b1 : 1'b0 ;
CMD_AUTO_BLOCK_ERASE_2 : cmd_check = ( oRY_BY && iWP ) ? 1'b1 : 1'b0 ;
CMD_STATUS_READ_1 : cmd_check = 1'b1 ;
CMD_STATUS_READ_2 : cmd_check = 1'b1 ;
CMD_ID_READ_1 : cmd_check = ( oRY_BY ) ? 1'b1 : 1'b0 ;
CMD_ID_READ_2 : cmd_check = ( oRY_BY ) ? 1'b1 : 1'b0 ;
default : begin cmd_check = 1'b0 ;
if (!($test$plusargs("error_disable_00")||
$test$plusargs("error_disable_all")) )
begin
$write("Error: [E-00] ") ;
$write("Unkown Command ") ;
$write("(%h)h ",new_val);
$write("Input Ignore at %0t \n",
$time ) ;
end
end
endcase
end
endfunction
//------------------------------------------------------------------------------
// Task writing memory cells
//------------------------------------------------------------------------------
//
// Form : mem_write(mode,address,purge)
// Write to memory;
// in case mode is PROGRAM, contens of selected Data Register of district are
// transferred to the selected page.
// in case of mode is ERASE, the selected block is erased.
// in case of mode XPROGRAM, the selected page gets unknown value.
// in case of mode XERASE, the selected block gets unknown value.
//
//------------------------------------------------------------------------------
task mem_write ;
input [2:0] mode ;
input [ADD_BIT-1:0] add ;
integer bit ;
integer column ;
integer page ;
integer block ;
integer tmp_add ;
integer failbit ;
integer val ;
reg [1:0] district ;
begin
district = add[15:14] ;
block = add[(ADD_BIT-1):(PAG_BIT+ADD_COL)] ;
scan_bad(block,val) ;
if ( mode == XPROGRAM ) begin
for ( column = 0 ; column < COL_IN_PAGE ; column=column+1 ) begin
tmp_add = (add[(ADD_BIT-1):(ADD_COL)]<<COL_BIT)+column ;
MEM[tmp_add] <= {D_WIDTH{1'bx}} ;
end
end
if ( mode == XERASE ) begin
block_set(block,1'bx) ;
end
if ( (mode == PROGRAM) && (val !== 1) ) begin
for ( column = 0 ; column < COL_IN_PAGE ; column=column+1 ) begin
tmp_add = (add[(ADD_BIT-1):(ADD_COL)]<<COL_BIT)+column ;
scan_fail(tmp_add,failbit) ;
if ( 8'h00 != failbit) begin
RSTAT[0] = 1'b1 ;
RSTAT[district+1] = 1'b1 ;
$display("MSG: address:%x bit:%0b is erase fail ... at %0tns",tmp_add,failbit,$time) ;
end
else begin
failbit = 8'b00000000 ;
end
MEM[tmp_add] <=
(district==0) ? (DATA0[column] & MEM[tmp_add]) ^ failbit :
(district==1) ? (DATA1[column] & MEM[tmp_add]) ^ failbit :
(district==2) ? (DATA2[column] & MEM[tmp_add]) ^ failbit :
(district==3) ? (DATA3[column] & MEM[tmp_add]) ^ failbit :
{D_WIDTH{1'bx}} ;
end
end
if ( (mode == ERASE) && (val !== 1) ) begin
$display("MSG: Block %0d Erase ...",block) ;
for ( page=0 ; page < PAGE_IN_BLOCK ; page = page + 1 ) begin
for ( column=0 ; column < COL_IN_PAGE ; column = column + 1 ) begin
tmp_add = (block<<(PAG_BIT+COL_BIT)) + (page<<(COL_BIT)) + (column) ;
MEM[tmp_add] <= {D_WIDTH{1'b1}} ;
scan_fail(tmp_add,failbit) ;
if ( 8'h00 != failbit) begin
RSTAT[0] = 1'b1 ;
RSTAT[district+1] = 1'b1 ;
$display("MSG: address:%x bit:%0b is erase fail ... at %0tns",tmp_add,failbit,$time) ;
MEM[tmp_add] <= 8'hFF ^ failbit ;
end
end
end
end
end
endtask
//------------------------------------------------------------------------------
// Task Memory Initialize
//------------------------------------------------------------------------------
// If "MemoryInitEnable" defined "1", whole CHIP data "1" except for Bad Block.
//------------------------------------------------------------------------------
task mem_init ;
integer block ;
integer val ;
integer i ;
if ( `MemoryInitEnable ) begin
for ( block = 0 ; block < (1<<BLK_BIT) ; block = block + 1 ) begin
scan_bad(block,val) ;
if (val == 1) begin
block_set(block,1'b0) ;
$display("MSG: Block %0d is Bad Block ...",block) ;
end
else
block_set(block,1'b1) ;
end
end
endtask
//------------------------------------------------------------------------------
// Task making whole 1 Block set
//------------------------------------------------------------------------------
task block_set ;
input [(1<<BLK_BIT)-1:0] block ;
input value ;
integer column ;
integer page ;
integer tmp_add ;
begin
for ( page=0 ; page < PAGE_IN_BLOCK ; page = page + 1 ) begin
for ( column=0 ; column < COL_IN_PAGE ; column = column + 1 ) begin
tmp_add = (block<<(PAG_BIT+COL_BIT)) + (page<<(COL_BIT)) + (column) ;
MEM[tmp_add] <= {D_WIDTH{value}} ;
end
end
end
endtask
//------------------------------------------------------------------------------
// Task scan fail
//------------------------------------------------------------------------------
task scan_fail ;
input [ADD_BIT-1:0] inadd ;
output [7:0] fail_bit ;
integer i ;
begin
fail_bit = 8'h00 ;
// XXXXXX
// for ( i=0 ; i < FAIL_NUM ; i = i + 1 ) begin
// if( inadd == FAIL_ADD[i] )
// fail_bit = FAIL_BIT[i] ;
// end
end
endtask
//------------------------------------------------------------------------------
// Task scan block
//------------------------------------------------------------------------------
task scan_bad ;
input [BLK_BIT-1:0] inadd ;
output val ;
begin
val = 0 ;
end
endtask
//------------------------------------------------------------------------------
// Signal Operation time
//------------------------------------------------------------------------------
always @( WE ) begin
if ( WE==1'b1) begin
rWE = $time ;
fWE2 = fWE ;
end
else begin
fWE = $time ;
end
end
always @( CE ) begin
if ( CE==1'b1 ) begin
rCE = $time ;
end
else begin
fCE = $time ;
end
end
always @( ALE ) begin
if( ALE==1'b1 ) begin
rALE = $time ;
end
else begin
fALE = $time ;
end
end
always @( CLE ) begin
if( CLE==1'b1 ) begin
rCLE = $time ;
end
else begin
fCLE = $time ;
end
end
always @( RE ) begin
if ( RE==1'b1) begin
rRE = $time ;
fRE2 = fRE ;
end
else begin
fRE = $time ;
end
end
always @( RY_BY ) begin
if( RY_BY==1'b1 ) begin
rRY_BY = $time ;
end
else begin
fRY_BY = $time ;
end
end
always @( IO ) begin
rfIO = $time ;
end
always @( WP ) begin
if ( WP==1'b1 ) begin
rWP = $time ;
end
else begin
fWP = $time ;
end
end
// tCH Check
always @( rCE or fCE ) begin
if( $time > 0 ) begin
if ( CE==1'b1 ) begin
if( $time-rWE < `tCH ) begin
$write("Error: %0tns : CE Hold Time (tCH) was not proper.\n",$time) ;
end
end
else if($time-rWE < `tWHC && MOD_STATUS_READ ) begin
$write("Error: %0tns : WE High to CE Low (tWHC) was not proper.\n",$time) ;
end
end
end
// tCLH Check
always @( rCLE or fCLE ) begin
if( $time > 0 ) begin
if( $time-rWE < `tCLH) begin
$write ("Error: %0tns : CLE Hold Time (tCLH/at command) was not proper.\n",$time) ;
end
end
end
// tALH Check
always @( rALE or fALE ) begin
if( $time > 0 ) begin
if( $time-rWE < `tALH) begin
$write ("Error: %0tns : ALE Hold Time (tALH) was not proper.\n",$time) ;
end
end
end
// tDS, tWP, tWH, tWC Check
always @( WE ) begin
if( $time > 0 ) begin
if( WE==1'b1 ) begin
if( $time-rfIO < `tDS) begin
#1;
if (CE === 0)
$write ("Error: %0tns : Data Setup Time (tDS) was not proper.\n",$time) ;
end
if( $time-fWE < `tWP) begin
#1;
if (CE === 0)
$write ("Error: %0tns : Write Pulse width (tWP) was not proper.\n",$time) ;
end
end
else if( WE==1'b0 ) begin
if( $time-rWE < `tWH) begin
$write ("Error: %0tns : WE High Hold Time (tWH) was not proper.\n",$time) ;
end
if( $time-fWE2 < `tWC) begin
$write ("Error: %0tns : Write Cycle Time (tWC) was not proper.\n",$time) ;
end
end
end
end
// tWW Check
always @( fWE ) begin
if( $time > 0 ) begin
if( $time-rWP < `tWW) begin // tWW(High)
$write ("Error: %0tns : WP High to WE Low (tWW) was not proper.\n",$time) ;
end
else if( $time-fWP < `tWW) begin // tWW(Low)
$write ("Error: %0tns : WP Low to WE Low (tWW) was not proper.\n",$time) ;
end
end
end
// tRP, tREH, tRC Check
always @( RE ) begin
if( $time > 0 ) begin
if( RE==1'b1 ) begin
if($time-fRE < `tRP) begin
# 1;
if (CE === 0)
$write("Error: %0tns : Read Pulse width (tRP) was not proper.\n",$time) ;
end
end
else if( RE==1'b0 ) begin
if($time-rRE < `tREH) begin
$write("Error: %0tns : Read High Hold Time (tREH) was not proper.\n",$time) ;
end
if($time-fRE2 < `tRC) begin
$write("Error: %0tns : Read Cycle time (tRC) was not proper.\n",$time) ;
end
end
end
end
// tRR, tWHR, tAR1, tAR2 Check
always @( fRE ) begin
if( $time > 0 ) begin
if($time-rRY_BY < `tRR) begin
$write("Error: %0tns : Ready to RE Falling edge (tRR) was not proper.\n",$time) ;
end
if($time-rWE < `tWHR && MOD_STATUS_READ ) begin
$write("Error: %0tns : WE High to RE Low (tWHR) was not proper.\n",$time) ;
end
if( MOD_ID_READ ) begin
if($time-fALE < `tAR1) begin
if ( CE === 0)
$write("Error: %0tns : ALE Low to RE Low (tAR1) was not proper.\n",$time) ;
end
if($time-fCE < `tCR && (MOD_STATUS_READ==1'b0) ) begin
$write("Error: %0tns : CE Low to RE Low (tCR) was not proper.\n",$time) ;
end
end
else if( MOD_READ_MODE ) begin
if($time-fALE < `tAR2) begin
$write("Error: %0tns : ALE Low to RE Low (tAR2) was not proper.\n",$time) ;
end
end
end
end
// tDH Check
always @( IO ) begin
if( $time > 0 ) begin
if( $time-rWE < `tDH ) begin
#1;
if (CE === 0)
$write("Error: %0tns : Data Hold time (tDH) was not proper.\n",$time) ;
end
end
end
// Setup/Hold timing
// tCLS Check
always @( rCLE or fCLE) begin
if( $time > 0 && WE==1'b0 && $time!=fWE ) begin
if( ALE==1'b1 || (MOD_SERIAL_DATA_INPUT && add_pos > 0) ) begin
if( CLE==1'b0 )
$write("Error: %0tns : CLE Setup Time (tCLS/at address or data in) was not proper.\n",$time) ; // ADD
end
else begin
if( CLE==1'b1 )
$write("Error: %0tns : CLE Setup Time (tCLS/at command) was not proper.\n",$time) ; // COM
end
end
end
// tCLH Check
always @( rCLE or fCLE) begin
if( $time > 0 && WE==1'b0 && $time!=fWE ) begin
if( ALE==1'b1 || (MOD_SERIAL_DATA_INPUT && add_pos > 0) ) begin
if( $time-rWE < `tCLH )
$write("Error: %0tns : CLE Hold Time (tCLH/at address or data in) was not proper.\n",$time) ;
end
else begin
if( CLE==1'b0 )
$write("Error: %0tns : CLE Hold Time (tCLH/at command) was not proper.\n",$time) ;
end
end
end
// tALS Check
always @( rALE or fALE) begin
if( $time > 0 && WE==1'b0 && $time!=fWE ) begin
if( CLE==1'b1 || (MOD_SERIAL_DATA_INPUT && add_pos > 0) ) begin
if( ALE==1'b0 )
$write("Error: %0tns : ALE Setup Time (tALS/at command or data in) was not proper.\n",$time) ;
end
else begin
if( ALE==1'b1 )
$write("Error: %0tns : ALE Setup Time (tALS/at address) was not proper.\n",$time) ;
end
end
end
// tALH Check
always @( rALE or fALE) begin
if( $time > 0 && WE==1'b0 && $time!=fWE ) begin
if( CLE==1'b1 || (MOD_SERIAL_DATA_INPUT && add_pos > 0) ) begin
if( ALE==1'b1 )
$write("Error: %0tns : ALE Hold Time (tALH/at command or data in) was not proper.\n",$time) ;
end
else begin
if( ALE==1'b0 )
$write("Error: %0tns : ALE Hold Time (tALH/at address) was not proper.\n",$time) ;
end
end
end
// tCS Check
always @( fCE) begin
if( $time > 0 && WE==1'b0 && $time!=fWE ) begin
$write("Error: %0tns : CE Setup Time (tCS) was not proper.\n",$time) ;
end
end
// tCH Check
always @( posedge CE) begin
if( $time > 0 && WE==1'b0 ) begin
$write("Error: %0tns : CE Hold Time (tCH) was not proper.\n",$time) ;
end
end
// tAR1, tAR2 Check
always @( fALE ) begin
if( $time > 0 && RE==1'b0 && $time!=fRE )begin
if( MOD_ID_READ ) begin
$write("Error: %0tns : ALE Low to RE Low (tAR1/at ID Read) was not proper.\n",$time) ;
end
else if( MOD_READ_MODE ) begin
$write("Error: %0tns : ALE Low to RE Low (tAR2/at Read Mode) was not proper.\n",$time) ;
end
end
end
// tCR Check
always @( fCE ) begin
if( $time > 0 && RE==1'b0 && $time!=fRE )begin
if( MOD_ID_READ ) begin
$write("Error: %0tns : CE Low to RE Low (tCR/at ID Read) was not proper.\n",$time) ;
end
end
end
// tCLS Check
always @( fCLE ) begin
if( $time > 0 && RE==1'b0 && $time!=fRE )begin
if( MOD_STATUS_READ ) begin
$write("Error: %0tns : CLE Setup Time (tCLS/at Status Read) was not proper.\n",$time); // ST READ
end
end
end
//Warning Message
always @( negedge RE ) begin
if( MOD_READ_MODE ) begin
if( MOD_STATUS_READ==1'b0 ) begin
if( !read_ok ) begin
$write("Error: %0tns : RE should be input after address input.\n",$time) ;
end
if( RY_BY==1'b0 ) begin
$write("Error: %0tns : RE should be fix to 'H' while the device is in busy state.\n",$time) ;
end
end
end
end
// tCLS Check
always @( posedge WE ) begin
if( CE==1'b0 && RE==1'b1 && CLE==1'b0 && ALE==1'b0 && DIN_COMPLETE==1'b1 ) begin
$write("Error: %0tns : When reached last column address, /WE should not be toggle.\n",$time) ;
end
end
// tCLS Check
always @( posedge CE ) begin
if( MOD_READ_MODE ) begin
// frank;
// this is bogus, it does not handle terminations;
// XXX $write("Error: %0tns : /CE was set to 'H' while the device was in read operation.\n",$time) ;
$write("Warning: %0tns : cmd terminated\n", $time);
end
end
// tCLS Check
always @( negedge RE or posedge CLE or posedge ALE ) begin
if( CE==1'b0 && RE==1'b0 && (MOD_STATUS_READ==1'b0) ) begin
if( CLE!=1'b0 || ALE!=1'b0 ) begin
$write("Error: %0tns : Illegal operation. CLE=0 and ALE=0 was not selected in read mode.\n",$time) ;
read_flg = 1'b1 ;
end
end
end
always @(IO) begin
if ( {IO} === {D_WIDTH{1'bz}})
IO_hiz = $time ;
end
`ifdef TOSHIBA_ORIGINAL
always @( fRE ) begin
if( ($time > 0 && {IO}!=={D_WIDTH{1'bz}}) ) begin
$write ("Error: %0tns: Timing violation tIR\n",$time) ;
end
end
`endif
endmodule
module localbuf (z,a) ;
parameter rt = 0 ;
parameter ft = 0 ;
output z ;
input a ;
reg z ;
always @ (posedge a) z <= #(rt) a ;
always @ (negedge a) z <= #(ft) a ;
endmodule