at_cc.v 16.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
/**************************************************************************
 *                                                                        *
 *               Copyright (C) 1994, Silicon Graphics, Inc.               *
 *                                                                        *
 *  These coded instructions, statements, and computer programs  contain  *
 *  unpublished  proprietary  information of Silicon Graphics, Inc., and  *
 *  are protected by Federal copyright  law.  They  may not be disclosed  *
 *  to  third  parties  or copied or duplicated in any form, in whole or  *
 *  in part, without the prior written consent of Silicon Graphics, Inc.  *
 *                                                                        *
 *************************************************************************/

// $Id: at_cc.v,v 1.1 2002/03/28 00:26:12 berndt Exp $

////////////////////////////////////////////////////////////////////////
//
// Project Reality
//
// module:      at_cc
// description: Attribute buffers for cc unit. Primitives data updates
//		the cycle before it is needed (via mux), but is only used
//		the following cycle. Hardware synchronized attribute data
//		is updated the cycle of the attribute (via mux), but is
//		only used the following cycle, which lines up with the
//		first cycle of a following primitive. QTV will barf on
//		this, since it will see the update cycle as not making
//		timing, while only the following cycle really matters.
//		Unsynchronized attributes update immediately, producing
//		trash for one cycle, followed by good data the next cycle.
//		The csim should generate garbage (0xDEADBEEF, for example)
//		during this trashed update cycle. Some logically synced
//		data require no special buffering because the timing
//		just works out (scissor, the EW dx's and dy's). Unsynced
//		attributes must be maintained by software, using the
//		sync_tile and sync_pipe commands after the last primitive
//		before any unsynced attribute update commands if necessary.
//
// designer:    Phil Gossett
// date:        6/9/95
//
////////////////////////////////////////////////////////////////////////

module at_cc (gclk, reset_l,
	cs_st_prim, cs_st_attr, cs_cmd, cs_ew_d,
	st_dxr, st_dxg, st_dxb, st_dxa,
	st_dyr, st_dyg, st_dyb, st_dya,
	combine_mode, env_color, prim_color,
	convert, key_r, key_gb, noise);

input gclk;
input reset_l;
input cs_st_prim;
input cs_st_attr;
input [5:0] cs_cmd;
input [63:0] cs_ew_d;

output [21:0] st_dxr;		// s10.11 (quad buffer)
output [21:0] st_dxg;		// s10.11 (quad buffer)
output [21:0] st_dxb;		// s10.11 (quad buffer)
output [21:0] st_dxa;		// s10.11 (quad buffer)
output [12:0] st_dyr;		// s10.2  (triple buffer)
output [12:0] st_dyg;		// s10.2  (triple buffer)
output [12:0] st_dyb;		// s10.2  (triple buffer)
output [12:0] st_dya;		// s10.2  (triple buffer)
output [55:0] combine_mode;	// 3c 55:0		 (unsynced)
output [55:0] env_color;	// 3b 31:0		 (unsynced)
output [55:0] prim_color;	// 3a 47:40, 39:0	 (quad buffer)
output [55:0] convert;		// 2c 53:0		 (unsynced)
output [55:0] key_r;		// 2b 27:0		 (unsynced)
output [55:0] key_gb;		// 2a 55:0		 (unsynced)
output [8:0] noise;		// pseudo-random noise	 (shift registers)

reg [28:1] rand29b;		// recirculating shift register
reg [27:1] rand28b;		// recirculating shift register
reg [26:1] rand27b;		// recirculating shift register
reg rand29q;			// recirculating shift register (ls bit)
reg rand28q;			// recirculating shift register (ls bit)
reg rand27q;			// recirculating shift register (ls bit)

wire [63:0] d_lat;		// delayed latched input
wire [7:0] code_0d;		// control pipeline input

reg [2:0] code_1d;		// pipeline for control
reg [2:0] code_2d;
reg [2:0] code_3d;
reg [2:0] code_4d;
reg [2:0] code_5d;
reg [2:0] code_6d;
reg [2:0] code_7d;
reg [2:0] code_8d;
reg [2:0] code_9d;
reg [2:0] code_10d;
reg [2:0] code_11d;
reg [2:0] code_12d;
reg [2:0] code_13d;
reg [2:0] code_14d;
reg [2:0] code_15d;
reg [2:0] code_16d;
reg [2:0] code_17d;
reg [2:0] code_18d;
reg [2:0] code_19d;
reg [2:0] code_20d;
reg [2:0] code_21d;
reg [2:0] code_22d;
reg [2:0] code_23d;
reg [2:0] code_24d;
reg [2:0] code_25d;
reg [2:0] code_26d;
reg [2:0] code_27d;
reg [2:0] code_28d;
reg [2:0] code_29d;
reg [2:0] code_30d;
reg [2:0] code_31d;
reg [2:0] code_32d;
reg [2:0] code_33d;
reg [2:0] code_34d;
reg [2:0] code_35d;
reg [2:0] code_36d;
reg [2:0] code_37d;
reg [2:0] code_38d;
reg [2:0] code_39d;

wire [1:0] dxr_g;	// latch enables
wire [1:0] dxr_a_g;
wire [1:0] dxr_b_g;
wire [1:0] dxr_c_g;
wire [1:0] dxr_d_g;
wire [1:0] dxg_g;
wire [1:0] dxg_a_g;
wire [1:0] dxg_b_g;
wire [1:0] dxg_c_g;
wire [1:0] dxg_d_g;
wire [1:0] dxb_g;
wire [1:0] dxb_a_g;
wire [1:0] dxb_b_g;
wire [1:0] dxb_c_g;
wire [1:0] dxb_d_g;
wire [1:0] dxa_g;
wire [1:0] dxa_a_g;
wire [1:0] dxa_b_g;
wire [1:0] dxa_c_g;
wire [1:0] dxa_d_g;
wire [1:0] dyr_g;
wire [1:0] dyr_a_g;
wire [1:0] dyr_b_g;
wire [1:0] dyr_c_g;
wire [1:0] dyg_g;
wire [1:0] dyg_a_g;
wire [1:0] dyg_b_g;
wire [1:0] dyg_c_g;
wire [1:0] dyb_g;
wire [1:0] dyb_a_g;
wire [1:0] dyb_b_g;
wire [1:0] dyb_c_g;
wire [1:0] dya_g;
wire [1:0] dya_a_g;
wire [1:0] dya_b_g;
wire [1:0] dya_c_g;
wire cm_g;
wire en_g;
wire pc_g;
wire pc_a_g;
wire pc_b_g;
wire pc_c_g;
wire pc_d_g;
wire cv_g;
wire kr_g;
wire kg_g;

wire [31:0] st_dxr_a;	// latch outputs
wire [31:0] st_dxr_b;
wire [31:0] st_dxr_c;
wire [31:0] st_dxr_d;
wire [31:0] st_dxg_a;
wire [31:0] st_dxg_b;
wire [31:0] st_dxg_c;
wire [31:0] st_dxg_d;
wire [31:0] st_dxb_a;
wire [31:0] st_dxb_b;
wire [31:0] st_dxb_c;
wire [31:0] st_dxb_d;
wire [31:0] st_dxa_a;
wire [31:0] st_dxa_b;
wire [31:0] st_dxa_c;
wire [31:0] st_dxa_d;
wire [31:0] st_dyr_a;
wire [31:0] st_dyr_b;
wire [31:0] st_dyr_c;
wire [31:0] st_dyg_a;
wire [31:0] st_dyg_b;
wire [31:0] st_dyg_c;
wire [31:0] st_dyb_a;
wire [31:0] st_dyb_b;
wire [31:0] st_dyb_c;
wire [31:0] st_dya_a;
wire [31:0] st_dya_b;
wire [31:0] st_dya_c;
wire [55:0] combine_mode_a;
wire [55:0] env_color_a;
wire [55:0] prim_color_a;
wire [55:0] prim_color_b;
wire [55:0] prim_color_c;
wire [55:0] prim_color_d;
wire [55:0] convert_a;
wire [55:0] key_r_a;
wire [55:0] key_gb_a;

wire dxr_s;	// read counter increment strobes
wire dxg_s;
wire dxb_s;
wire dxa_s;
wire dyr_s;
wire dyg_s;
wire dyb_s;
wire dya_s;
wire pcm_s;
wire pcl_s;

wire [1:0] dxr_sel;	// read counter selects
wire [1:0] dxg_sel;
wire [1:0] dxb_sel;
wire [1:0] dxa_sel;
wire [1:0] dyr_sel;
wire [1:0] dyg_sel;
wire [1:0] dyb_sel;
wire [1:0] dya_sel;
wire [1:0] pcm_sel;
wire [1:0] pcl_sel;

wire reset;

// invert reset (this week)
assign reset = ~reset_l;

// 3 bits worth of pseudo-random number generators
always @(posedge gclk)
begin
	// 2^29 - 1 = 536,870,911 = 233*1103*2089     = 8 seconds:
	rand29b[28:1] <= {rand29b[27:1],rand29q};
	// 2^28 - 1 = 268,435,455 = 3*5*29*43*113*127 = 4 seconds:
	rand28b[27:1] <= {rand28b[26:1],rand28q};
	// 2^27 - 1 = 134,217,727 = 7*73*262657       = 2 seconds:
	rand27b[26:1] <= {rand27b[25:1],rand27q};
end

// 3 bits worth of pseudo-random number generators (ls bit)
always @(posedge gclk or posedge reset)
begin
	if (reset == 1'b1)
		begin
		rand29q <= 1'b1;
		rand28q <= 1'b1;
		rand27q <= 1'b1;
		end
	else
		begin
		// 2^29 - 1 = 536,870,911 = 233*1103*2089     = 8 seconds:
		rand29q <= rand29b[28]^rand29b[1];
		// 2^28 - 1 = 268,435,455 = 3*5*29*43*113*127 = 4 seconds:
		rand28q <= rand28b[27]^rand28b[2];
		// 2^27 - 1 = 134,217,727 = 7*73*262657       = 2 seconds:
		rand27q <= rand27b[26]^rand27b[4]^rand27b[1]^rand27q;
		end
end

// bias to zero by adding one less than lsb of random number
assign noise = {rand29q,rand28q,rand27q,6'b100000};

// control pipeline input
assign code_0d = {cs_st_prim,cs_st_attr,cs_cmd};

// pipeline for control
always @(posedge gclk)
begin
	code_1d <= {code_0d[7], (code_0d[6:0] == 7'h7a),  // prim color
				(code_0d[6:0] == 7'h6e)}; // prim depth
	code_2d <= code_1d;
	code_3d <= code_2d;
	code_4d <= code_3d;
	code_5d <= code_4d;
	code_6d <= code_5d;
	code_7d <= code_6d;
	code_8d <= code_7d;
	code_9d <= code_8d;
	code_10d <= code_9d;
	code_11d <= code_10d;
	code_12d <= code_11d;
	code_13d <= code_12d;
	code_14d <= code_13d;
	code_15d <= code_14d;
	code_16d <= code_15d;
	code_17d <= code_16d;
	code_18d <= code_17d;
	code_19d <= code_18d;
	code_20d <= code_19d;
	code_21d <= code_20d;
	code_22d <= code_21d;
	code_23d <= code_22d;
	code_24d <= code_23d;
	code_25d <= code_24d;
	code_26d <= code_25d;
	code_27d <= code_26d;
	code_28d <= code_27d;
	code_29d <= code_28d;
	code_30d <= code_29d;
	code_31d <= code_30d;
	code_32d <= code_31d;
	code_33d <= code_32d;
	code_34d <= code_33d;
	code_35d <= code_34d;
	code_36d <= code_35d;
	code_37d <= code_36d;
	code_38d <= code_37d;
	code_39d <= code_38d;
end

// generate latch enables for single buffers
assign dxr_g[1] = code_11d[2];
assign dxr_g[0] = code_10d[2];
assign dxg_g[1] = code_11d[2];
assign dxg_g[0] = code_10d[2];
assign dxb_g[1] = code_9d[2];
assign dxb_g[0] = code_8d[2];
assign dxa_g[1] = code_9d[2];
assign dxa_g[0] = code_8d[2];
assign dyr_g[1] = code_20d[2];
assign dyr_g[0] = code_19d[2];
assign dyg_g[1] = code_20d[2];
assign dyg_g[0] = code_19d[2];
assign dyb_g[1] = code_18d[2];
assign dyb_g[0] = code_17d[2];
assign dya_g[1] = code_18d[2];
assign dya_g[0] = code_17d[2];
assign cm_g     = (code_0d[6:0] == 7'h7c);
assign en_g     = (code_0d[6:0] == 7'h7b);
assign pc_g     = (code_0d[6:0] == 7'h7a);
assign cv_g     = (code_0d[6:0] == 7'h6c);
assign kr_g     = (code_0d[6:0] == 7'h6b);
assign kg_g     = (code_0d[6:0] == 7'h6a);

// generate latch enables for multi buffers
at_ctw4 ctdxrmg	(.clk(gclk), .rst(reset), .enb(dxr_g[1]),
	 .a(dxr_a_g[1]), .b(dxr_b_g[1]), .c(dxr_c_g[1]), .d(dxr_d_g[1]));
at_ctw4 ctdxrlg	(.clk(gclk), .rst(reset), .enb(dxr_g[0]),
	 .a(dxr_a_g[0]), .b(dxr_b_g[0]), .c(dxr_c_g[0]), .d(dxr_d_g[0]));
at_ctw4 ctdxgmg	(.clk(gclk), .rst(reset), .enb(dxg_g[1]),
	 .a(dxg_a_g[1]), .b(dxg_b_g[1]), .c(dxg_c_g[1]), .d(dxg_d_g[1]));
at_ctw4 ctdxglg	(.clk(gclk), .rst(reset), .enb(dxg_g[0]),
	 .a(dxg_a_g[0]), .b(dxg_b_g[0]), .c(dxg_c_g[0]), .d(dxg_d_g[0]));
at_ctw4 ctdxbmg	(.clk(gclk), .rst(reset), .enb(dxb_g[1]),
	 .a(dxb_a_g[1]), .b(dxb_b_g[1]), .c(dxb_c_g[1]), .d(dxb_d_g[1]));
at_ctw4 ctdxblg	(.clk(gclk), .rst(reset), .enb(dxb_g[0]),
	 .a(dxb_a_g[0]), .b(dxb_b_g[0]), .c(dxb_c_g[0]), .d(dxb_d_g[0]));
at_ctw4 ctdxamg	(.clk(gclk), .rst(reset), .enb(dxa_g[1]),
	 .a(dxa_a_g[1]), .b(dxa_b_g[1]), .c(dxa_c_g[1]), .d(dxa_d_g[1]));
at_ctw4 ctdxalg	(.clk(gclk), .rst(reset), .enb(dxa_g[0]),
	 .a(dxa_a_g[0]), .b(dxa_b_g[0]), .c(dxa_c_g[0]), .d(dxa_d_g[0]));
at_ctw3 ctdyrmg	(.clk(gclk), .rst(reset), .enb(dyr_g[1]),
	 .a(dyr_a_g[1]), .b(dyr_b_g[1]), .c(dyr_c_g[1]));
at_ctw3 ctdyrlg	(.clk(gclk), .rst(reset), .enb(dyr_g[0]),
	 .a(dyr_a_g[0]), .b(dyr_b_g[0]), .c(dyr_c_g[0]));
at_ctw3 ctdygmg	(.clk(gclk), .rst(reset), .enb(dyg_g[1]),
	 .a(dyg_a_g[1]), .b(dyg_b_g[1]), .c(dyg_c_g[1]));
at_ctw3 ctdyglg	(.clk(gclk), .rst(reset), .enb(dyg_g[0]),
	 .a(dyg_a_g[0]), .b(dyg_b_g[0]), .c(dyg_c_g[0]));
at_ctw3 ctdybmg	(.clk(gclk), .rst(reset), .enb(dyb_g[1]),
	 .a(dyb_a_g[1]), .b(dyb_b_g[1]), .c(dyb_c_g[1]));
at_ctw3 ctdyblg	(.clk(gclk), .rst(reset), .enb(dyb_g[0]),
	 .a(dyb_a_g[0]), .b(dyb_b_g[0]), .c(dyb_c_g[0]));
at_ctw3 ctdyamg	(.clk(gclk), .rst(reset), .enb(dya_g[1]),
	 .a(dya_a_g[1]), .b(dya_b_g[1]), .c(dya_c_g[1]));
at_ctw3 ctdyalg	(.clk(gclk), .rst(reset), .enb(dya_g[0]),
	 .a(dya_a_g[0]), .b(dya_b_g[0]), .c(dya_c_g[0]));
at_ctw4 pcg	(.clk(gclk), .rst(reset), .enb(pc_g),
	 .a(pc_a_g), .b(pc_b_g), .c(pc_c_g), .d(pc_d_g));

// instanciated latches
at_latch64 dlat   (.clkn( gclk),   .i(cs_ew_d), .z(d_lat));
at_latch32 sdxra (.clk(gclk),.g(dxr_a_g),.i({2{d_lat[31:16]}}),.z(st_dxr_a));
at_latch32 sdxrb (.clk(gclk),.g(dxr_b_g),.i({2{d_lat[31:16]}}),.z(st_dxr_b));
at_latch32 sdxrc (.clk(gclk),.g(dxr_c_g),.i({2{d_lat[31:16]}}),.z(st_dxr_c));
at_latch32 sdxrd (.clk(gclk),.g(dxr_d_g),.i({2{d_lat[31:16]}}),.z(st_dxr_d));
at_latch32 sdxga (.clk(gclk),.g(dxg_a_g),.i({2{d_lat[15: 0]}}),.z(st_dxg_a));
at_latch32 sdxgb (.clk(gclk),.g(dxg_b_g),.i({2{d_lat[15: 0]}}),.z(st_dxg_b));
at_latch32 sdxgc (.clk(gclk),.g(dxg_c_g),.i({2{d_lat[15: 0]}}),.z(st_dxg_c));
at_latch32 sdxgd (.clk(gclk),.g(dxg_d_g),.i({2{d_lat[15: 0]}}),.z(st_dxg_d));
at_latch32 sdxba (.clk(gclk),.g(dxb_a_g),.i({2{d_lat[31:16]}}),.z(st_dxb_a));
at_latch32 sdxbb (.clk(gclk),.g(dxb_b_g),.i({2{d_lat[31:16]}}),.z(st_dxb_b));
at_latch32 sdxbc (.clk(gclk),.g(dxb_c_g),.i({2{d_lat[31:16]}}),.z(st_dxb_c));
at_latch32 sdxbd (.clk(gclk),.g(dxb_d_g),.i({2{d_lat[31:16]}}),.z(st_dxb_d));
at_latch32 sdxaa (.clk(gclk),.g(dxa_a_g),.i({2{d_lat[15: 0]}}),.z(st_dxa_a));
at_latch32 sdxab (.clk(gclk),.g(dxa_b_g),.i({2{d_lat[15: 0]}}),.z(st_dxa_b));
at_latch32 sdxac (.clk(gclk),.g(dxa_c_g),.i({2{d_lat[15: 0]}}),.z(st_dxa_c));
at_latch32 sdxad (.clk(gclk),.g(dxa_d_g),.i({2{d_lat[15: 0]}}),.z(st_dxa_d));
at_latch32 sdyra (.clk(gclk),.g(dyr_a_g),.i({2{d_lat[31:16]}}),.z(st_dyr_a));
at_latch32 sdyrb (.clk(gclk),.g(dyr_b_g),.i({2{d_lat[31:16]}}),.z(st_dyr_b));
at_latch32 sdyrc (.clk(gclk),.g(dyr_c_g),.i({2{d_lat[31:16]}}),.z(st_dyr_c));
at_latch32 sdyga (.clk(gclk),.g(dyg_a_g),.i({2{d_lat[15: 0]}}),.z(st_dyg_a));
at_latch32 sdygb (.clk(gclk),.g(dyg_b_g),.i({2{d_lat[15: 0]}}),.z(st_dyg_b));
at_latch32 sdygc (.clk(gclk),.g(dyg_c_g),.i({2{d_lat[15: 0]}}),.z(st_dyg_c));
at_latch32 sdyba (.clk(gclk),.g(dyb_a_g),.i({2{d_lat[31:16]}}),.z(st_dyb_a));
at_latch32 sdybb (.clk(gclk),.g(dyb_b_g),.i({2{d_lat[31:16]}}),.z(st_dyb_b));
at_latch32 sdybc (.clk(gclk),.g(dyb_c_g),.i({2{d_lat[31:16]}}),.z(st_dyb_c));
at_latch32 sdyaa (.clk(gclk),.g(dya_a_g),.i({2{d_lat[15: 0]}}),.z(st_dya_a));
at_latch32 sdyab (.clk(gclk),.g(dya_b_g),.i({2{d_lat[15: 0]}}),.z(st_dya_b));
at_latch32 sdyac (.clk(gclk),.g(dya_c_g),.i({2{d_lat[15: 0]}}),.z(st_dya_c));
at_latch56 cma (.clk(gclk), .g(  cm_g), .i(d_lat[55:0]), .z(combine_mode_a));
at_latch56 ena (.clk(gclk), .g(  en_g), .i(d_lat[55:0]), .z(env_color_a));
at_latch56 pca (.clk(gclk), .g(pc_a_g), .i(d_lat[55:0]), .z(prim_color_a));
at_latch56 pcb (.clk(gclk), .g(pc_b_g), .i(d_lat[55:0]), .z(prim_color_b));
at_latch56 pcc (.clk(gclk), .g(pc_c_g), .i(d_lat[55:0]), .z(prim_color_c));
at_latch56 pcd (.clk(gclk), .g(pc_d_g), .i(d_lat[55:0]), .z(prim_color_d));
at_latch56 cva (.clk(gclk), .g(  cv_g), .i(d_lat[55:0]), .z(convert_a));
at_latch56 kra (.clk(gclk), .g(  kr_g), .i(d_lat[55:0]), .z(key_r_a));
at_latch56 kga (.clk(gclk), .g(  kg_g), .i(d_lat[55:0]), .z(key_gb_a));

// generate strobes for incrementing read pointers
assign dxr_s   = code_37d[2];				// 39
assign dxg_s   = code_37d[2];				// 39
assign dxb_s   = code_37d[2];				// 39
assign dxa_s   = code_37d[2];				// 39
assign dyr_s   = code_37d[2];				// 39
assign dyg_s   = code_37d[2];				// 39
assign dyb_s   = code_37d[2];				// 39
assign dya_s   = code_37d[2];				// 39
assign pcm_s   = code_26d[1];				// 27
assign pcl_s   = code_39d[1];				// 40

// generate read pointers for multi buffers
at_ctr4 ctdxrs	(.clk(gclk), .rst(reset), .enb(dxr_s), .z(dxr_sel));
at_ctr4 ctdxgs	(.clk(gclk), .rst(reset), .enb(dxg_s), .z(dxg_sel));
at_ctr4 ctdxbs	(.clk(gclk), .rst(reset), .enb(dxb_s), .z(dxb_sel));
at_ctr4 ctdxas	(.clk(gclk), .rst(reset), .enb(dxa_s), .z(dxa_sel));
at_ctr3 ctdyrs	(.clk(gclk), .rst(reset), .enb(dyr_s), .z(dyr_sel));
at_ctr3 ctdygs	(.clk(gclk), .rst(reset), .enb(dyg_s), .z(dyg_sel));
at_ctr3 ctdybs	(.clk(gclk), .rst(reset), .enb(dyb_s), .z(dyb_sel));
at_ctr3 ctdyas	(.clk(gclk), .rst(reset), .enb(dya_s), .z(dya_sel));
at_ctr4 pcms	(.clk(gclk), .rst(reset), .enb(pcm_s), .z(pcm_sel));
at_ctr4 pcls	(.clk(gclk), .rst(reset), .enb(pcl_s), .z(pcl_sel));

// read latches with bit assignments and padding (unused latches eaten)
assign st_dxr =  dxr_sel[1] ?	(dxr_sel[0] ?	st_dxr_d[26:5] : // 10.11
						st_dxr_c[26:5]) :
				(dxr_sel[0] ?	st_dxr_b[26:5] :
						st_dxr_a[26:5]);
assign st_dxg =  dxg_sel[1] ?	(dxg_sel[0] ?	st_dxg_d[26:5] :
						st_dxg_c[26:5]) :
				(dxg_sel[0] ?	st_dxg_b[26:5] :
						st_dxg_a[26:5]);
assign st_dxb =  dxb_sel[1] ?	(dxb_sel[0] ?	st_dxb_d[26:5] :
						st_dxb_c[26:5]) :
				(dxb_sel[0] ?	st_dxb_b[26:5] :
						st_dxb_a[26:5]);
assign st_dxa =  dxa_sel[1] ?	(dxa_sel[0] ?	st_dxa_d[26:5] :
						st_dxa_c[26:5]) :
				(dxa_sel[0] ?	st_dxa_b[26:5] :
						st_dxa_a[26:5]);
assign st_dyr = dyr_sel[1] ?			st_dyr_c[26:14] : // 10.2
				(dyr_sel[0] ?	st_dyr_b[26:14] :
						st_dyr_a[26:14]);
assign st_dyg = dyg_sel[1] ?			st_dyg_c[26:14] :
				(dyg_sel[0] ?	st_dyg_b[26:14] :
						st_dyg_a[26:14]);
assign st_dyb = dyb_sel[1] ?			st_dyb_c[26:14] :
				(dyb_sel[0] ?	st_dyb_b[26:14] :
						st_dyb_a[26:14]);
assign st_dya = dya_sel[1] ?			st_dya_c[26:14] :
				(dya_sel[0] ?	st_dya_b[26:14] :
						st_dya_a[26:14]);
assign combine_mode = combine_mode_a[55:0];
assign env_color = env_color_a[31:0];
assign prim_color[55:40] = pcm_sel[1] ?
				(pcm_sel[0] ?	prim_color_d[47:40] :
						prim_color_c[47:40]) :
				(pcm_sel[0] ?	prim_color_b[47:40] :
						prim_color_a[47:40]);
assign prim_color[39:0] =  pcl_sel[1] ?
				(pcl_sel[0] ?	prim_color_d[39:0] :
						prim_color_c[39:0]) :
				(pcl_sel[0] ?	prim_color_b[39:0] :
						prim_color_a[39:0]);
assign convert = convert_a[53:0];
assign key_r = key_r_a[27:0];
assign key_gb = key_gb_a[55:0];

endmodule // at_cc