ewctr.v 14.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
/**************************************************************************
 *                                                                        *
 *               Copyright (C) 1994, Silicon Graphics, Inc.               *
 *                                                                        *
 *  These coded instructions, statements, and computer programs  contain  *
 *  unpublished  proprietary  information of Silicon Graphics, Inc., and  *
 *  are protected by Federal copyright  law.  They  may not be disclosed  *
 *  to  third  parties  or copied or duplicated in any form, in whole or  *
 *  in part, without the prior written consent of Silicon Graphics, Inc.  *
 *                                                                        *
 *************************************************************************/
// $Id: ewctr.v,v 1.1 2002/03/28 00:26:13 berndt Exp $
   /////////////////////////////////////////////////////////////////////////
   //
   // Project Reality
   //
   // module:      ewctr
   // description: control module for edge walker
   //
   // designer:    Mike M. Cai  5/11/94
   //
   /////////////////////////////////////////////////////////////////////////
module ewctr(  // outputs
      	       	  prim_busy,
		  ew_cv_newspan, ew_ms_length,
		  ew_ep_startspan, 
		  ld_xmh, ld_dxmdy, ld_dxhdy, ld_dxldy,
		  switch_xl, ld_y, count_y, shift_xval,
		  sel_xval,
		  ld_xmajor, 
		  clear_allxgemax, // clear_allxlessmin is same as clear_allxgemax
		  clear_xminor,
		  ld_a,
		  ra_addr, rb_addr,
		  wa_addr, wde_addr, wen_a, wen_de,
		  add_clear, add32b,
		  shuffle, noshuffle,
		  sel_dydx,
		  ld_x_frac,
		  ew_stall_attr, ew_stall_x,
		  start_mult, addr_newspan,
		  cmp_cross_valid,
      	       	  // inputs
		  x_major, x_sc_max, x_sc_min,
		  allxlmin, allxgemax,
		  end_prim_y, equal_ym, allx_invalid,
      	       	  left_xmajor, left_xminor,
		  sign_dxhdy, //sign_dxmdy, sign_dxldy,
		  cs_ew_newprim, 
		  load_cmd, load_cmd_scissor,
		  load_cmd_tlut,
		  cycle_type, texel_size, pixel_size,
      	       	  sc_field, odd_line, y_cur_lsb, flush,
		  reset_l, gclk);
// outputs
output 	       	  prim_busy;
output	       	  ew_cv_newspan;
output [11:0]  	  ew_ms_length;
output	       	  ew_ep_startspan;
output		  ld_xmh, ld_dxmdy, ld_dxhdy, ld_dxldy;
output		  switch_xl, ld_y, count_y, shift_xval;
output		  sel_xval;
output		  ld_xmajor ;
output		  clear_allxgemax;
output		  clear_xminor;
output		  ld_a;
output [3:0]	  ra_addr, rb_addr;
output [3:0]	  wa_addr, wde_addr;
output	       	  wen_a, wen_de;
output		  add_clear, add32b;
output		  shuffle, noshuffle;
output [3:0]	  sel_dydx;
output		  ld_x_frac;
output		  ew_stall_attr, ew_stall_x;
output	       	  start_mult, addr_newspan;
output	       	  cmp_cross_valid;
// inputs
input [11:0]	  x_major;
input [11:0]	  x_sc_max, x_sc_min;
input		  allxlmin, allxgemax;
input		  end_prim_y, equal_ym, allx_invalid;
input  	       	  left_xmajor, left_xminor; 
input 	       	  sign_dxhdy; // sign_dxmdy, sign_dxldy;
input 	       	  cs_ew_newprim;
input		  load_cmd, load_cmd_scissor;
input 	       	  load_cmd_tlut;
input [1:0]    	  cycle_type, texel_size, pixel_size;
input 	       	  sc_field, odd_line, y_cur_lsb, flush;
input		  reset_l, gclk;

// state machine signals
reg [4:0]      	  cnt_prim;
reg   	       	  rst_cntx, rst_cntattr;
reg [3:0]      	  nxt_cntx, nxt_cntattr;
reg [3:0]      	  cnt_span_x, cnt_span_attr;
wire   	       	  prim_busy;
reg   	       	  span_valid_x;
// general control signals
wire  	       	  span_valid;
reg   	       	  ew_cv_newspan;
reg   	       	  ew_ep_startspan_m, ew_ep_startspan;
// control signals for x's
wire  	       	  ld_xmh, ld_dxmdy, ld_dxhdy, ld_dxldy;
wire  	       	  switch_xl;
wire  	       	  end_x;
// control signals for y's
wire  	       	  ld_y, count_y, shift_xval;
reg  	       	  sel_xval; 
wire  	       	  end_prim; // cancel_span_y;
// control signals for scissoring logic
wire  	       	  ld_xmajor, clear_allxgemax;
reg   	       	  clear_xminor;
// control signals for attributes
wire [3:0]     	  ra_addr, rb_addr;
reg  [3:0]     	  wa_addr_m, wa_addr_s;
wire [3:0]     	  wa_addr;
wire   	       	  ld_a;
reg   	       	  add_clear, add32b;
reg   	       	  shuffle_m, shuffle, noshuffle_m, noshuffle;
reg [3:0]      	  sel_dydx_m, sel_dydx_mm, sel_dydx_mmm, sel_dydx;
reg   	       	  ld_x_frac_m,ld_x_frac_mm;
reg   	       	  ld_x_frac_mmm, ld_x_frac;
wire  	       	  ew_stall_attrb;
reg   	       	  ew_stall_attr;
reg   	       	  ew_stall_attr0d, ew_stall_attr2d, 
   	       	  ew_stall_attr3d, ew_stall_attr4d, ew_stall_attr5d, 
   	       	  ew_stall_attr6d, ew_stall_attr7d, ew_stall_attr8d; 
wire [3:0]     	  wde_addr;
wire  	       	  wen_de, wen_a;
// signals for generating ew_stall_x
reg   	       	  get_new_stall;
wire  	       	  get_ew_stall;
reg [11:0]    	  larger_x, smaller_x, num_pixel;
reg [2:0]      	  num_shift;
reg [3:0]      	  comp_value;
reg [12:0]     	  num_cycles_new, num_cycles;
reg   	       	  ew_stall_x;
wire  	       	  ew_stall_xb;
reg [12:0]     	  stall_decr, cnt_stall;
reg [11:0]     	  ew_ms_length;
reg   	       	  sc_field_s, odd_line_s;       	  
// for address generation
wire	       	  start_mult, addr_newspan;
reg   	       	  end_ew;
reg   	       	  span_valid_s;
reg [1:0]      	  end_prim_state;
reg   	       	  span_valid_x_s;
wire  	       	  cmp_cross_valid;


// State machines including three counters others
always @(posedge gclk or negedge reset_l)
   if (reset_l == 1'h0)
      begin
      	 cnt_prim <= 5'h0;
	 cnt_span_x <= 4'h0;
	 cnt_span_attr <= 4'h0;
//	 ew_busy  <= 1'h0;
	 span_valid_x <= 1'h0;
	 end_ew <= 1'h0;
	 span_valid_s <= 1'h0;
//	 span_valid_attr <= 1'h0;
      end
   else
      begin
      	 if ( cs_ew_newprim & (cnt_prim == 5'h16))
	    cnt_prim <= 5'h1;
	 else
      	    cnt_prim <= (~cs_ew_newprim) ? 5'h0 : 	// cs_ew_newprim is one cycle
	       	     	(cnt_prim + cs_ew_newprim); // earlier than cs_ew_data
	 rst_cntx = (cnt_span_x == 4'h8) | (cnt_prim == 5'h4);
	 nxt_cntx = cnt_span_x + (ew_stall_xb);
      	 cnt_span_x <= rst_cntx ? 4'h0 : nxt_cntx;
      	 rst_cntattr = (cnt_span_attr == 4'h8) | (cnt_prim == 5'hd);
	 nxt_cntattr = cnt_span_attr + (ew_stall_attrb);
	 cnt_span_attr <= rst_cntattr ? 4'h0 : nxt_cntattr;
//	 ew_busy <= (cs_ew_newprim & ~(cnt_prim == 5'h15) & ~(cnt_prim == 5'h14))|
//	       	     (ew_busy & ~(end_prim_y & (cnt_span_x == 4'h6)));
      	 end_ew <= end_prim_y & (cnt_span_x == 4'h8);
	 span_valid_x <= (cnt_prim == 5'h4) | (span_valid_x &
	       	     	   ~(end_prim));
//	 span_valid_attr <= (cnt_prim == 5'hd) | (span_valid_attr &
//	       	     	      ~(end_prim));
	 span_valid_s <= span_valid;
      end

always @(posedge gclk)
   begin
     span_valid_x_s <= span_valid_x;
     sc_field_s	 <= (cnt_prim == 5'hc) ? sc_field : sc_field_s;
     odd_line_s	 <= (cnt_prim == 5'hc) ? odd_line : odd_line_s;
   end

// control signals for detecting edge crossing
assign  cmp_cross_valid = ~cnt_span_x[0] & ~cnt_span_x[3];

// Control signals for generating pixel addresses
assign  start_mult = cnt_prim == 5'h2;
assign  addr_newspan = (cnt_span_x == 4'h8) ;

// General control

assign  span_valid  = 
      	    span_valid_x & ~allx_invalid & ~allxlmin 
      	    & ~allxgemax & ~flush &
	    (~sc_field_s | load_cmd_scissor |
	    (sc_field_s & ~(y_cur_lsb ^ odd_line_s)));

always @(posedge gclk)
   begin
      ew_cv_newspan  <=  (cnt_span_x == 4'h8) & span_valid;
      ew_ep_startspan_m <= ew_cv_newspan;
      ew_ep_startspan <= ew_ep_startspan_m;
   end

// control for x's
assign  ld_xmh = (cnt_prim == 5'h3) | (cnt_prim == 5'h4);
assign  ld_dxmdy = (~(cnt_span_x == 4'h7) & ~ew_stall_x) | ld_xmh;
assign  ld_dxhdy = ld_dxmdy;
assign  ld_dxldy = cnt_prim == 5'h2;
assign  switch_xl = (equal_ym & ~cnt_span_x[0] & ~cnt_span_x[3]) & ~ld_xmh;
assign  end_x = cnt_span_x == 4'h8;

// control for y's
assign  ld_y = cnt_prim == 5'h1;
assign  count_y	 = ((cnt_span_x == 4'h1) | (cnt_span_x == 4'h3) |
      	       	     (cnt_span_x == 4'h5) | (cnt_span_x == 4'h8) ) &
      	       	     ~( (cnt_prim == 5'h1) | (cnt_prim == 5'h2) |
		      (cnt_prim == 5'h3) | (cnt_prim == 5'h4)) &
		      ~ew_stall_x & span_valid_x;
assign  shift_xval   = cnt_span_x[0];
assign  end_prim     = end_prim_y & end_x;


// Scissoring logic
assign  ld_xmajor = (left_xmajor ^ sign_dxhdy) ? 
      	       	     (cnt_span_x == 4'h0) : (cnt_span_x == 4'h6);
// assign  clear_allxlmin = cnt_span_x == 4'h0;
assign  clear_allxgemax 	= cnt_span_x == 4'h0;
always @(posedge gclk)
   begin
      clear_xminor <= ew_stall_x ? clear_xminor : 
      	       	     	(cnt_span_x == 4'h0);
   end

//  ew attribute control
assign  ra_addr	  = cnt_span_attr[3:0];
assign  rb_addr  = cnt_span_attr[3:0];

always @(posedge gclk or negedge reset_l)
   if (reset_l == 1'h0)
      begin
      ew_stall_attr0d <= 1'h0;
      ew_stall_attr2d <= 1'h0;
      ew_stall_attr3d <= 1'h0;
      ew_stall_attr4d <= 1'h0;
      ew_stall_attr5d <= 1'h0;
      ew_stall_attr6d <= 1'h0;
      ew_stall_attr7d <= 1'h0;
      ew_stall_attr8d <= 1'h0;
      ew_stall_attr <= 1'h0;
      sel_xval 	     <= 1'h0;
      end
   else begin
      sel_xval       <= cnt_span_x[3];
      ew_stall_attr0d <= ew_stall_x;
      ew_stall_attr2d <= ew_stall_attr0d;
      ew_stall_attr3d <= ew_stall_attr2d;
      ew_stall_attr4d <= ew_stall_attr3d;
      ew_stall_attr5d <= ew_stall_attr4d;
      ew_stall_attr6d <= ew_stall_attr5d;
      ew_stall_attr7d <= ew_stall_attr6d;
      ew_stall_attr8d <= ew_stall_attr7d;
      ew_stall_attr <= ew_stall_attr8d;
   end

always @(posedge gclk)
   begin
      wa_addr_m      <= ew_stall_attr ? wa_addr_m :cnt_span_attr;
      wa_addr_s      <= ew_stall_attr ? wa_addr_s :wa_addr_m;
      add_clear      <= ew_stall_attr ? add_clear : 
      	       	     	(~cnt_span_attr[0]);
      add32b         <= ew_stall_attr ? add32b : cnt_span_attr[3];
      shuffle_m      <= ew_stall_attr ? shuffle_m : cnt_span_attr[0];
      shuffle        <= shuffle_m;
      noshuffle_m    <= ew_stall_attr ? noshuffle_m : cnt_span_attr[3];
      noshuffle	     <= noshuffle_m;
      sel_dydx_m     <= ew_stall_attr ? sel_dydx_m : cnt_span_attr;
      sel_dydx_mm    <= sel_dydx_m ;
      sel_dydx_mmm   <= sel_dydx_mm;
      sel_dydx       <= sel_dydx_mmm;
      ld_x_frac_m    <= cnt_span_x == 4'h8;
      ld_x_frac_mm   <= ld_x_frac_m;
      ld_x_frac_mmm  <= ld_x_frac_mm;
      ld_x_frac      <= ld_x_frac_mmm;
   end





assign  ew_stall_attrb = ~ew_stall_attr;
/*
assign  ld_a = (cnt_prim[3] & ~cnt_prim[1]) |
      	       	     	   (cnt_prim[3] & ~cnt_prim[2]) |
			   (cnt_prim[2] & ~cnt_prim[1] & cnt_prim[0]) |
			   (~cnt_prim[3] & cnt_prim[2] & cnt_prim[1]);
*/
assign  ld_a   	  = (cnt_prim == 5'h5) | (cnt_prim == 5'h6) |
      	       	    (cnt_prim == 5'h7) | (cnt_prim == 5'h8) | 
      	       	    (cnt_prim == 5'h9) | (cnt_prim == 5'ha) | 
      	       	    (cnt_prim == 5'hb) | (cnt_prim == 5'hc) | 
		    (cnt_prim == 5'hd);		   
assign  wa_addr	  = ld_a ? (cnt_prim - 5'h5) : wa_addr_s;
assign  wde_addr  = cnt_prim - 5'he;
assign  wen_de 	  = (cnt_prim == 5'he) | (cnt_prim == 5'hf) |
      	       	    (cnt_prim == 5'h10) | (cnt_prim == 5'h11) | 
      	       	    (cnt_prim == 5'h12) | (cnt_prim == 5'h13) | 
      	       	    (cnt_prim == 5'h14) | (cnt_prim == 5'h15) | 
		    (cnt_prim == 5'h16);
/* assign  wen_a  	  = ~((cnt_prim == 5'he) | (cnt_prim == 5'hf)) & 
      	       	     (~ew_stall_attr | cs_ew_newprim); */
assign  wen_a  	  = ~((cnt_prim == 5'he) | (cnt_prim == 5'hf)) & 
      	       	     (~ew_stall_attr);
// assign  sel_dx 	  = sel_y;
      	       	    

// ew stall logic
always @ (posedge gclk)
   begin
      get_new_stall <= cnt_span_x[3] & span_valid;
   end
assign  get_ew_stall = get_new_stall | ew_stall_x;

always @ (posedge gclk or negedge reset_l)
if ( reset_l == 0)
   begin
      ew_stall_x <= 1'h0;
      cnt_stall <= 13'h0;
      end_prim_state <= 2'h0;
      ew_ms_length <= 12'h0;
   end
else
   begin
      larger_x = left_xminor ? x_sc_max : x_major;
      smaller_x = left_xminor ? x_major : x_sc_min;
      num_pixel = larger_x - smaller_x;
      ew_ms_length <= num_pixel;
      if ( ~load_cmd)
      	 case (cycle_type)
      	    2'h0: 
	       begin
	       	  num_shift = 3'h0;
		  comp_value = 4'h8;
	       end
	    2'h1: 
	       begin
	       	  num_shift = 3'h1;
		  comp_value = 4'h6;
	       end
	    2'h2: 
	       begin
	       	  num_shift = 3'h2;
		  comp_value = 4'h7;
	       end
	    2'h3:
	       begin
	       	  comp_value = 4'h7;
	       	  case (pixel_size)
	       	     2'h0: num_shift = 3'h4;
		     2'h1: num_shift = 3'h3;
		     2'h2: num_shift = 3'h2;
		     2'h3: num_shift = 3'h1;
	       	  endcase
	       end
	  endcase
      else 
      	 begin
	    if (load_cmd_tlut)
	       begin
      	       	  comp_value = 4'h8;
		  num_shift = 3'b0;
	       end
	    else begin
	       comp_value = 4'h7;
      	       case (texel_size)
	       	  2'h0: num_shift = 3'h4;
	       	  2'h1: num_shift = 3'h3;
	       	  2'h2: num_shift = 3'h2;
	       	  2'h3: num_shift = 3'h1;
	       endcase
	    end
	 end
      if ( ~load_cmd & (cycle_type == 2'h1))
      	 num_cycles_new = num_pixel << num_shift;
      else
      	 num_cycles_new = num_pixel >> num_shift;
      num_cycles  = get_new_stall ? num_cycles_new : cnt_stall;
      ew_stall_x  <= get_ew_stall ? (num_cycles > comp_value) : ew_stall_x;
      // cnt_stall
      stall_decr  = get_new_stall ? (num_cycles_new - 1'h1) : (cnt_stall - 1'h1);
      if ( ew_stall_x | (get_new_stall & ~(num_cycles == 13'b0)))
      	 cnt_stall <= stall_decr;
      else if ( (num_cycles == 13'h0))
      	 cnt_stall <= 13'h0;
      else
      	 cnt_stall <= stall_decr;
//      cnt_stall   <= (ew_stall_x | get_new_stall) ? stall_decr : 
//      	       	  ((cnt_stall <= 13'h0) ? 13'h0 : stall_decr);
      case (end_prim_state)
      	 2'h0:  
	    if (cs_ew_newprim)
	       end_prim_state <= 2'h3;
	    else 
	       end_prim_state <= 2'h0;
	 2'h1:
	    if (cs_ew_newprim)
	       end_prim_state <= 2'h3;
	    else 
	       end_prim_state <= 2'h1;
	 2'h2:
	    if (cnt_stall  == 13'h0)
	       end_prim_state <= 2'h1;
	    else
	       end_prim_state <= 2'h2;
	 2'h3:
	    begin
	       if (cs_ew_newprim & end_ew & span_valid_s & (num_cycles > 13'h8))
	       	  end_prim_state <= 2'h2;
	       else if (cs_ew_newprim)
	       	  end_prim_state <= 2'h3;
	       else if (~span_valid_x_s)
	       	  end_prim_state <= 2'h1;
      	       else if (end_ew & span_valid_s & (num_cycles > 13'h0))
	       	  end_prim_state <= 2'h2;
	       else if (end_ew & ~span_valid_s)
	       	  end_prim_state <=2'h1;
	       else if ( end_ew & (num_cycles == 13'h0))
	       	  end_prim_state <= 2'h1;
	       else 
	       	  end_prim_state <= 2'h3;
	    end
       endcase
   end
assign  ew_stall_xb = ~ew_stall_x;      
assign  prim_busy = end_prim_state[1];
           
endmodule  //  ewctr