unzip.c 25.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
#include "ultra64.h"
#include "gzip.h"

static u32 bb_outbytes_limit; 

struct huft {
	u8 e;			/* number of extra bits or operation */
	u8 b;			/* number of bits in this code or subcode */
	union {
	u16 n;			/* literal, length base, or distance base */
	struct huft *t;	/* pointer to next level of table */
	} v;
};


int huft_build(unsigned int *, unsigned int, unsigned int, u16 *, u16 *, struct huft **, int *);
int huft_free(struct huft *);
int inflate_codes(struct huft *, struct huft *, int, int);
int inflate_stored(void);
int inflate_fixed(void);
int inflate_dynamic(void);
int inflate_block(int *);
int inflate(void);


#define wp outcnt
#define flush_output(w) (wp=(w),flush_window())


// Order of the bit length code lengths
static unsigned int border[] = {
		16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
// Copy lengths for literal codes 257..285
static u16 cplens[] = {
		3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
		35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
// Extra bits for literal codes 257..285
static u16 cplext[] = {
		0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
		3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99};		// 99==invalid
// Copy offsets for distance codes 0..29
static u16 cpdist[] = {
		1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
		257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
		8193, 12289, 16385, 24577};
// Extra bits for distance codes
static u16 cpdext[] = {
		0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
		7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
		12, 12, 13, 13};

u32 bb;				// bit buffer
unsigned int bk;	// bits in bit buffer

u16 mask_bits[] = {
	0x0000,
	0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
	0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
};

#define NEXTBYTE()	(u8)get_byte()
#define NEEDBITS(n) {while(k<(n)){b|=((u32)NEXTBYTE())<<k;k+=8;}}
#define DUMPBITS(n) {b>>=(n);k-=(n);}

int lbits = 9;			/* bits in base literal/length lookup table */
int dbits = 6;			/* bits in base distance lookup table */

/* If BMAX needs to be larger than 16, then h and x[] should be u32. */
#define BMAX 16		 /* maximum bit length of any code (16 for explode) */
#define N_MAX 288		 /* maximum number of codes in any set */

unsigned int hufts;		 /* track memory usage */

// Buffer
#define	GZIP_MEM_BUFFSIZ	16384
static	char	gzip_mem_buff[GZIP_MEM_BUFFSIZ];
static	char	*gzip_malloc_addr = gzip_mem_buff;
static	long	gzip_malloc_tmp = 0;


//===========================================================================
//
//
char *gzip_malloc(long size)
{
	char	*ret;

	gzip_malloc_tmp += size;

	if ( gzip_malloc_tmp > GZIP_MEM_BUFFSIZ ) {
		// Debug
		// printf("memory overflow\n");
		return(NULL);
	}

	ret = gzip_malloc_addr;
	gzip_malloc_addr += size;

	return(ret);
}



//===========================================================================
//
//
void	gzip_free(char *ptr)
{
	// Debug
	//if ( gzip_malloc_tmp != 0 ) printf("%ld byte free\n", gzip_malloc_tmp);

	gzip_malloc_tmp = 0;
	gzip_malloc_addr = gzip_mem_buff;
}



//===========================================================================
//
//
int huft_build(unsigned int *b, unsigned int n, unsigned int s, u16 *d, u16 *e, struct huft **t, int *m)
{
	unsigned int a;				/* counter for codes of length k */
	unsigned int c[BMAX+1];		/* bit length count table */
	unsigned int f;				/* i repeats in table every f entries */
	int g;						/* maximum code length */
	int h;						/* table level */
	register unsigned int i;	/* counter, current code */
	register unsigned int j;	/* counter */
	register int k;				/* number of bits in current code */
	int l;						/* bits per table (returned in m) */
	register unsigned int *p;	/* pointer into c[], b[], or v[] */
	register struct huft *q;	/* points to current table */
	struct huft r;				/* table entry for structure assignment */
	struct huft *u[BMAX];		/* table stack */
	static unsigned int v[N_MAX];		/* values in order of bit length */
	register int w;				/* bits before this table == (l * h) */
	unsigned int x[BMAX+1];		/* bit offsets, then code stack */
	unsigned int *xp;			/* pointer into x */
	int y;						/* number of dummy codes added */
	unsigned int z;				/* number of entries in current table */

	/* Generate counts for each bit length */
	for ( j = 0; j < (BMAX+1); j++ ) c[j] = 0;

	p = b;	i = n;
	do {
		c[*p]++;					/* assume all entries <= BMAX */
		p++;						/* Can't combine with above line (Solaris bug) */
	} while (--i);
	if (c[0] == n) {				/* null input--all zero length codes */
		*t = (struct huft *)NULL;
		*m = 0;
		return 0;
	}

	/* Find minimum and maximum length, bound *m by those */
	l = *m;
	for (j = 1; j <= BMAX; j++)
	if (c[j]) break;
	k = j;						/* minimum code length */
	if ((unsigned int)l < j) l = j;
	for (i = BMAX; i; i--) if (c[i]) break;
	g = i;						/* maximum code length */
	if ((unsigned int)l > i) l = i;
	*m = l;

	/* Adjust last length count to fill out codes, if needed */
	for (y = 1 << j; j < i; j++, y <<= 1) {
		if ((y -= c[j]) < 0) return 2;				 /* bad input: more codes than bits */
	}
	if ((y -= c[i]) < 0) return 2;
	c[i] += y;

	/* Generate starting offsets into the value table for each length */
	x[1] = j = 0;
	p = c + 1;	xp = x + 2;
	while (--i) {				 /* note that i == g from above */
		*xp++ = (j += *p++);
	}


	/* Make a table of values in order of bit lengths */
	p = b;	i = 0;
	do {
		if ((j = *p++) != 0) v[x[j]++] = i;
	} while (++i < n);


	/* Generate the Huffman codes and for each, make the table entries */
	x[0] = i = 0;				 /* first Huffman code is zero */
	p = v;						/* grab values in bit order */
	h = -1;						 /* no tables yet--level -1 */
	w = -l;						 /* bits decoded == (l * h) */
	u[0] = (struct huft *)NULL;	 /* just to keep compilers happy */
	q = (struct huft *)NULL;		/* ditto */
	z = 0;						/* ditto */

	/* go through the bit lengths (k already is bits in shortest code) */
	for (; k <= g; k++) {
		a = c[k];
		while (a--) {
			/* here i is the Huffman code of length k bits for value *p */
			/* make tables up to required level */
			while (k > w + l) {
				h++;
				w += l;				 /* previous table always l bits */

				/* compute minimum size table less than or equal to l bits */
				z = (z = g - w) > (unsigned int)l ? l : z;	/* upper limit on table size */
				if ((f = 1 << (j = k - w)) > a + 1)	{ /* try a k-w bit table */
					/* too few codes for k-w bit table */
					f -= a + 1;			 /* deduct codes from patterns left */
					xp = c + k;
					while (++j < z)		 /* try smaller tables up to z bits */
					{
						if ((f <<= 1) <= *++xp)	break;			/* enough codes to use up j bits */
						f -= *xp;			 /* else deduct codes from patterns */
					}
				}
				z = 1 << j;			 /* table entries for j-bit table */

				/* allocate and link in new table */
				if ( ( q = (struct huft *)gzip_malloc( (z + 1)*sizeof(struct huft) ) ) == (struct huft *)NULL ) {
					if (h) huft_free(u[0]);
					return 3;			 /* not enough memory */
				}
				hufts += z + 1;		 /* track memory usage */
				*t = q + 1;			 /* link to list for huft_free() */
				*(t = &(q->v.t)) = (struct huft *)NULL;
				u[h] = ++q;			 /* table starts after link */

				/* connect to last table, if there is one */
				if (h) {
					x[h] = i;			 /* save pattern for backing up */
					r.b = (u8)l;		 /* bits to dump before this table */
					r.e = (u8)(16 + j);	/* bits in this table */
					r.v.t = q;			/* pointer to this table */
					j = i >> (w - l);	 /* (get around Turbo C bug) */
					u[h-1][j] = r;		/* connect to last table */
				}
			}

			/* set up table entry in r */
			r.b = (u8)(k - w);
			if (p >= v + n) {
				r.e = 99;				 /* out of values--invalid code */
			} else if (*p < s) {
				r.e = (u8)(*p < 256 ? 16 : 15);	/* 256 is end-of-block code */
				r.v.n = (u16)(*p);			 /* simple code is just the value */
				p++;							 /* one compiler does not like *p++ */
			} else {
				r.e = (u8)e[*p - s];	 /* non-simple--look up in lists */
				r.v.n = d[*p++ - s];
			}

			/* fill code-like entries with r */
			f = 1 << (k - w);
			for (j = i >> w; j < z; j += f) q[j] = r;

			/* backwards increment the k-bit code i */
			for (j = 1 << (k - 1); i & j; j >>= 1) i ^= j;
			i ^= j;

			/* backup over finished tables */
			while ((i & ((1 << w) - 1)) != x[h]) {
				h--;					/* don't need to update q */
				w -= l;
			}
		}
	}

	/* Return true (1) if we were given an incomplete table */
	return y != 0 && g != 1;
}



int huft_free(struct huft *t)
{
	register struct huft *p, *q;

	/* Go through linked list, freeing from the malloced (t[-1]) address. */
	p = t;
	while (p != (struct huft *)NULL) {
		q = (--p)->v.t;
		gzip_free((char*)p);
		p = q;
	} 
	return 0;
}


int inflate_codes(struct huft *tl, struct huft *td, int bl, int bd)
{
	register unsigned int e;	/* table entry flag/number of extra bits */
	unsigned int n, d;		/* length and index for copy */
	unsigned int w;			 /* current window position */
	struct huft *t;		 /* pointer to table entry */
	unsigned int ml, md;		/* masks for bl and bd bits */
	register u32 b;		 /* bit buffer */
	register unsigned int k;	/* number of bits in bit buffer */

	/* make local copies of globals */
	b = bb;						 /* initialize bit buffer */
	k = bk;
	w = wp;						 /* initialize window position */

	/* inflate the coded data */
	ml = mask_bits[bl];			 /* precompute masks for speed */
	md = mask_bits[bd];
	for (;;) {						/* do until end of block */
		NEEDBITS((unsigned int)bl)
		if ((e = (t = tl + ((unsigned int)b & ml))->e) > 16) {
			do {
				if (e == 99) return 1;
				DUMPBITS(t->b)
				e -= 16;
				NEEDBITS(e)
			} while ((e = (t = t->v.t + ((unsigned int)b & mask_bits[e]))->e) > 16);
		}
		DUMPBITS(t->b)
		if (e == 16) {				/* then it's a literal */
			window[w++] = (u8)t->v.n;
			if (w == WSIZE) {
				if(flush_output(w)<0)return -1;;
				w = 0;
			}
		} else {					/* it's an EOB or a length */
			/* exit if end of block */
			if (e == 15) break;
			/* get length of block to copy */
			NEEDBITS(e)
			n = t->v.n + ((unsigned int)b & mask_bits[e]);
			DUMPBITS(e);
			/* decode distance of block to copy */
			NEEDBITS((unsigned int)bd)
			if ((e = (t = td + ((unsigned int)b & md))->e) > 16) {
				do {
					if (e == 99)
					return 1;
					DUMPBITS(t->b)
					e -= 16;
					NEEDBITS(e)
				} while ((e = (t = t->v.t + ((unsigned int)b & mask_bits[e]))->e) > 16);
			}
			DUMPBITS(t->b)
			NEEDBITS(e)
			d = w - t->v.n - ((unsigned int)b & mask_bits[e]);
			DUMPBITS(e)

			/* do the copy */
			do {
				n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
/*
//#if !defined(NOMEMCPY) && !defined(DEBUG)
				if (w - d >= e) {			// (this test assumes unsigned comparison)
					dst = (u8 *)( (u32)window + (u32)w );
					src = (u8 *)( (u32)window + (u32)d );
					for ( i = 0; i < e; i++ ) {
						*dst = *src;
						dst++;
						src++;
					}
					w += e;
					d += e;
				} else						// do it slow to avoid memcpy() overlap
//#endif  !NOMEMCPY
*/
				do {
					window[w++] = window[d++];
				} while (--e);
				if (w == WSIZE) {
					if(flush_output(w)<0)return -1;
					w = 0;
				}
			} while (n);
		}
	}


	/* restore the globals from the locals */
	wp = w;						 /* restore global window pointer */
	bb = b;						 /* restore global bit buffer */
	bk = k;

	/* done */
	return 0;
}



int inflate_stored(void)
/* "decompress" an inflated type 0 (stored) block. */
{
	unsigned int n;			 /* number of bytes in block */
	unsigned int w;			 /* current window position */
	register u32 b;		 /* bit buffer */
	register unsigned int k;	/* number of bits in bit buffer */

	/* make local copies of globals */
	b = bb;						 /* initialize bit buffer */
	k = bk;
	w = wp;						 /* initialize window position */

	/* go to byte boundary */
	n = k & 7;
	DUMPBITS(n);

	/* get the length and its complement */
	NEEDBITS(16)
	n = ((unsigned int)b & 0xffff);
	DUMPBITS(16)
	NEEDBITS(16)
	if (n != (unsigned int)((~b) & 0xffff)) return 1;			/* error in compressed data */
	DUMPBITS(16)

	/* read and output the compressed data */
	while (n--) {
		NEEDBITS(8)
		window[w++] = (u8)b;
		if (w == WSIZE) {
			if(flush_output(w)<0)return -1;
			w = 0;
		}
		DUMPBITS(8)
	}

	/* restore the globals from the locals */
	wp = w;						 /* restore global window pointer */
	bb = b;						 /* restore global bit buffer */
	bk = k;
	return 0;
}



int inflate_fixed(void)
/* decompress an inflated type 1 (fixed Huffman codes) block.	We should
	 either replace this with a custom decoder, or at least precompute the
	 Huffman tables. */
{
	int i;				/* temporary variable */
	struct huft *tl;		/* literal/length code table */
	struct huft *td;		/* distance code table */
	int bl;				 /* lookup bits for tl */
	int bd;				 /* lookup bits for td */
static	unsigned int l[288];		/* length list for huft_build */

	/* set up literal table */
	for (i = 0; i < 144; i++)
	l[i] = 8;
	for (; i < 256; i++)
	l[i] = 9;
	for (; i < 280; i++)
	l[i] = 7;
	for (; i < 288; i++)			/* make a complete, but wrong code set */
	l[i] = 8;
	bl = 7;
	if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0) return i;

	/* set up distance table */
	for (i = 0; i < 30; i++) l[i] = 5;	/* make an incomplete code set */
	bd = 5;
	if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1) {
		huft_free(tl);
		return i;
	}

	/* decompress until an end-of-block code */
	if (inflate_codes(tl, td, bl, bd)) return 1;

	/* free the decoding tables, return */
	huft_free(td);
	huft_free(tl);
	return 0;
}



int inflate_dynamic(void)
/* decompress an inflated type 2 (dynamic Huffman codes) block. */
{
	int i;				/* temporary variables */
	unsigned int j;
	unsigned int l;			 /* last length */
	unsigned int m;			 /* mask for bit lengths table */
	unsigned int n;			 /* number of lengths to get */
	struct huft *tl;		/* literal/length code table */
	struct huft *td;		/* distance code table */
	int bl;				 /* lookup bits for tl */
	int bd;				 /* lookup bits for td */
	unsigned int nb;			/* number of bit length codes */
	unsigned int nl;			/* number of literal/length codes */
	unsigned int nd;			/* number of distance codes */
static	unsigned int ll[288+32];	/* literal/length and distance code lengths */
	register u32 b;		 /* bit buffer */
	register unsigned int k;	/* number of bits in bit buffer */

	/* make local bit buffer */
	b = bb;
	k = bk;

	/* read in table lengths */
	NEEDBITS(5)
	nl = 257 + ((unsigned int)b & 0x1f);		/* number of literal/length codes */
	DUMPBITS(5)
	NEEDBITS(5)
	nd = 1 + ((unsigned int)b & 0x1f);			/* number of distance codes */
	DUMPBITS(5)
	NEEDBITS(4)
	nb = 4 + ((unsigned int)b & 0xf);			/* number of bit length codes */
	DUMPBITS(4)
	if (nl > 288 || nd > 32) return 1;		/* bad lengths */

	/* read in bit-length-code lengths */
	for (j = 0; j < nb; j++) {
		NEEDBITS(3)
		ll[border[j]] = (unsigned int)b & 7;
		DUMPBITS(3)
	}
	for (; j < 19; j++) ll[border[j]] = 0;

	/* build decoding table for trees--single level, 7 bit lookup */
	bl = 7;
	if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0) {
		if (i == 1) huft_free(tl);
		return i;					 /* incomplete code set */
	}

	/* read in literal and distance code lengths */
	n = nl + nd;
	m = mask_bits[bl];
	i = l = 0;
	while ((unsigned int)i < n) {
		NEEDBITS((unsigned int)bl)
		j = (td = tl + ((unsigned int)b & m))->b;
		DUMPBITS(j)
		j = td->v.n;
		if (j < 16) {				 /* length of code in bits (0..15) */
			ll[i++] = l = j;			/* save last length in l */
		} else if (j == 16) {			 /* repeat last length 3 to 6 times */
			NEEDBITS(2)
			j = 3 + ((unsigned int)b & 3);
			DUMPBITS(2)
			if ((unsigned int)i + j > n) return 1;
			while (j--) ll[i++] = l;
		} else if (j == 17) {			 /* 3 to 10 zero length codes */
			NEEDBITS(3)
			j = 3 + ((unsigned int)b & 7);
			DUMPBITS(3)
			if ((unsigned int)i + j > n) return 1;
			while (j--) ll[i++] = 0;
			l = 0;
		} else {						/* j == 18: 11 to 138 zero length codes */
			NEEDBITS(7)
			j = 11 + ((unsigned int)b & 0x7f);
			DUMPBITS(7)
			if ((unsigned int)i + j > n) return 1;
			while (j--) ll[i++] = 0;
			l = 0;
		}
	}


	/* free decoding table for trees */
	huft_free(tl);

	/* restore the global bit buffer */
	bb = b;
	bk = k;

	/* build the decoding tables for literal/length and distance codes */
	bl = lbits;
	if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0) {
		if (i == 1) {
			huft_free(tl);
		}
		return i;					 /* incomplete code set */
	}
	bd = dbits;
	if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0) {
		if (i == 1) i = 0;
	}

	/* decompress until an end-of-block code */
	if (inflate_codes(tl, td, bl, bd)) return 1;

	/* free the decoding tables, return */
	huft_free(td);
	huft_free(tl);
	return 0;
}



/* decompress an inflated block */
int inflate_block(int *e)
{
	unsigned int t;				/* block type */
	register u32 b;				/* bit buffer */
	register unsigned int k;	/* number of bits in bit buffer */

	/* make local bit buffer */
	b = bb;
	k = bk;

	/* read in last block bit */
	NEEDBITS(1)
	*e = (int)b & 1;
	DUMPBITS(1)

	/* read in block type */
	NEEDBITS(2)
	t = (unsigned int)b & 3;
	DUMPBITS(2)

	/* restore the global bit buffer */
	bb = b;
	bk = k;

	/* inflate that block type */
	if (t == 2) return inflate_dynamic();
	if (t == 0) return inflate_stored();
	if (t == 1) return inflate_fixed();

	/* bad block type */
	return 2;
}



//===========================================================================
// decompress an inflated entry
//===========================================================================
int inflate(void)
{
	int e;				// last block flag
	int r;				// result code
	unsigned int h;		// maximum struct huft's malloc'ed

	// initialize window, bit buffer
	wp = 0;
	bk = 0;
	bb = 0;

	// initialize malloc buffer
	gzip_malloc_tmp = 0;
	gzip_malloc_addr = gzip_mem_buff;

	// decompress until the last block
	h = 0;
	do {
		hufts = 0;
		if ( ( r = inflate_block(&e) ) != 0 ) return r;
		if ( hufts > h ) h = hufts;
	} while (!e);

	// Undo too much lookahead. The next read will be byte aligned so we
	// can discard unused bits in the last meaningful byte.
	while ( bk >= 8 ) {
		bk -= 8;
		inptr--;
	}

	// flush out window
	if(flush_output(wp)<0)return -1;

	// return success
	return 0;
}

// 展開バッファ
unsigned char	inbuf[INBUFSIZ];
unsigned char	outbuf[OUTBUFSIZ];
unsigned char	window[WSIZE];

// ワーク
FILE_HND  ifd;				/* input file descriptor */
FILE_HND  ofd;				/* output file descriptor */
long bytes_in;				/* number of input bytes */
long bytes_out;				/* number of output bytes */
unsigned int insize;		/* valid bytes in inbuf */
unsigned int inptr;			/* index of next byte to be processed in inbuf */
unsigned int outcnt;		/* bytes in output buffer */


void clear_bufs(void);
u32 updcrc(u8 *s, unsigned int n);


//========================================================================
// Table of CRC-32's of all single-byte values
//========================================================================
static	u32 crc_32_tab[] = {
 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
};




u32	data_read(FILE_HND *infile, u8 *dst_addr, u32 size)
{
	u32	i;

	if ( infile->rest_size < size ) size = infile->rest_size;

	i = ( size + 7 ) & 0xfffffff8;

	if ( i != 0 ) {
            bcopy(infile->next_addr, dst_addr, i);
	}

	infile->rest_size -= i;
	infile->next_addr += i;
	if ( infile->rest_size & 0x80000000 ) infile->rest_size = 0;

	return(size);
}



//===========================================================================
// メモリ書き出し
//
u32	data_write(FILE_HND *outfile, u8 *src_addr, unsigned int size)
{
	u32	i;
	u8	*dst_addr = (u8 *)outfile->next_addr;

	for ( i = 0; i < size; i++ ) {
		*dst_addr = src_addr[i];
		dst_addr++;
	}
	outfile->rest_size += size;
	outfile->next_addr = dst_addr;

	return(size);
}



//===========================================================================
// 展開
//
int unzip(void)
{
	int	res;
	int	n;
	u8	buf[32];		// extended local header

	updcrc(NULL, 0);	// initialize crc

	// Decompress
	res = inflate();
	if ( res == 3 ) {
		return(-1);
	} else if ( res != 0 ) {
		return(-1);
	}

	// Get the crc and original length
	for ( n = 0; n < 8; n++ ) buf[n] = (u8)get_byte();

#if 0
        // def DEBUG
	if ( orig_len == bytes_out ) {
		PRINTF("=== ExpOK ===\n");
	} else {
		PRINTF("**** ExpError ****  orglen : %d ,  outlen : %d\n", orig_len, bytes_out);
	}
#endif

	return(0);
}



//===========================================================================
// Run a set of bytes through the crc shift register.  If s is a NULL
// pointer, then initialize the crc shift register contents instead.
// Return the current crc in either case.
//
u32 updcrc(u8 *s, unsigned int n)
{
	register u32 c;		/* temporary variable */

	static u32 crc = 0xffffffff; /* shift register contents */

	if ( s == NULL ) {
		c = 0xffffffff;
	} else {
		c = crc;
		if (n) do {
			c = crc_32_tab[((int)c ^ (*s++)) & 0xff] ^ (c >> 8);
		} while (--n);
	}
	crc = c;
	return c ^ 0xffffffff;	/* (instead of ~c for 64-bit machines) */
}



//===========================================================================
// Clear input and output buffers
void clear_bufs(void)
{
	outcnt = 0;
	insize = inptr = 0;
	bytes_in = bytes_out = 0;
}



//===========================================================================
// Fill the input buffer. This is called only when the buffer is empty.
int fill_inbuf(int eof_ok)
{
	int len;

	insize = 0;
	do {
		len = data_read(&ifd, (char*)inbuf+insize, INBUFSIZ-insize);
		if ( len == 0 || len == -1 ) break;
		insize += len;
	} while (insize < INBUFSIZ);

	if ( insize == 0 ) {
		if (eof_ok) return -1;
	}

	bytes_in += (u32)insize;
	inptr = 1;

	return inbuf[0];
}



//===========================================================================
// Does the same as write(), but also handles partial pipe writes and checks
// for error return.
void write_buf(FILE_HND *fd, char *buf, unsigned int cnt)
{
	u32 n;

	while ( ( n = data_write(fd, buf, cnt) ) != cnt ) {
		cnt -= n;
		buf += n;
	}
}



//===========================================================================
// Write the output window window[0..outcnt-1] and update crc and bytes_out.
// (Used for the decompressed data only.)
int flush_window(void)
{
	if (outcnt == 0) return 0;
	updcrc(window, outcnt);

    if((bytes_out+outcnt)>bb_outbytes_limit)
        return -1;
	write_buf(&ofd, (char *)window, outcnt);
	bytes_out += (u32)outcnt;
	outcnt = 0;

    return 0;
}

u32 expand_gzip(u8 *src_addr, u8 *dst_addr, u32 size, u32 outbytes_limit)
{
	ifd.next_addr = src_addr;
	ifd.rest_size = size;
	ofd.next_addr = dst_addr;
	ofd.rest_size = 0;
        bb_outbytes_limit = outbytes_limit;

	clear_bufs();
	unzip();
	return ofd.rest_size;
}