reverb.c 13.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
/*====================================================================
 * reverb.c
 *
 * Copyright 1993, Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This is UNPUBLISHED PROPRIETARY SOURCE CODE of Silicon Graphics,
 * Inc.; the contents of this file may not be disclosed to third
 * parties, copied or duplicated in any form, in whole or in part,
 * without the prior written permission of Silicon Graphics, Inc.
 *
 * RESTRICTED RIGHTS LEGEND:
 * Use, duplication or disclosure by the Government is subject to
 * restrictions as set forth in subdivision (c)(1)(ii) of the Rights
 * in Technical Data and Computer Software clause at DFARS
 * 252.227-7013, and/or in similar or successor clauses in the FAR,
 * DOD or NASA FAR Supplement. Unpublished - rights reserved under the
 * Copyright Laws of the United States.
 *====================================================================*/

#include <libaudio.h>
#include <ultraerror.h>
#include "synthInternals.h"
#include <os.h>
#include <os_internal.h>
#include <assert.h>
#include "initfx.h"

#define RANGE 2.0
extern ALGlobals *alGlobals;

#ifdef AUD_PROFILE
extern u32 cnt_index, reverb_num, reverb_cnt, reverb_max, reverb_min, lastCnt[];
extern u32 load_num, load_cnt, load_max, load_min, save_num, save_cnt, save_max, save_min;
#endif

/*
 * macros
 */
#define SWAP(in, out)	\
{			\
     s16 t = out;	\
     out = in;		\
     in = t;		\
}



Acmd *_loadOutputBuffer(ALFx *r, ALDelay *d, s32 buff, s32 incount, Acmd *p);
Acmd *_loadBuffer(ALFx *r, s16 *curr_ptr, s32 buff, s32 count, Acmd *p);
Acmd *_saveBuffer(ALFx *r, s16 *curr_ptr, s32 buff, s32 count, Acmd *p);
Acmd *_filterBuffer(ALLowPass *lp, s32 buff, s32 count, Acmd *p);
f32  _doModFunc(ALDelay *d, s32 count);

#if 0
static s32 L_INC[] = { L0_INC, L1_INC, L2_INC };
#endif

/***********************************************************************
 * Reverb filter public interfaces
 ***********************************************************************/
Acmd *alFxPull(void *filter, s16 *outp, s32 outCount, s32 sampleOffset,
                     Acmd *p) 
{
    Acmd        *ptr = p;
    ALFx	*r = (ALFx *)filter;
    ALFilter    *source = r->filter.source;
    s16		i, buff1, buff2, input, output;
    s16		*in_ptr, *out_ptr, *prev_out_ptr = 0;
    ALDelay	*d;

#ifdef AUD_PROFILE
    lastCnt[++cnt_index] = osGetCount();
#endif
    
#ifdef _DEBUG
    assert(source);
#endif

    /*
     * pull channels going into this effect first
     */
    ptr = (*source->handler)(source, outp, outCount, sampleOffset, p);

    input  = AL_AUX_L_OUT;
    output = AL_AUX_R_OUT;
    buff1  = AL_TEMP_0;
    buff2  = AL_TEMP_1;
    
    aSetBuffer(ptr++, 0, 0, 0, outCount<<1);  /* set the buffer size */
    aMix(ptr++, 0, 0xda83, AL_AUX_L_OUT, input); /* .707L = L - .293L */
    aMix(ptr++, 0, 0x5a82, AL_AUX_R_OUT, input); /* mix the AuxL and AuxR into the AuxL */
    /* and write the mixed value to the delay line at r->input */
    ptr = _saveBuffer(r, r->input, input, outCount, ptr);

    aClearBuffer(ptr++, output, outCount<<1); /* clear the AL_AUX_R_OUT */

    for (i = 0; i < r->section_count; i++) {
	d  = &r->delay[i];  /* get the ALDelay structure */
	in_ptr  = &r->input[-d->input];
	out_ptr = &r->input[-d->output];
	
	if (in_ptr == prev_out_ptr) {
	    SWAP(buff1, buff2);
	} else {  /* load data at in_ptr into buff1 */
	    ptr = _loadBuffer(r, in_ptr, buff1, outCount, ptr);
	}
	ptr = _loadOutputBuffer(r, d, buff2, outCount, ptr);

	if (d->ffcoef) {
	    aMix(ptr++, 0, (u16)d->ffcoef, buff1, buff2);
	    if (!d->rs && !d->lp) {
		ptr = _saveBuffer(r, out_ptr, buff2, outCount, ptr);
	    }
	}
	
	if (d->fbcoef) {
	    aMix(ptr++, 0, (u16)d->fbcoef, buff2, buff1);
	    ptr = _saveBuffer(r, in_ptr, buff1, outCount, ptr);
	}

	if (d->lp)
	    ptr = _filterBuffer(d->lp, buff2, outCount, ptr);

	if (!d->rs)
	    ptr = _saveBuffer(r, out_ptr, buff2, outCount, ptr);
	
	if (d->gain)
	    aMix(ptr++, 0, (u16)d->gain, buff2, output);
	
	prev_out_ptr = &r->input[d->output];
    }

    /*
     * bump the master delay line input pointer
     * modulo the length
     */
    r->input += outCount;
    if (r->input > &r->base[r->length])
	r->input -= r->length;

    /*
     * output already in AL_AUX_R_OUT
     *      just copy to AL_AUX_L_OUT
     */
    aDMEMMove(ptr++, output, AL_AUX_L_OUT, outCount<<1);

#ifdef AUD_PROFILE
    PROFILE_AUD(reverb_num, reverb_cnt, reverb_max, reverb_min);
#endif
    return ptr;
}

s32 alFxParam(void *filter, s32 paramID, void *param)
{
    if(paramID == AL_FILTER_SET_SOURCE)
    {
	ALFilter    *f = (ALFilter *) filter;
	f->source = (ALFilter*) param;
    }
    return 0;
}

/*
 * This routine gets called by alSynSetFXParam. No checking takes place to 
 * verify the validity of the paramID or the param value. input and output 
 * values must be 8 byte aligned, so round down any param passed. 
 */
s32 alFxParamHdl(void *filter, s32 paramID, void *param)
{
    ALFx   *f = (ALFx *) filter;    
    s32    p = (paramID - 2) % 8; 
    s32    s = (paramID - 2) / 8;
    s32    val = *(s32*)param;

#define INPUT_PARAM         0
#define OUTPUT_PARAM        1
#define FBCOEF_PARAM        2
#define FFCOEF_PARAM        3
#define GAIN_PARAM          4
#define CHORUSRATE_PARAM    5
#define CHORUSDEPTH_PARAM   6
#define LPFILT_PARAM        7

    switch(p)
    {
        case INPUT_PARAM:
            f->delay[s].input = (u32)val & 0xFFFFFFF8;
            break;
        case OUTPUT_PARAM:
            f->delay[s].output = (u32)val & 0xFFFFFFF8;
            break;
        case FFCOEF_PARAM:
            f->delay[s].ffcoef = (s16)val;
            break;
        case FBCOEF_PARAM:
            f->delay[s].fbcoef = (s16)val;
            break;
        case GAIN_PARAM:
            f->delay[s].gain = (s16)val;
            break;
        case CHORUSRATE_PARAM:
            /* f->delay[s].rsinc = ((f32)val)/0xffffff; */
            f->delay[s].rsinc = ((((f32)val)/1000) * RANGE)/alGlobals->drvr.outputRate; 
            break;

/*
 * the following constant is derived from:
 *
 *      ratio = 2^(cents/1200)
 *
 * and therefore for hundredths of a cent
 *                     x
 *      ln(ratio) = ---------------
 *              (120,000)/ln(2)
 * where
 *      120,000/ln(2) = 173123.40...
 */
#define CONVERT 173123.404906676
#define LENGTH  (f->delay[s].output - f->delay[s].input)

        case CHORUSDEPTH_PARAM:
            /*f->delay[s].rsgain = (((f32)val) / CONVERT) * LENGTH; */
            f->delay[s].rsgain = (((f32)val) / CONVERT) * LENGTH;
            break;
        case LPFILT_PARAM:
            if(f->delay[s].lp)
            {
                f->delay[s].lp->fc = (s16)val;
                _init_lpfilter(f->delay[s].lp);
            }
            break;
    }
    return 0;
}

Acmd *_loadOutputBuffer(ALFx *r, ALDelay *d, s32 buff, s32 incount, Acmd *p)
{
    Acmd        *ptr = p;
    s32         ratio, count, rbuff = AL_TEMP_2;
    s16         *out_ptr;
    f32         fincount, fratio, delta;
    s32         ramalign = 0, length;
/*
 * The following section implements the chorus resampling. Modulate where you pull
 * the samples from, since you need varying amounts of samples.
 */
    if (d->rs) {
        length = d->output - d->input;
        delta = _doModFunc(d, incount); /* get the number of samples to modulate by */
        /*
         * find ratio of delta to delay length and quantize
         *  to same resolution as resampler
         */
        delta /= length;  /* convert delta from number of samples to a pitch ratio */
        delta = (s32)(delta * UNITY_PITCH); /* quantize to value microcode will use */
        delta = delta / UNITY_PITCH;
        fratio = 1.0 - delta;  /* pitch ratio needs to be centered around 1, not zero */
      
        /* d->rs->delta is the difference between the fractional and integer value
         * of the samples needed. fratio * incount + rs->delta gives the number of samples 
         * needed for this frame.
         */
        fincount = d->rs->delta + (fratio * (f32)incount);
        count = (s32) fincount; /* quantize to s32 */
        d->rs->delta = fincount - (f32)count; /* calculate the round off and store */

        /*
         * d->rsdelta is amount the out_ptr has deviated from its starting position. 
         * You calc the out_ptr by taking d->output - d->rsdelta, and then using the 
         * negative of that as an index into the delay buffer. loadBuffer that uses this
         * value then bumps it up if it is below the  delay buffer.
         */ 
        out_ptr = &r->input[-(d->output - d->rsdelta)];
        ramalign = ((s32)out_ptr & 0x7) >> 1; /* calculate the number of samples needed 
                                               to align the buffer*/
#ifdef _DEBUG
#if 0
        if(length > 0) {
            if (length - d->rsdelta > (s32)r->length) {
                __osError(ERR_ALMODDELAYOVERFLOW, 1, length - d->rsdelta - r->length);
            }
        }
        else if(length < 0) {
            if ((-length) - d->rsdelta > (s32)r->length) {
                __osError(ERR_ALMODDELAYOVERFLOW, 1, (-length) - d->rsdelta - r->length);
            }
        }
#endif
#endif
        /* load the rbuff with samples, note that there will be ramalign worth of
         *  samples at the begining which you don't care about. */
        ptr = _loadBuffer(r, out_ptr - ramalign, rbuff, count + ramalign, ptr);

        /* convert fratio to 16 bit fraction for microcode use */ 
        ratio = (s32)(fratio * UNITY_PITCH);
        /* set the buffers, and do the resample */
        aSetBuffer(ptr++, 0, rbuff + (ramalign<<1), buff, incount<<1);
        aResample(ptr++, d->rs->first, ratio, osVirtualToPhysical(d->rs->state));
      
        d->rs->first = 0; /* turn off first time flag */
        d->rsdelta += count - incount; /* add the number of samples to d->rsdelta */
    } else {
        out_ptr = &r->input[-d->output];
        ptr = _loadBuffer(r, out_ptr, buff, incount, ptr);
    }

    return ptr;
}
/* 
 * This routine is for loading data from the delay line buff. If the
 * address of curr_ptr < r->base, it will force it to be within r->base
 * space, If the load goes past the end of r->base it will wrap around.
 * Cause count bytes of data at curr_ptr (within the delay line) to be
 * loaded into buff. (Buff is a dmem buffer)
 */
Acmd *_loadBuffer(ALFx *r, s16 *curr_ptr, s32 buff, s32 count, Acmd *p)
{
    Acmd    *ptr = p;
    s32     after_end, before_end;
    s16     *updated_ptr, *delay_end;

#ifdef AUD_PROFILE
    lastCnt[++cnt_index] = osGetCount();
#endif

    delay_end = &r->base[r->length];

#ifdef _DEBUG
    if(curr_ptr > delay_end)
        __osError(ERR_ALMODDELAYOVERFLOW, 1, delay_end - curr_ptr);
#endif

    if (curr_ptr < r->base)
    curr_ptr += r->length;
    updated_ptr = curr_ptr + count;
    
    if (updated_ptr > delay_end) {
        after_end = updated_ptr - delay_end;
        before_end = delay_end - curr_ptr;
        
        aSetBuffer(ptr++, 0, buff, 0, before_end<<1);
        aLoadBuffer(ptr++, osVirtualToPhysical(curr_ptr));
        aSetBuffer(ptr++, 0, buff+(before_end<<1), 0, after_end<<1);
        aLoadBuffer(ptr++, osVirtualToPhysical(r->base));
    } else {
        aSetBuffer(ptr++, 0, buff, 0, count<<1);
        aLoadBuffer(ptr++, osVirtualToPhysical(curr_ptr));
    }

    aSetBuffer(ptr++, 0, 0, 0, count<<1);

#ifdef AUD_PROFILE
    PROFILE_AUD(load_num, load_cnt, load_max, load_min);
#endif
    return ptr;

}

/*
 * This routine is for writing data to the delay line buff. If the
 * address of curr_ptr < r->base, it will force it to be within r->base
 * space. If the write goes past the end of r->base, it will wrap around
 * Cause count bytes of data at buff to be written to delay line, curr_ptr.
 */
Acmd *_saveBuffer(ALFx *r, s16 *curr_ptr, s32 buff, s32 count, Acmd *p)
{
    Acmd    *ptr = p;
    s32     after_end, before_end;
    s16     *updated_ptr, *delay_end;

#ifdef AUD_PROFILE
    lastCnt[++cnt_index] = osGetCount();
#endif

    delay_end = &r->base[r->length];
    if (curr_ptr < r->base)      /* probably just security */
        curr_ptr += r->length;   /* shouldn't occur */
    updated_ptr = curr_ptr + count;

    if (updated_ptr > delay_end) { /* if the data wraps past end of r->base */
        after_end = updated_ptr - delay_end;
        before_end = delay_end - curr_ptr;

        aSetBuffer(ptr++, 0, 0, buff, before_end<<1);
        aSaveBuffer(ptr++, osVirtualToPhysical(curr_ptr));
        aSetBuffer(ptr++, 0, 0, buff+(before_end<<1), after_end<<1);
        aSaveBuffer(ptr++, osVirtualToPhysical(r->base));
        aSetBuffer(ptr++, 0, 0, 0, count<<1);
    } else {
        aSetBuffer(ptr++, 0, 0, buff, count<<1);
        aSaveBuffer(ptr++, osVirtualToPhysical(curr_ptr));
    }

#ifdef AUD_PROFILE
    PROFILE_AUD(save_num, save_cnt, save_max, save_min);
#endif
    return ptr;

}

Acmd *_filterBuffer(ALLowPass *lp, s32 buff, s32 count, Acmd *p)
{
    Acmd	*ptr = p;

    aSetBuffer(ptr++, 0, buff, buff, count<<1);
    aLoadADPCM(ptr++, 32, osVirtualToPhysical(lp->fcvec.fccoef));
    aPoleFilter(ptr++, lp->first, lp->fgain, osVirtualToPhysical(lp->fstate));
    lp->first = 0;

    return ptr;
}



/*
 * Generate a triangle wave from -1 to 1, and find the current position
 * in the wave. (Rate of the wave is controlled by d->rsinc, which is chorus
 * rate) Multiply the current triangle wave value by d->rsgain, (chorus depth)
 * which is expressed in number of samples back from output pointer the chorus
 * should go at it's full chorus. In otherwords, this function returns a number
 * of samples the output pointer should modulate backwards.
 */
f32 _doModFunc(ALDelay *d, s32 count)
{
  f32 val;

  /*
   * generate bipolar sawtooth
   * from -RANGE to +RANGE
   */
  d->rsval += d->rsinc * count;
  d->rsval = (d->rsval > RANGE) ? d->rsval-(RANGE*2) : d->rsval;

  /*
   * convert to monopolar triangle
   * from 0 to RANGE
   */
  val = d->rsval;
  val = (val < 0) ? -val : val;

  /*
   * convert to bipolar triangle 
   * from -1 to 1
   */
  val -= RANGE/2;

  return(d->rsgain * val);
}