exec.c
24.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
/*
* Copyright (C) 1998 by the Board of Trustees
* of Leland Stanford Junior University.
* Copyright (C) 1998 Digital Equipment Corporation
*
* This file is part of the SimOS distribution.
* See LICENSE file for terms of the license.
*
*/
/*
* Routines for the main execution loop, thread queues, and all the event
* generating functions
*/
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include "gamma.h"
#include "aint.h"
#include "globals.h"
#include "opcodes.h"
#include "protos.h"
#include "wheel.h"
#include "event.h"
#include "alpha_regs.h"
#include "sim_error.h"
#ifdef gone
/* icode structs for the cleanup functions */
static icode_t idone1;
static icode_t idone2;
static icode_t idone3;
#endif
void init_all_queues ();
void init_thread (thread_ptr pthread, event_ptr pevent, int enqueue);
void init_event (thread_ptr pthread, event_ptr pevent);
int next_event (task_ptr);
#ifdef ITRACE
extern FILE *itrace;
#endif
#ifdef CALL_TRACE
extern int call_trace_enable;
#endif
void
init_all_queues ()
{
int pid, i;
/* init the queue head nodes */
INLINE_INIT_Q (&run_q);
INLINE_INIT_Q (&done_q);
INLINE_INIT_Q (&free_q);
INLINE_INIT_Q (&sleep_q);
INLINE_INIT_Q (&read_pipe_q);
INLINE_INIT_Q (&write_pipe_q);
/* Allocate the array of threads */
threads = (thread_ptr) calloc (max_nprocs, sizeof (thread_t));
/* zero it out for heaven's sake */
bzero((char *) threads, max_nprocs * sizeof(thread_t));
if (threads == NULL) {
fatal ("init_all_queues: cannot allocate 0x%x bytes for threads.\n",
max_nprocs * sizeof (thread_t));
}
for (pid = 0; pid < max_nprocs; pid++) {
int i;
threads[pid].pid = pid;
INLINE_ENQUEUE (&free_q, &threads[pid]);
threads[pid].fd = (int *) malloc (MAX_FDNUM * sizeof (int));
if (threads[pid].fd == NULL)
fatal ("init_all_queues: cannot allocate"
"0x%x bytes for thread fds.\n",
MAX_FDNUM * sizeof (char));
threads[pid].num_pages = 0;
threads[pid].num_private = 0;
for (i = 0; i < TB_SIZE; i++)
threads[pid].page_bucket[i] = NULL;
threads[pid].shmem_regions = (struct shm_descriptor *) NULL;
threads[pid].unsp_shmat_current = UNSP_SHMAT_START;
threads[pid].sigv = (struct my_sigvec *) malloc (MAX_SIGNALS *
sizeof (struct my_sigvec));
if (threads[pid].sigv == NULL)
fatal ("init_all_queues: cannot allocate"
"0x%x bytes for thread sigv.\n",
MAX_SIGNALS * sizeof (struct my_sigvec));
}
/* Initialize the global shared-memory page table to empty lists */
for (i = 0; i < TB_SIZE; i++)
shmem_page_table[i] = (page_t *) NULL;
}
/*
* Initializes the thread. The enqueue parameter is normally zero. But when
* called from execve, it is non-zero. The relevant thread is not enqueued.
*/
void
init_thread (thread_ptr pthread, event_ptr pevent, int enqueue)
{
int i;
/* zero some of the field */
pthread->st.reg[zero] = 0;
pthread->st.fp[zero] = 0;
pthread->cpu_time = 0;
pthread->child_cpu = 0;
pthread->is_zombie = 0;
pthread->errno = 0;
pthread->ufunc = NULL;
/* pthread->stall_addr = NULL; */
pthread->runstate = R_RUN;
pthread->youngest = NULL;
/* put the thread on the run queue */
if (enqueue) {
INLINE_ENQUEUE (&run_q, pthread);
}
/* map in the global errno */
pthread->perrno = &pthread->errno;
/* initialize the event structure associated with this thread */
init_event (pthread, pevent);
#ifdef gone
pthread->psave = NULL;
#endif
pthread->sigpending = 0;
pthread->mmap_size = 0;
}
/*
* Does some initializations that need to be done, only for the first
* thread.
*/
void
init_main_thread ()
{
int i;
thread_ptr pthread;
event_ptr pevent;
max_pid = 0;
nprocs = 1;
pthread = &threads[0];
INLINE_REMOVE (pthread); /* From free_q */
NEW_ITEM (event_free, sizeof (event_t), pevent, "init_main_thread");
init_thread (pthread, pevent, 1);
/*
* The following initialization is done only once, for the main thread.
*/
/* init the signal handler vectors */
for (i = 0; i < MAX_SIGNALS; i++) {
pthread->sigv[i].sv_handler = (sig_handler_t) SIG_DFL;
pthread->sigv[i].sv_mask = 0;
pthread->sigv[i].sv_flags = 0;
}
pthread->sigblocked = 0;
/* initialize all file descriptors to "closed" */
for (i = 0; i < MAX_FDNUM; i++)
pthread->fd[i] = -1;
pthread->fd[0] = 0;
pthread->fd[1] = 1;
pthread->fd[2] = 2;
pthread->time = 0;
pthread->parent = NULL;
pthread->sibling = NULL;
pthread->st.fpcr = 0;
pthread->st.reg[zero] = 0;
pthread->st.fp[zero] = 0;
#ifdef gone
/* Icodes for the terminator functions go here */
idone1.func = cleanup1;
idone1.cycles = 0;
idone2.func = cleanup2;
idone2.cycles = 0;
idone3.func = cleanup3;
idone3.cycles = 0;
#endif
}
#ifdef ITRACE
int itrace_enable = 0;
#endif
void
init_event (thread_ptr pthread, event_ptr pevent)
{
pthread->pevent = pevent;
pevent->cpu_time = &pthread->cpu_time;
pevent->pid = pthread->pid;
pevent->next = NULL;
}
/*
* Execute the thread specified by the task, till a new event is
* generated. This is the function that actually advances a thread, by
* executing pieces of code, that do not have any interesting events.
*/
int
next_event (task_ptr ptask)
{
#ifdef SOLO
ASSERT(0);
#else
thread_ptr pthread;
icode_ptr picode;
int icycles;
pthread = &threads[ptask->pid];
pthread->time = ptask->time;
picode = pthread->picode;
/*
* for the system call simulation to run correctly, we'll have to switch
* the effective uid and gid, everytime we switch threads
*/
/* Am I the almighty ? */
#ifdef ORACLE
if (geteuid() == 0) {
/* Yes I am! */
if (setruid(pthread->uid) == -1)
perror("setuid");
if (setrgid(pthread->gid) == -1)
perror("setgid");
}
WAKEUP (pthread);
#endif
icycles = 0;
/* the interpretation loop */
while (pthread->runstate == R_RUN) {
/* account for the current instruction */
icycles += picode->cycles;
#ifdef ITRACE
if (pthread->pid == 3)
if (itrace_enable)
fprintf(itrace, "%lx\n", picode->addr);
#endif
/* call the function that interprets the current instruction */
picode = (picode->func) (picode, pthread);
}
/* update the thread to reflect the code that has been executed */
pthread->picode = picode;
pthread->time += icycles;
pthread->cpu_time += icycles;
/* set up a task to continue the thread */
ptask->ufunc = pthread->ufunc;
ptask->time = pthread->time;
/*
* Reset the pevent pointer in the task structure in case
* the back end changed the pid for the task
*/
ptask->pevent = pthread->pevent;
pthread->pevent->time = pthread->time;
ptask->priority = DEF_PRIORITY;
ptask->tstack = NULL;
task_insert (ptask);
return T_YIELD;
#endif
}
/*
* schedule_cleanup is called when the thread calls _exit(). T1 generates
* an event so that the accumulated time for this thread (as calculated
* in the inner execution loop) will be added to its time value before it
* reaps its children in T2.
*/
#ifdef gone
icode_ptr
schedule_cleanup(icode_ptr picode, thread_ptr pthread)
{
event_yield (picode, pthread);
/* idone2 causes terminate_thr() to be called. */
return &idone1;
}
#endif
#ifdef gone
/* initiate the termination of the thread */
icode_ptr
cleanup1(icode_ptr picode, thread_ptr pthread)
{
/* Generate an E_DONE event, and wait for the simulator to finish
* executing all the tasks associated with this process.
*/
event_terminate (pthread);
/* idone3 is an icode that will cause terminator2()
* to be called.
*/
return &idone2;
}
#endif
#ifdef gone
icode_ptr
cleanup2(icode_ptr picode, thread_ptr pthread)
{
thread_ptr parent;
aint_time_t duration;
event_ptr pevent;
/* this is not the main thread */
parent = pthread->parent;
/* if the parent is waiting on us, then wake him up */
if (parent) {
if (parent->runstate == R_WAIT) {
/* advance the parent forward in time */
duration = pthread->time + picode->cycles - parent->time;
if (duration < 0) {
/*
* In reality, this is an error. But the simulation
* algorithm, still allows this condition to occur.
*/
} else {
parent->time += duration;
}
wakeup_thr (parent);
pevent = event_unblock (pthread, parent);
pevent->duration = duration;
pevent->utype = E_WAIT;
} else {
pthread->is_zombie = 1;
}
} else { /* this was thread 0 */
cleanup3 (picode, pthread);
/* Return value not used */
return NULL;
}
/* Next and final operation is to move this thread to the free queue */
return &idone3;
}
#endif
/*
* This is the last function called by a thread. It moves the thread
* to the free queue if the parent has already waited on it.
*/
#ifdef gone
icode_ptr
cleanup3(icode_ptr picode, thread_ptr pthread)
{
/*
* Generate an event so that the task scheduler will decrement Nprocs.
*/
event_done (pthread);
/* free it's address space */
free_addr_space(pthread);
/*
* If parent has already waited on this thread, then we can move
* this thread to the free queue. Otherwise, move this thread to
* the done queue and the parent will move
* this thread to the free queue when it waits on this thread.
*/
if (pthread->parent == NULL) {
INLINE_REMOVE (pthread);
if (recycle_threads)
INLINE_INSERT_AFTER (&free_q, pthread);
pthread->runstate = R_FREE;
}
else {
INLINE_REMOVE (pthread);
INLINE_ENQUEUE (&done_q, pthread);
pthread->runstate = R_DONE;
}
return NULL; /* return value not used */
}
#endif
/*
* This routine is called when a process terminates in orer to wait for
* all its children to complete. This guarantees that the elapsed time
* of the parent is at least as great as all of its children.
*
* Return values:
* -1 if all children have finished
* 0 if some child has not finished
*/
int
wait_for_children (thread_ptr pthread)
{
int childpid;
while ((childpid = wait_for_child (pthread)) > 0);
return childpid;
}
/*
* This routine is called by wait to wait for one child. If there is
* more than one terminated child, the child that terminated first
* is the one that is waited on.
*
* Return values:
* -1 no children exist
* 0 no child has terminated yet
* pid the child pid of the earliest terminated child process
*/
int
wait_for_child (thread_ptr pthread)
{
thread_ptr child;
thread_ptr prev;
aint_time_t min_time;
child = pthread->youngest;
/* if there are no children, return -1 */
if (child == NULL)
return -1;
min_time = MAXTIME;
/* search the list of children for one that has finished */
for (; child; child = child->sibling) {
if (child->runstate == R_DONE || child->is_zombie) {
/* find the earliest terminated child */
if (min_time > child->time)
min_time = child->time;
}
}
/* if no child has terminated, then return 0 */
if (min_time == MAXTIME)
return 0;
prev = pthread;
/* search the list of children again for the earliest one */
for (child = pthread->youngest; child; child = child->sibling) {
if (child->time == min_time
&& (child->runstate == R_DONE || child->is_zombie)) {
/* disown child */
if (prev == pthread)
pthread->youngest = child->sibling;
else
prev->sibling = child->sibling;
/* collect cpu time of child */
pthread->child_cpu += child->cpu_time + child->child_cpu;
/* update parent's elapsed time to that of the child */
if (pthread->time < child->time)
pthread->time = child->time;
/* Set child's parent pointer to NULL so that the child knows
* the parent waited on it already, and it can put itself
* on the free queue.
*/
child->parent = NULL;
/* If child is not a zombie, then move it to the free pool.
* We can't move a zombie child to the free pool, since it
* still has to send an E_DONE event, so it is not yet
* free to be reallocated. A zombie child will move itself
* to the free pool if the parent has waited on it already.
*/
if (child->runstate == R_DONE) {
/* move child to free pool */
INLINE_REMOVE (child);
if (recycle_threads)
INLINE_INSERT_AFTER (&free_q, child);
child->runstate = R_FREE;
}
return child->pid;
}
else
prev = child;
}
/* if we get here, it's an error */
fatal ("wait_for_child: can't find earliest dead child\n");
return 0;
}
/* Puts a thread to sleep */
void
sleep_thr (thread_ptr pthread)
{
#ifdef SOLO
ASSERT(0);
#else
INLINE_REMOVE (pthread);
INLINE_ENQUEUE (&sleep_q, pthread);
pthread->runstate = R_SLEEP;
#endif
}
/* wakes up a thread */
void
wakeup_thr (thread_ptr pthread)
{
#ifdef SOLO
GammaUnstall(pthread);
pthread->runstate = R_RUN;
return;
#else
INLINE_REMOVE (pthread);
INLINE_ENQUEUE (&run_q, pthread);
pthread->runstate = R_RUN;
#endif
}
/* wake up all threads on the queue */
void
wakeup_all (qnode_ptr q, thread_ptr pthread, int cycles, int subtype)
{
thread_ptr pthr, tnext;
aint_time_t duration, wake_time;
event_ptr pevent;
#ifdef SOLO
ASSERT(0);
#else
wake_time = pthread->time + cycles;
pthr = (thread_ptr) q->next;
while (pthr != (thread_ptr) q) {
/* save the pointer to the next thread on the queue */
tnext = (thread_ptr) pthr->next;
if (pthr->runstate != R_BLOCK)
fatal ("wakeup_all: runstate (%d) not R_BLOCK for thread %d\n",
pthr->runstate, pthr->pid);
/* wake up this thread */
wakeup_thr (pthr);
duration = wake_time - pthr->time;
if (duration < 0)
fatal ("wakeup_all: negative wait duration (%.1f) at time %.0f\n",
duration, wake_time);
pthr->time += duration;
pevent = event_unblock_list (pthread, pthr);
pevent->duration = duration;
pevent->utype = subtype;
pthr = tnext;
}
#endif
}
/*
* Block the thread and put it on the specified wait queue.
*/
void
block_thr (thread_ptr q, thread_ptr pthread)
{
#ifdef SOLO
ASSERT(0);
#else
INLINE_REMOVE (pthread);
INLINE_ENQUEUE (q, pthread);
pthread->runstate = R_BLOCK;
#endif
}
/* dequeue the first waiting thread and make it runnable right now */
thread_ptr
unblock_thr (thread_ptr q)
{
thread_ptr pthread;
#ifdef SOLO
ASSERT(0);
#else
INLINE_DEQUEUE (q, pthread);
if (pthread) {
INLINE_ENQUEUE (&run_q, pthread);
pthread->runstate = R_RUN;
}
return pthread;
#endif
}
/* schedule tasks to wakeup all the threads on the queue */
void
unblock_list (thread_ptr waker, thread_ptr q)
{
thread_ptr pthread;
while (!Q_EMPTY(q)) {
INLINE_DEQUEUE(q, pthread);
event_unblock(waker, pthread);
}
}
#if gone
icode_ptr
event_read(icode_ptr picode, thread_ptr pthread)
{
event_ptr pevent;
long vaddr, paddr;
/*
* The vaddr calculated is the address passed on by the instruction
* decoder. The actual address referenced may be different, as in case
* of unaligned loads (and stores)
*/
vaddr = REG (RB) + picode->immed;
pevent = pthread->pevent;
pevent->vaddr = vaddr;
pthread->vaddr = vaddr;
paddr = PMAP (vaddr);
if (IS_SHARED (vaddr)) {
pevent->type = picode->iflags | E_SHARED;
#ifdef DEBUG
if (vaddr == 0x801b30)
fprintf(stderr,"%d(%lx): %lx (%lx) ->",
pthread->pid,
picode->addr,
vaddr,
paddr);
#endif
}
else {
pevent->type = picode->iflags;
}
if (picode->opnum == ldq_u_opn)
paddr = (paddr & ~7);
pevent->paddr = paddr;
pthread->paddr = paddr;
/* Get the data item and store it in pevent->data */
if (paddr) {
if (picode->size == 4)
pevent->data = *(int *) paddr;
else {
if (paddr & 7)
printf ("event_read: unaligned access pid %d paddr"
"0x%lx vaddr 0x%lx pc 0x%lx inst %lx\n",
pthread->pid, paddr, vaddr, picode->addr,
picode->instr);
pevent->data = *(long *) paddr;
}
}
#ifdef DEBUG
if (IS_SHARED(vaddr))
if (vaddr == 0x801b30)
fprintf(stderr, " %lx\n", pevent->data);
#endif
pevent->iaddr = picode->addr;
pthread->ufunc = sim_null; /* Does nothing - just returns T_ADVANCE */
pevent->size = picode->size;
pevent->picode = picode;
/* Flag only if we need to trace. Always flag if addr invalid */
if ((picode->trace_shared && IS_SHARED (vaddr)) ||
(picode->trace_private && !IS_SHARED (vaddr)) ||
((void *) paddr == NULL)) {
pthread->ufunc = sim_read;
}
SLEEP (pthread);
return (picode->next);
}
icode_ptr
event_write(icode_ptr picode, thread_ptr pthread)
{
event_ptr pevent;
long vaddr, paddr;
vaddr = REG (RB) + picode->immed;
pevent = pthread->pevent;
pevent->vaddr = vaddr;
pthread->vaddr = vaddr;
paddr = PMAP (vaddr);
if (IS_SHARED (vaddr)) {
pevent->type = picode->iflags | E_SHARED;
#ifdef DEBUG
if (vaddr == 0x801b30) {
#ifdef CALL_TRACE
if (pthread->pid == 1)
call_trace_enable = 1;
#endif
fprintf(stderr,"%d(%lx): %lx (%lx) <-",
pthread->pid,
picode->addr,
vaddr,
paddr);
}
#endif
}
else {
pevent->type = picode->iflags;
}
if (picode->opnum == stq_u_opn)
paddr = (paddr & ~7);
/* Convert register value to memory word */
if (picode->iflags & E_FLOAT) {
aint_cvt_fp_mem (picode->opnum, FP (RA), &pevent->data);
pevent->type |= E_FLOAT;
}
else
pevent->data = REG (RA);
#ifdef DEBUG
if (IS_SHARED(vaddr))
if (vaddr == 0x801b30)
fprintf(stderr," %lx\n", pevent->data);
#endif
pevent->paddr = paddr;
pthread->paddr = paddr;
pevent->iaddr = picode->addr;
pthread->ufunc = sim_null;
pevent->size = picode->size;
pevent->picode = picode;
/* Don't execute ufunc if not tracing it */
if ((IS_SHARED (vaddr) && picode->trace_shared) ||
(!IS_SHARED (vaddr) && picode->trace_private) ||
((void *) paddr == NULL)) {
pthread->ufunc = sim_write;
}
SLEEP (pthread);
return (picode->next);
}
icode_ptr
event_load_locked(icode_ptr picode, thread_ptr pthread)
{
event_ptr pevent;
long vaddr, paddr;
vaddr = REG (RB) + picode->immed;
pevent = pthread->pevent;
pevent->vaddr = vaddr;
pthread->vaddr = vaddr;
paddr = PMAP (vaddr);
if (IS_SHARED (vaddr)) {
pevent->type = picode->iflags | E_SHARED;
}
else {
pevent->type = picode->iflags;
}
pevent->paddr = paddr;
pthread->paddr = paddr;
pevent->iaddr = picode->addr;
pthread->ufunc = sim_load_locked;
pevent->size = picode->size;
pevent->picode = picode;
SLEEP (pthread);
return (picode->next);
}
icode_ptr
event_store_conditional(icode_ptr picode, thread_ptr pthread)
{
event_ptr pevent;
long vaddr, paddr;
vaddr = REG (RB) + picode->immed;
pevent = pthread->pevent;
pevent->vaddr = vaddr;
pthread->vaddr = vaddr;
paddr = PMAP (vaddr);
if (IS_SHARED (vaddr)) {
pevent->type = picode->iflags | E_SHARED;
}
else {
pevent->type = picode->iflags;
}
pevent->paddr = paddr;
pthread->paddr = paddr;
pevent->iaddr = picode->addr;
pthread->ufunc = sim_store_conditional;
pevent->size = picode->size;
pevent->picode = picode;
SLEEP (pthread);
return (picode->next);
}
icode_ptr
event_memory_barrier(icode_ptr picode, thread_ptr pthread)
{
event_ptr pevent;
pevent = pthread->pevent;
pevent->iaddr = picode->addr;
pthread->ufunc = sim_memory_barrier;
/*
* This forces a reschedule, so that the mem-barrier semantics are
* preserved
*/
pevent->picode = picode;
SLEEP (pthread);
return (picode->next);
}
icode_ptr
event_sim_user(icode_ptr picode, thread_ptr pthread)
{
event_ptr pevent;
pevent = pthread->pevent;
pevent->iaddr = picode->addr;
pevent->arg1 = pthread->st.reg[16];
pevent->arg2 = pthread->st.reg[17];
pevent->arg3 = pthread->st.reg[18];
pevent->arg4 = pthread->st.reg[19];
pthread->ufunc = sim_user;
SLEEP (pthread);
return (picode->next);
}
icode_ptr
event_inst(icode_ptr picode, thread_ptr pthread)
{
event_ptr pevent;
pevent = pthread->pevent;
pevent->iaddr = picode->addr;
pevent->picode = picode;
pevent->type = picode->iflags;
pthread->ufunc = sim_inst;
/* Force a reschedule here since we want sim_inst to execute */
SLEEP (pthread);
return (picode->next);
}
void
event_terminate (thread_ptr pthread)
{
event_ptr pevent;
pevent = pthread->pevent;
pevent->type = E_DONE;
pthread->ufunc = task_terminate;
SLEEP (pthread);
}
/*
* Calling this functions has the effect of "generating" an event, that'll
* block the thread
*/
void
event_block (thread_ptr pthread, int subtype)
{
event_ptr pevent;
pevent = pthread->pevent;
pevent->type = E_BLOCK;
pthread->ufunc =task_block;
pevent->utype = subtype;
SLEEP (pthread);
}
/*
* Calling this functions has the effect of "generating" an event, that'll
* block the thread
*/
void
event_timed_block (thread_ptr pthread, int subtype, ulong time)
{
event_ptr pevent;
pevent = pthread->pevent;
pevent->type = E_BLOCK;
pevent->arg1 = time;
pthread->ufunc = task_timed_block;
pevent->utype = subtype;
SLEEP (pthread);
}
event_ptr
event_unblock (thread_ptr pthread1, thread_ptr pthread2)
{
event_ptr pevent;
pevent = pthread1->pevent;
pevent->type = E_UNBLOCK;
pevent->pevent = pthread2->pevent;
/*
* Set the pevent field in the event structure for the unblocked thread
* to point to the unblocking thread's event structure so that sim_block()
* can figure out who did the unblocking.
*/
pthread2->pevent->pevent = pevent;
pthread1->ufunc = task_unblock;
/* Can't figure out why the first thread needs to sleep */
SLEEP(pthread1);
return pthread2->pevent;
}
/*
* This function is called to force the scheduler out of its run-until-block
* loop. It has the side-effect of updating the time accumulated in the
* scheduler loop. This is only used internally in MINT. The back end
* never sees these events.
*/
icode_ptr
event_yield(icode_ptr picode, thread_ptr pthread)
{
event_ptr pevent;
pevent = pthread->pevent;
pevent->type = E_YIELD;
pthread->ufunc = task_yield;
SLEEP (pthread);
return picode->next;
}
/*
* This function is similar to event_unblock() except that it is
* called when several threads are unblocked by a single event,
* such as a barrier being released. This function is called once
* for each unblocked thread. Each time this function is called
* it adds the event structure for the unblocked thread to a list.
*
* The first argument, pthread, is a pointer to the unblocking thread.
* The second argument, pthr, is a pointer to the unblocked thread.
* A pointer to the event structure for the unblocked thread is returned
* so that the duration and utype fields can be set by the caller.
*/
event_ptr
event_unblock_list (thread_ptr pthread, thread_ptr pthr)
{
event_ptr pevent;
pevent = pthread->pevent;
/* if the next field is NULL, then this is the first event in the list */
if (pevent->next == NULL) {
pevent->type = E_UNBLOCK;
pevent->next = pthr->pevent;
pthr->pevent->next = NULL;
/* Set the pevent field in the event structure for the unblocked
* thread to point to the unblocking thread's event structure so
* that sim_block() can figure out who did the unblocking.
*/
pthr->pevent->pevent = pevent;
pthread->ufunc = task_unblock_list;
SLEEP (pthread);
return pthr->pevent;
}
/* If we get here, then this is not the first event in the list,
* so add it.
*/
pthr->pevent->next = pevent->next;
pevent->next = pthr->pevent;
return pthr->pevent;
}
/* generates an exit event */
void
event_exit (thread_ptr pthread)
{
event_ptr pevent;
pevent = pthread->pevent;
pevent->type = E_EXIT;
pthread->ufunc = task_exit;
SLEEP (pthread);
}
/* generates a done event */
void
event_done (thread_ptr pthread)
{
pthread->ufunc = task_done;
SLEEP (pthread);
}
icode_ptr
event_fork(icode_ptr picode, thread_ptr pthread)
{
event_ptr pevent;
pevent = pthread->pevent;
pevent->type = E_FORK;
pevent->pevent = pthread->youngest->pevent;
pthread->ufunc = task_fork;
SLEEP (pthread);
return (picode->next);
}
#endif /* gone */
/*
* This function is called from within next_event() when the feature is
* enabled. next_event() will compare the address of the instruction to
* be executed with the value of obj_hook, and call obj_hook_proc if they
* are equal. This is used mainly for debugging. A sim_objhook()
* back-end function could be useful here
*/
#ifdef gone
int
obj_hook_proc (icode_ptr picode, thread_ptr pthread)
{
return 0;
}
#endif