clock.c
15.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
/*
* Copyright (C) 1996-1998 by the Board of Trustees
* of Leland Stanford Junior University.
*
* This file is part of the SimOS distribution.
* See LICENSE file for terms of the license.
*
*/
/****************************************************************
* clock.c
*
* $Author: blythe $
* $Date: 2002/05/29 01:09:10 $
*****************************************************************/
#include <stdio.h>
#include <string.h>
#include "simmisc.h"
#include "checkpoint.h"
#include "simmagic.h"
#include "sips.h"
#include "eventcallback.h"
#include "simutil.h"
#include "embra.h"
#include "cp0.h"
#include "clock.h"
#include "main_run.h"
#include "mem_control.h"
#include "stats.h"
#include "callout.h"
#include "translator.h"
#include "debug.h"
#include "driver.h"
#include "hw_events.h"
#include "embra_interface.h"
/* **********************************************************************
* All of the clock shared state is in shared memory. All of the callbacks
* must be in shared memory, event non IPI as the callbacks themselves are
* queued.
* **********************************************************************/
#define MAX_INTERRUPT_CALLBACKS (16*SIM_MAXCPUS)
typedef struct ClockSharedState {
EventCallbackHdr interrupts[MAX_INTERRUPT_CALLBACKS];
int rotor;
int lock;
EventCallbackHdr pcSampling[SIM_MAXCPUS];
EventCallbackHdr periodicCallback[SIM_MAXCPUS];
EventCallbackHdr periodicAnnotationCallback;
EventCallbackHdr statCallback[SIM_MAXCPUS];
EventCallbackHdr bootCallback;
EventCallbackHdr exitCallback;
} ClockSharedState;
extern K0A non_excepting_tv( int cpuNum, VA va );
static ClockSharedState *clockState;
/* Local Data */
static int pc_sample_interval = 256;
int callout_interval = 0;
/* Local Functions */
static void InitPeriodicCallbacks(int cpu);
static void StatCallback(int cpuNum, EventCallbackHdr *hdr,void *arg);
static void PeriodicCallback(int cpuNum, EventCallbackHdr *hdr,void *arg);
static void PeriodicAnnotationCallback(int cpuNum, EventCallbackHdr *hdr,void *arg);
static void BootCallback(int cpuNum, EventCallbackHdr *hdr,void *arg);
static SimTime next_PCSample;
static void InitPeriodicCallbacks(int cpu)
{
ASSERT (cpu==0);
if (embra.stats) {
EventDoCallback(cpu,StatCallback,
&clockState->statCallback[cpu],0,
embra.statInterval);
}
EventDoCallback(cpu,PeriodicCallback,
&clockState->periodicCallback[cpu],0,
embra.miscCheckInterval);
if (cpu == 0) {
EventDoCallback(0,PeriodicAnnotationCallback,
&clockState->periodicAnnotationCallback,0,
embra.periodicAnnInterval);
}
}
void EmbraClosePeriodicCallbacks(void)
{
int cpu = 0;
if (EventCallbackActive(&clockState->statCallback[cpu])) {
EventCallbackRemove(&clockState->statCallback[cpu]);
}
if (EventCallbackActive(&clockState->periodicCallback[cpu])) {
EventCallbackRemove(&clockState->periodicCallback[cpu]);
}
if (EventCallbackActive(&clockState->periodicAnnotationCallback)) {
EventCallbackRemove(&clockState->periodicAnnotationCallback);
}
}
void
Embra_Clock_Init(int cpuNum)
{
/*
* allow fast check from assembly
*/
callout_interval = embra.timeQuantum;
if( embra.MPinUP ) {
int i;
EMP[TOTAL_CPUS].eventQueueTimePtr = SingleEventQueueCalltimeAddr;
for( i = 0; i <= TOTAL_CPUS; i++) {
EMP[i].timeQuantum = embra.timeQuantum;
EMP[i].cycleCountdown = EMP[i].timeQuantum;
}
InitPeriodicCallbacks(0);
} else {
ASSERT (!cpuNum);
ASSERT( TOTAL_CPUS ==1);
EMP[0].eventQueueTimePtr = SingleEventQueueCalltimeAddr;
EMP[0].timeQuantum = embra.timeQuantum;
EMP[cpuNum].cycleCountdown = embra.timeQuantum;
InitPeriodicCallbacks(cpuNum);
}
}
int
Update_And_Check_Interrupts( int cpuNum , VA targetPC)
{
/*CPUWarning("CPU %d Update and Check HW 0x%x\n ",
cpuNum,
EMP[cpuNum].intrBitsPtr[0] ); */
/* Update and check for interrupts */
EMP[cpuNum].CP0[C0_CAUSE] =
(EMP[cpuNum].CP0[C0_CAUSE] & ~CAUSE_EXTINTBITS) |
((EMP[cpuNum].intrBitsPtr[0] << CAUSE_IPSHIFT) & CAUSE_EXTINTBITS);
if (((EMP[cpuNum].CP0[C0_CAUSE] & EMP[cpuNum].CP0[C0_SR]) & SR_IMASK) &&
(EMP[cpuNum].CP0[C0_SR] & SR_IEC) &&
!((EMP[cpuNum].CP0[C0_SR] & (SR_EXL|SR_ERL)))) {
/* Processors generally take excpetions in between instructions */
/* so when we are stalled for a cache miss (or whatever), delay */
/* excpetion (interrupt) detection */
if( !EMP[cpuNum].stalled ) {
if (targetPC) {
ASSERT (!IN_BD(targetPC));
ASSERT (IS_KSEG0(targetPC) || IS_KUSEG(targetPC));
/*
* now is the time to field the post-pc annotation,
* since we are skipping the instruction by smashing
* the PC.
*/
ASSERT (cpuNum==curEmp->myNum);
AnnExec(AnnFMLookup(CLEAR_BD(EMP[cpuNum].PC),ANNFM_PC_TYPE));
EMP[cpuNum].PC = targetPC;
}
Em_EXCEPTION(cpuNum,EXC_INT,0);
EmbraSideEffect();
return 1;
}
}
return 0;
}
void EmIntrBitsChanged(int cpuNum)
{
Update_And_Check_Interrupts(cpuNum,0);
}
/* Do Interrupt Now (only takes exception if interrupt is enabled) */
static void EmbraInterruptCallback(int cpuNum, EventCallbackHdr *hdr, void *arg)
{
IEC intrtoset = (IEC) (int) arg; /* keep compiler quiet by casting thru int */
SIM_DEBUG(('i',"DEV %d %lld Send 0x%x ",
cpuNum, EmbraCpuCycleCount(cpuNum), intrtoset));
RaiseIBit(cpuNum, intrtoset);
SIM_DEBUG(('i', "Ibits 0x%x\n", EMP[cpuNum].intrBitsPtr[0]));
Update_And_Check_Interrupts( cpuNum,0 );
}
/* Do deliver SIPS Now */
static void EmbraDeliverSIPSCallback(int cpuNum, EventCallbackHdr *hdr,void *arg)
{
sim_sips_deliver(cpuNum, (int)arg /* chan */);
Update_And_Check_Interrupts( cpuNum ,0);
}
/* Do Interrupt Now (only takes exception if interrupt is enabled) */
static void BootCallback(int cpuNum, EventCallbackHdr *hdr,void *arg)
{
int cpu;
for( cpu = 1; cpu < TOTAL_CPUS; cpu++ ) {
uint launchAddr = (uint)sim_misc.launchAddr[cpu];
if( launchAddr ) {
/* XXX - non-backdoor address is launch, backdoor address is call */
if( IS_BACKDOOR(launchAddr) ) {
int64 result;
/* Do call */
result = ((int64 (*)(int,int,int,int))launchAddr)
( sim_misc.launchArg[cpu][0],
sim_misc.launchArg[cpu][1],
sim_misc.launchArg[cpu][2],
sim_misc.launchArg[cpu][3] );
if( result == SLAVELOOP_CONTINUE ) {
/* signal init function done */
sim_misc.launchAddr[cpu] = 0;
/* clear so will be 0 if not set up on next call */
sim_misc.launchArg[cpu][0] = 0;
sim_misc.launchArg[cpu][1] = 0;
sim_misc.launchArg[cpu][2] = 0;
sim_misc.launchArg[cpu][3] = 0;
CPUPut("Slave %d returning to launch wait\n",cpu );
}
} else {
/* Add everybody in & let mem_control handle launch */
int i;
for( i = 0; i <= TOTAL_CPUS; i++ ) {
EMP[i].next = &EMP[(i+1)%(TOTAL_CPUS+1)];
} /* for */
/* Don't reinstall callback */
return;
}
}
}
EventDoCallback(cpuNum,BootCallback,hdr,0,embra.timeQuantum);
}
void Embra_Send_Interrupt( int cpuNum, IEC intrtoset, SimTime delay )
{
int count = 0;
EventCallbackHdr *event;
if( delay == 0 ) {
/* SIMLOCK();*/
RaiseIBit(cpuNum, intrtoset);
/* SIMUNLOCK();*/
Update_And_Check_Interrupts( cpuNum,0 );
} else {
clockState->rotor = (clockState->rotor+1)%MAX_INTERRUPT_CALLBACKS;
while( EventCallbackActive(&clockState->interrupts[clockState->rotor]) ){
count++;
ASSERT( count < MAX_INTERRUPT_CALLBACKS );
clockState->rotor = (clockState->rotor+1)% MAX_INTERRUPT_CALLBACKS;
}
event = &clockState->interrupts[ clockState->rotor];
EventDoCallback(cpuNum,EmbraInterruptCallback,event,(void *)(int)intrtoset,delay);
}
}
void Embra_Deliver_SIPS( int cpuNum, int chan, SimTime delay )
{
int count = 0;
EventCallbackHdr *event;
clockState->rotor = (clockState->rotor+1)%MAX_INTERRUPT_CALLBACKS;
while( EventCallbackActive(&clockState->interrupts[clockState->rotor]) ){
count++;
ASSERT( count < MAX_INTERRUPT_CALLBACKS );
clockState->rotor = (clockState->rotor+1)% MAX_INTERRUPT_CALLBACKS;
}
event = &clockState->interrupts[ clockState->rotor];
EventDoCallback(cpuNum,EmbraDeliverSIPSCallback,event,(void *)chan,delay);
}
static void StatCallback(int cpuNum, EventCallbackHdr *hdr,void *arg)
{
Print_Recent_Stats(cpuNum);
EventDoCallback(cpuNum,StatCallback,hdr,0,embra.statInterval);
}
static void PeriodicCallback(int cpuNum, EventCallbackHdr *hdr,void *arg)
{
#if 0
CPUPrint("callback %i %lld\n",cpuNum,CPUVec.CpuCycleCount(cpuNum));
#endif
EventDoCallback(cpuNum,PeriodicCallback,hdr,0,embra.miscCheckInterval);
EmbraPollSigUsr(cpuNum);
if( sim_misc.myCPUType != sim_misc.enterThisCPU) {
EmbraExit(sim_misc.enterThisCPU);
}
}
static void PeriodicAnnotationCallback(int cpuNum, EventCallbackHdr *hdr,void *arg)
{
ASSERT(cpuNum == 0);
EventDoCallback(0,PeriodicAnnotationCallback,hdr,0,embra.periodicAnnInterval);
PERIODIC_EVENT;
}
/* ****************************************************************
* Periodic_Callout is called very frequently. Keep it as short as
* possible.
* ****************************************************************/
void IncCC(int cpuNum, int inc)
{
EMP[cpuNum].cycleCount += EMP[cpuNum].timeQuantum;
}
/*#define DEBUG_EVENTPOLL*/
#ifdef DEBUG_EVENTPOLL
static struct {
uint cycleCountdown;
uint PC;
uint64 cycleCount;
uint stalled;
} debug_evpoll[SIM_MAXCPUS];
static SimTime last_call;
#endif
void GeneralEmEventPoll(int cpuNum)
{
/*CPUPrint("%d GeneralEmEventPoll\n", cpuNum);*/
ASSERT(cpuNum < TOTAL_CPUS);
#ifdef notdef
#ifdef STALL_BY_REMOVING_FROM_LOOP
/* This needs justification */
/*EMP[TOTAL_CPUS].cycleCount += EMP[0].timeQuantum;*/
/*EventPollSingleQueue(EMP[TOTAL_CPUS].cycleCount);*/
#else
ASSERT(cpuNum == 0 );
#endif
#endif /* notdef */
/* Value passed to EventPoll is a hint telling it how far down the
callback queue to look. We know all cycle counts are within 1
quantum, so this should suffice */
#ifdef DEBUG_EVENTPOLL
ASSERT( EmbraCpuCycleCount(0) + 4*EMP[0].timeQuantum > last_call);
#endif
EventPollSingleQueue(EmbraCpuCycleCount(0) + 4*EMP[0].timeQuantum);
#ifdef DEBUG_EVENTPOLL
debug_evpoll[cpuNum].cycleCountdown = EMP[cpuNum].cycleCountdown;
debug_evpoll[cpuNum].PC = EMP[cpuNum].PC;
debug_evpoll[cpuNum].cycleCount = EMP[cpuNum].cycleCount;
debug_evpoll[cpuNum].stalled = EMP[cpuNum].stalled;
last_call = EmbraCpuCycleCount(0) + 4*EMP[0].timeQuantum;
#endif
/* some event hung off the cycle count may have
* changed memory (eg. the debugger). This checks that.
*/
FlushTCIfNecessary(cpuNum);
ReenterTC(EMP[TOTAL_CPUS].next);
/* NOT REACHED */
}
/* This is called when a single event queue is used TOTAL_CPUS == 1 || MPinUP */
EmbraState* CEmEventPoll(void)
{
/* Value passed to EventPoll is a hint telling it how far down the
callback queue to look. We know all cycle counts are within 1
quantum, so this should suffice */
SimTime now_ish = EmbraCpuCycleCount(0);
if (eventQueues->calltime + 100000 < now_ish) {
CPUWarning("CEmEventPoll missing callouts calltime=%lld, nowish=%lld \n",
eventQueues->calltime, now_ish);
}
#ifdef DEBUG_EVENTPOLL
ASSERT( now_ish >= last_call );
#endif
if( EventPendingSingleQueue(now_ish) ) {
EventProcessSingleQueue( now_ish );
/* Code is written to assume that this will happen because
exceptions can be raised in a callback */
ReenterTC( &EMP[0] );
/* NOT REACHED */
}
#ifdef DEBUG_EVENTPOLL
debug_evpoll[cpuNum].cycleCountdown = EMP[cpuNum].cycleCountdown;
debug_evpoll[cpuNum].PC = EMP[cpuNum].PC;
debug_evpoll[cpuNum].cycleCount = EMP[cpuNum].cycleCount;
debug_evpoll[cpuNum].stalled = EMP[cpuNum].stalled;
last_call = EmbraCpuCycleCount(0) + 4*EMP[0].timeQuantum;
#endif
/* ReenterTC(EMP[TOTAL_CPUS].next);*/
/* NOT REACHED */
return &EMP[0];
}
void NonReturningProcReturned(void)
{
VASSERT(0,("Non-returning procedure returned. This is bad.\n"));
}
SimTime EmbraReadTime( void )
{
if( embra.MPinUP ) {
return EmbraCpuCycleCount(0);
} else {
return EmbraCpuCycleCount(CURR_CPU);
}
}
/*#define DEBUG_CLOCK*/
#ifdef DEBUG_CLOCK
static struct {
uint cycleCountdown;
uint PC;
uint64 cycleCount;
uint clock_val;
} debug_clock[SIM_MAXCPUS];
#endif
SimTime EmbraCpuCycleCount(int cpuNum)
{
static SimTime last_returned_value;
SimTime new_value;
new_value = EMP[cpuNum].cycleCount +
( (int64)(EMP[cpuNum].timeQuantum -
EMP[cpuNum].cycleCountdown ) );
#ifdef DEBUG_CLOCK
if (new_value < debug_clock[cpuNum].clock_val) {
CPUWarning("cpu %d retrograde clock %lld->%lld, staying at max\n",
cpuNum, debug_clock[cpuNum].clock_val, new_value);
new_value = debug_clock[cpuNum].clock_val;
}
debug_clock[cpuNum].cycleCountdown = EMP[cpuNum].cycleCountdown;
debug_clock[cpuNum].cycleCount = EMP[cpuNum].cycleCount;
debug_clock[cpuNum].PC = EMP[cpuNum].PC;
debug_clock[cpuNum].clock_val = new_value;
#endif
return new_value;
}
/* Make the .cycleCount field the actual current time */
void EmbraFixCycleCounts(void)
{
int cpuNum;
SimTime maxTime = 0;
for (cpuNum=0;cpuNum<TOTAL_CPUS;cpuNum++) {
EMP[cpuNum].cycleCount += EMP[cpuNum].timeQuantum -
EMP[cpuNum].cycleCountdown;
EMP[cpuNum].cycleCountdown = EMP[cpuNum].timeQuantum;
if ( EMP[cpuNum].cycleCount > maxTime) {
maxTime = EMP[cpuNum].cycleCount;
}
}
for (cpuNum=0;cpuNum<TOTAL_CPUS;cpuNum++) {
EMP[cpuNum].cycleCount = maxTime;
}
}
void EmbraClockInit(void)
{
if( !clockState ) {
clockState = MallocShared(sizeof(ClockSharedState),"EmClock");
}
ASSERT( clockState );
}
/******************************************************************
* Write a call to the system call exit on the user's stack. Then
* jump to it
*****************************************************************/
void
EmbraMakeProcExit(int cpuNum)
{
EmbraState *P = &EMP[cpuNum];
uint *pPtr;
VA vSP;
/* Insure that we are not writting over a page boundary by using */
/* the beginning of the page*/
vSP = FORM_ADDR( PAGE_NUMBER(P->R[REG_SP]), 0 );
pPtr = (uint*) non_excepting_tv( cpuNum, vSP );
if( !pPtr ) {
CPUWarning("Failure to translate stack addr in MakeProcExit\n");
return;
}
CPUWarning("PROCexit: CPU %d smashing address %#x\n", P->myNum, vSP);
*pPtr++ = CIi( addiu_op, A0, G0, 0 ); /* li a0, 0 */
*pPtr++ = CIi( addiu_op, V0, G0, 1001 ); /* li v0, 1001 */
/* This trick won't work in base mode both because of this opcode */
/* because we are not flushing the data cache*/
*pPtr++ = CIs( syscall_op, 0, 0, 0); /* syscall */
P->PC = vSP;
return;
}