decoder.c 21.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
/*
 * Copyright (C) 1996-1998 by the Board of Trustees
 *    of Leland Stanford Junior University.
 * 
 * This file is part of the SimOS distribution. 
 * See LICENSE file for terms of the license. 
 *
 */

/***************************************************************************
 *
 *  File:           decoder.c
 *
 * This decodes a basic block worth of instructions.  
 * Its main complexity comes in the fact that it
 * is given a physical PC which, if it runs off the end of a page, it
 * must find the page on which the block continues by converting the
 * virtual PC.  Thus we need to know the virtual and physical PC
 * 
 * $Author: blythe $
 * $Date: 2002/05/29 01:09:10 $
 *
 ***************************************************************************/


#include <stdio.h>
#include "embra.h"
#include "decoder.h"
#include "main_run.h"
#include "annotations.h"
#include "mem_control.h"
#include "cp0.h"
#include "clock.h"
#include "driver.h"

/* We are at a page boundary if the lower 12 bits are 0 */
#define PAGE_BOUNDARY( val ) (!((val) & (DEFAULT_PAGESZ-1)))

#define NOP 0

#define MAX_NOPS 12

int maxInGroup;

void
DecoderInit(void)
{
/* maximum number of instructions in one group */
/* It should be relatively large so 1 basic block doesn't have to get */
/* artificially chopped up in the TC, but it must be smaller than */
/* TQUANT so that you can guarantee interleaving every TQUANT */
/* instructions, but you can still execute blocks larger than TQUANT */
/* instructions */ 
   maxInGroup = embra.timeQuantum - 1;
   if( maxInGroup > INST_GRP_LIMIT )
      maxInGroup = INST_GRP_LIMIT;
}

/*-----------------------------------------------------------------------------
 *
 *      Routine:    DecodeInstrs
 *
 *      Parameters: 
 *
 *      instrGrp - a group of instructions, to fill stuff in. 
 *      
 *----------------------------------------------------------------------------*/
void 
DecodeInstrs( InstrGrp* thisGrp, int cpuNum, VA pc, int is_delay_slot_instr )
{
  unsigned int code;  /* value of binary code read in. */
  unsigned int *code_ptr;
  int ctl_inst = 0;
  int ctl_reg1 = REG_NONE;
  int ctl_reg2 = REG_NONE;
  int Delayed=0;    /* used as a flag for the delayed slot. */
  int i;


   /* Translate VA PC into a physical address PC */
   /* Note, if the VA PC is a backdoor address, mem_translate jumps to */
   /* it directly, and then executes goto_continue_run with the present */
   /* return address.  Simulating backdoor code is a bad idea */
   /* If we take an exception, we don't return */
  thisGrp->phys_pc = mem_translate(cpuNum,pc);
  thisGrp->maPC    = PHYS_TO_MEMADDR(M_FROM_CPU(cpuNum),thisGrp->phys_pc );

  thisGrp->cpuNum = cpuNum;
  thisGrp->virt_pc = pc;
  thisGrp->is_delay_slot_instr = is_delay_slot_instr;
  thisGrp->next_maPC = 0;
  thisGrp->GrpLen = 0;
  thisGrp->numDMemoryAcesses = 0;
  thisGrp->numIMemoryAcesses = 0;
  thisGrp->delay_slot_reg_conflict = 0;
  thisGrp->no_reg_allocate = 0;
  thisGrp->is_rfe_block = 0;
  thisGrp->delay_slot_reg_conflict = 0;

#if defined(SIM_MIPS32)
  thisGrp->isKseg0 =  IS_KSEG0(thisGrp->virt_pc);
#else
  thisGrp->isKseg0 =  IS_UNMAPPED_ADDR(thisGrp->virt_pc);
#endif
  code_ptr = (uint*)thisGrp->maPC;

  /* Get a group of instructions, not exceeding maxInGroup number.  */
  while (thisGrp->GrpLen < maxInGroup) 
    {
#ifndef DEBUG_TRANSLATOR
       VASSERT( EMBRA_IS_MEMADDR( M_FROM_CPU(cpuNum), code_ptr ),
                ("\nDecoder code_ptr 0x%x thiGrp 0x%x\n",
                 code_ptr, thisGrp) );
#endif

       code = *code_ptr++;

      /* XXX Syscall instructions don't generate signals.  To enable */
      /* simos fast mode */ 
      /* to catch syscalls, they are statically translated to the */
      /* unaligned load */ 
      if( code == SIMOS_HACKED_SYSCALL )
        code = (spec_op<<26) |  syscall_op;

      if( code == SIMOS_HACKED_TNS ) {
		 code = (mendel_tns<<26);
		 thisGrp->no_reg_allocate = 1;
	  }

      thisGrp->instrs[thisGrp->GrpLen] = code;
      thisGrp->pcAnn[thisGrp->GrpLen] = 0;

      if (AnnFMLookup(thisGrp->virt_pc+INST_SIZE*thisGrp->GrpLen,ANNFM_PC_TYPE)) {
         thisGrp->pcAnn[thisGrp->GrpLen] =ANNFM_PC_TYPE ;
         thisGrp->no_reg_allocate = 1;
         thisGrp->delay_slot_reg_conflict = 1;
      } 
      if (AnnFMLookup(thisGrp->virt_pc+INST_SIZE*thisGrp->GrpLen,ANNFM_PRE_PC_TYPE)) {
         thisGrp->pcAnn[thisGrp->GrpLen] |=ANNFM_PRE_PC_TYPE ;
         thisGrp->no_reg_allocate = 1;
         thisGrp->delay_slot_reg_conflict = 1;
      } 
    
      thisGrp->GrpLen++;

      /*
       * Corner case: the NEXT instruction will be on the next page,
       * If this instruction is a control instruction, two things can 
       * happen: either this is the first instruction of the BB, in 
       * which case the (branch,DB) straddling pages case ocurs.
       * if this is not the case, ie a branch at the end of a 
       * page that is not the first instruction of the BB, then
       * we shorten the BB to exclude the branch. the branch and branch
       * delay will be translated separately. 
       */

      if (PAGE_BOUNDARY((unsigned) code_ptr) &&
          !IS_KSEG0(thisGrp->virt_pc) && 
          IsCtlInstr(code) && 
          thisGrp->GrpLen > 1) {
         thisGrp->GrpLen--;
         break;
      }

      /* Gather information about the instruction group */
      switch( MAJOR_OPCODE( code ) ) {
	  case spec_op:
		 switch( FUNC( code ) )
			{
			   /*************************************/
			   /* Shifts -- */
			   /*************************************/
			case sll_op:    /* [rt] shift by shamt -> [rd] */
			case sra_op:
			case srl_op:
			   thisGrp->reg2alloc[rt(code)].num_src++;
			   if( Delayed )
				  thisGrp->delay_slot_reg_conflict |= 
					 ((rd(code)==ctl_reg1) || (rd(code)==ctl_reg2) );
			   break;

			case syscall_op:
			case break_op:
                           Delayed = 1;
			   break;

			case div_op:  /* [rs] op [rt] -> HI & LO */
			case divu_op:
			case mult_op:
			case multu_op:
			case ddiv_op:
			case ddivu_op:
			case dmult_op:
			case dmultu_op:
			   thisGrp->reg2alloc[rs(code)].num_src++;
			   thisGrp->reg2alloc[rt(code)].num_src++;
			   break;
			case mfhi_op: /* move HI to rd */
			case mflo_op: /* move LO to rd */
			   /* Is this even allowed? */
			   if( Delayed )
				  thisGrp->delay_slot_reg_conflict |= 
					 ((rd(code)==ctl_reg1) || (rd(code)==ctl_reg2) );
			   break;

			case mthi_op: /* move rs to HI  */
			case mtlo_op: /* move rs to LO */
			   thisGrp->reg2alloc[rs(code)].num_src++;
			   break;
			   /*************************************/
			   /* Arithmetic specials */
			   /* rs == SIM_T1, rt == SIM_T2, rd == SIM_T2 */
			   /*************************************/

			   /* [rs] op [rt] -> [rd] */
			case add_op:
			case addu_op:
			case and_op:
			case nor_op:
			case or_op:
			case sllv_op:
			case slt_op:
			case srav_op:
			case sltu_op:
			case srlv_op:
			case sub_op:
			case subu_op:
			case xor_op:
                        case dadd_op:
                        case daddu_op:
                        case dsll_op:
                        case dsll32_op:
                        case dsllv_op:
                        case dsrl_op:
                        case dsrl32_op:
                        case dsrlv_op:
                        case dsra_op:
                        case dsra32_op:
                        case dsrav_op:
                        case dsub_op:
                        case dsubu_op:

			   thisGrp->reg2alloc[rs(code)].num_src++;
			   thisGrp->reg2alloc[rt(code)].num_src++;
			   if( Delayed )
				  thisGrp->delay_slot_reg_conflict |= 
					 ((rd(code)==ctl_reg1) || (rd(code)==ctl_reg2) );
			   break;

                        case movc_op:
                        case movz_op:
                        case movn_op:

			   thisGrp->reg2alloc[rs(code)].num_src++;
			   thisGrp->reg2alloc[rt(code)].num_src++;
			   if( Delayed )
				  thisGrp->delay_slot_reg_conflict |= 
					 ((rd(code)==ctl_reg1) || (rd(code)==ctl_reg2) );
			   break;

                        case tge_op:
                        case tgeu_op:
                        case tlt_op:
                        case tltu_op:
                        case teq_op:
                        case tne_op:
			   thisGrp->reg2alloc[rs(code)].num_src++;
			   thisGrp->reg2alloc[rt(code)].num_src++;
                           break;

			case jr_op:
			case jalr_op:
			   ctl_inst = 1;
			   ctl_reg1 = rs(code)?rs(code):REG_NONE;
			   thisGrp->reg2alloc[rs(code)].num_src++;
			   break;
			}
			   break;
             
	  case bcond_op:
		 switch( rt(code) )
			{
			case bgezal_op:
			case bgezall_op:
			case bgez_op:
			case bgezl_op:
			case bltzal_op:
			case bltzall_op:
			case bltz_op:
			case bltzl_op:
			   thisGrp->reg2alloc[rs(code)].num_src++;
			   ctl_inst = 1;
			   ctl_reg1 = rs(code)?rs(code):REG_NONE;
			   break;
                        case tgei_op:
                        case tgeiu_op:
                        case tlti_op:
                        case tltiu_op:
                        case teqi_op:
                        case tnei_op:
			   thisGrp->reg2alloc[rs(code)].num_src++;
                           break;
			default:
                           CPUWarning("Unknown REGIMM opcode\n");
                           ASSERT(0);
			}
                 break;
			   /* NOTE: move to c0 are handled by callout */
	  case cop0_op:
		 /* Because these functions callout & write the register file */
		 /* we have to treat them as contenders for the ctl_instr registers */
		 /* This is slightly conservative because one of these functions */
		 if( Delayed )
			thisGrp->delay_slot_reg_conflict = 1;
		 if( IS_CP0_FUNC( code ) )
			{
			   switch( FUNC( code ) )
				  {
				  case tlbr_op:
				  case tlbwi_op:
				  case tlbwr_op:
				  case tlbp_op:
					 break;
                                         

				  case eret_op:
                                  case rfe_op: 
                                     /* 
                                      * Remember that rfe and eret have the same
                                      * semantic in SimOS (we don't support the r3k, 
                                      * and highjack the opcode 
                                      */
                                     Delayed = 1;  /* ERET is non-delayed branch */ 
					 thisGrp->is_rfe_block = 1;
					 break;
				  default:
					 break;
				  }
			}
		 else
			{              
			   /* Operation contained in rs */
			   switch( rs( code ) ) {
                           case dmfc_op:
			   case mfc_op:
                              thisGrp->no_reg_allocate = 1;
                              /* Destination of mfc, dmtc is RT, not RD (kind of silly)*/
                              if( Delayed )
                                 thisGrp->delay_slot_reg_conflict |= 
                                    ((rt(code)==ctl_reg1) || (rt(code)==ctl_reg2) );
				  break;
                           case dmtc_op:
			   case mtc_op:
                              thisGrp->no_reg_allocate = 1;
                              thisGrp->delay_slot_reg_conflict = 1;
                              break;
			   default:
				  break;
			   } 
			}
				  break;

	  case cop1_op:
            switch( rs(code) )
               {
               case mtc_op:
               case dmtc_op:
               case ctc_op:
                  break;

               case mfc_op:
               case dmfc_op:
                  /* Destination of mfc, dmtc is RT, not RD (kind of silly)*/
                  thisGrp->no_reg_allocate = 1;
                  if( Delayed )
                     thisGrp->delay_slot_reg_conflict |= 
                        ((rt(code)==ctl_reg1) || (rt(code)==ctl_reg2) );
                  break;
               case cfc_op:
                  break;

               case bc_op:
                  thisGrp->delay_slot_reg_conflict = 1;
                  ctl_inst = 1;
                  /* Relies on no integer registers */
                  break;

               default:
                  /*arithmetic instruction s*/
                  break;
               }
                  break;

         case j_op:
         case jal_op:
            ctl_inst = 1;
            /* No registers */
            break;

        case beq_op:
        case bne_op:
        case blez_op:
        case bgtz_op:
        case beql_op:
        case bnel_op:
        case blezl_op:
        case bgtzl_op:
          thisGrp->reg2alloc[rs(code)].num_src++;
          thisGrp->reg2alloc[rt(code)].num_src++;
          ctl_inst = 1;
          ctl_reg1 = rs(code)?rs(code):REG_NONE;
          ctl_reg2 = rt(code)?rt(code):REG_NONE;
          break;


        case addi_op:       /* rs op imm -> rt */
        case addiu_op:
        case andi_op:
        case ori_op:
        case slti_op:
        case sltiu_op:
        case xori_op:
        case daddi_op:     
        case daddiu_op:
          thisGrp->reg2alloc[rs(code)].num_src++;
          if( Delayed )
             thisGrp->delay_slot_reg_conflict |= 
                ((rt(code)==ctl_reg1) || (rt(code)==ctl_reg2) );

          break;

        case lui_op:    /* immed<<16 -> rt */
          if( Delayed )
             thisGrp->delay_slot_reg_conflict |= 
                ((rt(code)==ctl_reg1) || (rt(code)==ctl_reg2) );
          break;
        case ld_op:
#if defined(SIM_MIPS32) && defined(DO_WARNING)
           CPUWarning("Hacked LD inst found at 0x%x\n", thisGrp->virt_pc); 
#endif
        case lld_op:
        case ldc2_op:
        case ll_op:
        case lb_op:
        case lbu_op:
        case lw_op:
        case lh_op:
        case lhu_op:
        case lwl_op:
        case lwr_op:
        case lwu_op:
        case ldl_op:
        case ldr_op:
          thisGrp->reg2alloc[rs(code)].num_src++;
          thisGrp->numDMemoryAcesses++;
          if( Delayed )
             thisGrp->delay_slot_reg_conflict |= 
                ((rt(code)==ctl_reg1) || (rt(code)==ctl_reg2) );

          break;

        case sc_op: 
        case scd_op:
           /* In page mode, sc calls compare and swap which uses temp regs */
           if( embra.emode == EMBRA_PAGE )
              thisGrp->no_reg_allocate = 1;
           /*FALLTHROUGH */
        case sd_op:
#if defined(SIM_MIPS32) && defined(DO_WARNING)
           CPUWarning("Hacked SD inst found at 0x%x\n", thisGrp->virt_pc); 
#endif
        case sdc2_op:
        case sb_op:
        case sh_op:
        case sw_op:
        case swl_op:
        case swr_op:
        case sdl_op:
        case sdr_op:
          thisGrp->reg2alloc[rs(code)].num_src++;
          thisGrp->reg2alloc[rt(code)].num_src++;
          thisGrp->numDMemoryAcesses++;
          break;

        case lwc1_op:
        case ldc1_op:
          thisGrp->reg2alloc[rs(code)].num_src++;
          thisGrp->numDMemoryAcesses++;
          break;

        case swc1_op:
        case sdc1_op:
          thisGrp->reg2alloc[rs(code)].num_src++;
          thisGrp->reg2alloc[rt(code)].num_src++;
          thisGrp->numDMemoryAcesses++;
          break;

         case mendel_tns:
            thisGrp->no_reg_allocate = 1;
            /* This instruction is (and should be) never in the delay slot */
            /* but to be safe.. */
            /* Because these functions callout & write the register file */
            /* we have to treat them as contenders for the ctl_instr
               registers */ 
            if( Delayed )
               thisGrp->delay_slot_reg_conflict= 1;
            break;

         case cache_op:
            thisGrp->numDMemoryAcesses++;
            break;

        default:
          ; /*nothing*/
        }


      /* Finished if that was the instruction in the delay slot */
      if (Delayed)
        break;

      /*  Reached the end of group when hit the control flow, or a
          page boundary */ 
      if( ctl_inst ) {
		 Delayed = 1;
		 if( thisGrp->GrpLen == maxInGroup )
            {
			   /* We have just deocoded an instruction whose delay slot */
			   /* will not fit in this instruction group.  Therefore, */
			   /* erase the knowledge of this instruction in this */
			   /* instruction group, so the decoder sees this as a */
			   /* sequential flow */
			   thisGrp->GrpLen--;
			   break;
            }
	  }

      /* XXX - This is a VERY hairy corner case */
      /* When we hit a physical page boundary, we need to see if our */
      /* virtual pc is in KSEG0.  If it is not, then we need to translate */
      /* the next address because code contiguous in virtual address */
      /* space, is not necessarily contiguous in physical address */
      /* space (exactly at the page boundary).  So we translate at the */
      /* next PC which is calculated by "raising" the virtual PC to */
      /* the first entry on the next (virtual) page.  Note that this */
      /* wouldn't work if our basic block were over a page, but */
      /* maxInGroup insures us that that can't happen. */
      /* Also note that we are telling TranslateVirtual that this */
      /* request is coming from the virtual address at the start of */
      /* the basic block.  That way, we return to the block (which we */
      /* want to do because we have not yet translated it).  This */
      /* means that exectuting one instruction can cause an exception */
      /* fiarly far downstream, even though none of the intervening */
      /* instructions have been executed.*/

      /* 
       * To make things even hairier, we now oly straddle pages if
       * the last instruction on the first page is a control flow instruction.
       * Otherwise, we split the BB at page boundaries. Raising exceptions
       * at translation must be avoided whenever possible. In the case where
       * this is not possible (branch at end of page and delay slot in next page)
       * we DO raise the exception at translation time, but emit the page
       * residency check at the same place during the execution of the translated
       * BB.
       * 
       * This only applies to user code. Kernel BB may still straddle pages
       * as the kernel text is in kseg0. 
       * (bugnion)
       */
      
      if (PAGE_BOUNDARY((unsigned) code_ptr) && !IS_KSEG0(thisGrp->virt_pc)) {
         
         PA pAddr; 
         VA next_page_pc;
         uint tvRes;
         if (!Delayed) 
            break;
         next_page_pc = NEXT_PAGE(thisGrp->virt_pc);

         tvRes = Em_TranslateVirtual(cpuNum,
                                     next_page_pc,
                                     &pAddr,
                                     ACT_IREAD);
         if( tvRes == EXCEPTION_CODE ) {
#if 0
            CPUWarning("Embra: decoder exception: 0x%x at %10lld \n",
                      thisGrp->virt_pc, 
                       (uint64)EmbraCpuCycleCount(0)); 
#endif
            ReenterTC(&EMP[cpuNum]);
            /* NOT REACHED */
         }

         code_ptr = (unsigned*) PHYS_TO_MEMADDR(M_FROM_CPU(cpuNum), pAddr);
         ASSERT( EMBRA_IS_MEMADDR( M_FROM_CPU(cpuNum), code_ptr ) );
         thisGrp->next_maPC = (MA)code_ptr;
         thisGrp->next_phys_pc = pAddr;
      }
    }

  /*
   * Test for the presence of an 'unusual' number
   * of NOPS in the translated BB. Usually a good sign
   * fo beign in hyperspace. 
   */
  for(i=0;i<thisGrp->GrpLen-MAX_NOPS;i++) {
     int j=0;
     while(j < MAX_NOPS && !thisGrp->instrs[j]) {
        j++;
     }
     if (j==MAX_NOPS) { 
        CPUError("EMBRA translating %d NOPs at cpu=%d PC=%#x mAddr=%#x \n",
                 MAX_NOPS,thisGrp->cpuNum,thisGrp->virt_pc,thisGrp->maPC);
     }
  }

  /* Add  Icache references */
  thisGrp->numIMemoryAcesses = thisGrp->GrpLen;
#ifdef DEBUG_TRANSLATOR
  {
	 extern unsigned trans_test_num_decoded;
	 trans_test_num_decoded = thisGrp->GrpLen;
  }
#endif
}



int IsCtlInstr(uint inst)
{
   int ctl = 0;
   switch( MAJOR_OPCODE(inst)) {
   case bcond_op: 
   case j_op: 
   case jal_op: 
   case beq_op:
   case bne_op:
   case blez_op:
   case bgtz_op:
   case beql_op:
   case bnel_op:
   case blezl_op:
   case bgtzl_op:
      ctl = 1;
      break;
   case spec_op: 
      switch( FUNC(inst)) {
      case jr_op: 
      case jalr_op: 
         ctl = 1;
         break;
      }
      break;
   case cop1_op: 
      switch (rs(inst)) {
      case bc_op: 
      case eret_op:
         ctl = 1;
      }
      break;
   }
   return ctl;
}

/* ****************************************************
 * EndOfBB returns the last VA of the BB given by
 * (VA,PA), but does not straddle pages. If the BB 
 * goes on to the next page, EndOfBB returns the first
 * word of the second page of the BB
 * This is only used for an optimization, therefore it's
 * still ok if we miss a few control instruction. If 
 * EndOfBB cannot prove that the BB ends on the same
 * page, Chaining optimization will be disabled.
 * ***************************************************/

  VA EndOfBB(VA vA , MA mA)
{
   VA curVA = vA;
   MA curMA = mA;
   int ctl = 0;
   
   while( 1 ) {
      uint inst = *(uint*)curMA;
      switch( MAJOR_OPCODE(inst)) {
      case bcond_op: 
      case j_op: 
      case jal_op: 
      case beq_op:
      case bne_op:
      case blez_op:
      case bgtz_op:
      case beql_op:
      case bnel_op:
      case blezl_op:
      case bgtzl_op:
         ctl = 1;
         break;
      case spec_op: 
         switch( FUNC(inst)) {
         case jr_op: 
         case jalr_op: 
            ctl = 1;
            break;
         }
         break;
      case cop1_op: 
         switch (rs(inst)) {
         case bc_op: 
            ctl = 1;
         }
         break;
      }
      if (ctl) {
         return curVA + INST_SIZE;
      }
      curVA += INST_SIZE;
      curMA += INST_SIZE;
      if( PAGE_NUMBER(curVA) != PAGE_NUMBER(vA)) {
         if (!IS_KSEG0(curVA)) {
            /*
             * The bb was split at translation time not
             * to straddle pages.
             */
            return curVA-INST_SIZE;
         }  
         return curVA;
      }
   }
#if !defined(_COMPILER_VERSION) 
   return vA; /* Make old compiler happy */
#endif
}