r4k_cp0.c
62.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
/*
* Copyright (C) 1996-1998 by the Board of Trustees
* of Leland Stanford Junior University.
*
* This file is part of the SimOS distribution.
* See LICENSE file for terms of the license.
*
*/
/****************************************************************
* r4k_cp0.c
*
* TranslateVirtual manages the simulator's TLB and EXCEPTION allows
* normal exception handling. The R4000 tlb consists of 48 entries,
* VPN2 subblocking factor = 2, thus there are
* Two pages mapped to one VPN. Lo0 is even, Lo1 is odd.
* All comments have been slightly revised with the most important
* changes noted by the R4000 CHANGED >> syntax.
*
* $Author: blythe $
* $Date: 2003/02/18 23:43:15 $
*
*****************************************************************/
#include <stdlib.h>
#include "mipsy.h"
#include "cpu.h"
#include "cpu_state.h"
#include "sim_error.h"
#include "cp0.h"
#include "simmisc.h"
#include "cpu_interface.h"
#include "hw_events.h"
#include "registry.h"
#include "machine_params.h"
#include "tcl_init.h"
#include "mips_arch.h"
#include "cpu_stats.h"
#include "trace.h"
#ifdef MIPSY_MXS
#include "ms.h"
#endif
/* NOTE: the following is included only because of OS_IEC_MAGICERR.
* This should be fixed!
*/
#include "simmagic.h" /* to raise the interrupt line on r4k timing mech. */
#include "simmisc.h" /* simlocks for raising i bits XXXXXX */
/* Local CP0 functions */
static void UTLB_EXCEPTION(CPUState *, int);
static void UpdateCPUMode(CPUState *P);
static Result DoTLBWrite(CPUState *P, int);
static void CompareWritten(CPUState *P);
static void CountWritten(CPUState *P);
static void ExceptionReturn(CPUState *P);
static void ProbeTLB(CPUState *P);
static void ReadTLBEntry(CPUState *P);
static Result WriteRandomTLBEntry(CPUState *P);
static Result WriteTLBEntry(CPUState *P);
static void WriteC0Register(CPUState *P, int c0RegNum, Reg value, int is64bit);
static Cp0RegControl cp0RegCtl[NUM_CP0_REGS] = CP0_REG_CONTROL_ARRAY;
/* Useful macros */
#if defined(SIM_MIPS32)
#define ANY_HIGH32_BITS(_vAddr) (0)
#define HAS_BAD_VADDR_BITS(_vAddr) (0)
#define REGION_COMPARE(_a,_b) (1)
#define IN_32BIT_MODE(_p) (1)
#define ONLY_4K_PAGE_SIZE /* 32bit only needs 4K pages */
#define IS_R10000(P) 0
#else
#define ANY_HIGH32_BITS(_vAddr) ((_vAddr) >> 32)
#define _BAD_VADDR_MASK (~(((0x1LL << VA_VALID_BITS)-1)|(0x3LL<<62)))
#define HAS_BAD_VADDR_BITS(_vAddr) ((_vAddr) & _BAD_VADDR_MASK)
#define REGION_COMPARE(_a,_b) ((_a) == (_b))
#define IN_32BIT_MODE(_p) ((_p)->is32bitMode)
/*
* Is the R10000 TLB?
*/
#define IS_R10000(P) ((P)->numTlbEntries == 64)
#endif
#ifdef ONLY_4K_PAGE_SIZE
#define ComputeTlbEntrySize(_pgmask) (0)
#else
static unsigned char ComputeTlbEntrySize(uint pgMsk);
#endif
#if defined(SIM_MIPS32)
#define TLBHash(_vpn2,_region, _asid) TLBHash32BitOnly(_vpn2,_asid)
/*****************************************************************
* Hash function for converting a virtual page number and ASID
* into an entry in the hash table. Hash function of R3000 ==
* hash function of R4000. Hash table stores chained TLB entry
* numbers at each bucket, thus decreasing translation time.
* R4000 COMMENTS >> In all calls to this function, the vpn is
* actually vpn2. (you want both vpn's to map to the same index!)
*****************************************************************/
static int
TLBHash32BitOnly(register VPN vpn2, register ASID asid)
{
return ((vpn2 ^ (vpn2 >> (NUM_VPN_BITS - LOG_TLB_HASH_SIZE))
^ (asid << (LOG_TLB_HASH_SIZE - NUM_ASID_BITS)))
% TLB_HASH_SIZE);
}
#else
#define TLBHash(_vpn2,_region, _asid) TLBHash64bit(_vpn2,_region, _asid)
/*****************************************************************
* Hash function for converting a virtual page number and ASID
* into an entry in the hash table.
* Hash table stores chained TLB entry
* numbers at each bucket, thus decreasing translation time.
*****************************************************************/
static int
TLBHash64bit(register VPN vpn2, register uint region, register ASID asid)
{
return ((vpn2 ^ (vpn2 >> (NUM_VPN2_BITS - LOG_TLB_HASH_SIZE))
^ (vpn2 >> (32 - (NUM_OFFSET_BITS+1) - LOG_TLB_HASH_SIZE))
^ region
^ (asid << (LOG_TLB_HASH_SIZE - NUM_ASID_BITS)))
% TLB_HASH_SIZE);
}
#endif
/*****************************************************************
* The TLB indices are stored in a hash table which maps an odd/even
* pair of pages to an entry.
* R4000 COMMENTS >> use IS_GLOBAL_HI, GET_VPN2. In the future will
* worry about the PageMask register. Right now pages 4k.
*****************************************************************/
void
MipsyInitTLBHashTable(CPUState *P)
{
int i;
int hashNum;
UpdateCPUMode(P);
/* Set up the hash bucket list headers */
for (i=0; i < TLB_HASH_SIZE; i++) {
List_Init(&(P->tlbIndexHeaders[i]));
}
for (i=0; i < P->numTlbEntries; i++) {
List_InitElement(&(P->indexList[i].links));
P->indexList[i].index = i;
P->indexList[i].onList = 0;
}
/* Reconstruct hash table information for when you want to
* directly jump into mipsy after accumulating some state.
* I am assuming that a completely blank TLB entry is what
* it looks like at startup.
*/
for (i=0; i < P->numTlbEntries; i++) {
if (IS_UNMAPPED_TLBHI(P->tlbEntry[i].Hi)) {
continue;
}
if(IS_GLOBAL_HI(P->tlbEntry[i].Hi)) {
hashNum = TLBHash(GET_VPN2(P->tlbEntry[i].Hi),
GET_REGION(P->tlbEntry[i].Hi), 0);
} else {
hashNum = TLBHash(GET_VPN2( P->tlbEntry[i].Hi),
GET_REGION(P->tlbEntry[i].Hi),
GET_ASID( P->tlbEntry[i].Hi));
}
List_Insert(&(P->indexList[i].links),
LIST_ATFRONT(&(P->tlbIndexHeaders[hashNum])));
P->indexList[i].onList = 1;
P->tlbEntrySize[i] = ComputeTlbEntrySize(P->tlbEntry[i].PgMsk);
}
P->pcVPNcache = 0;
}
static struct {
Reg mask;
uint loBit;
uint offset_mask;
} PgSz[TLBPGMASK_NUMSIZES] = {
{ ~(TLBPGMASK_4K>>13), (1 << 12), 4*1024-1},
{ ~(TLBPGMASK_16K>>13), (1 << 14), 16*1024-1},
{ ~(TLBPGMASK_64K>>13), (1 << 16), 64*1024-1},
{ ~(TLBPGMASK_256K>>13), (1 << 18), 256*1024-1},
{ ~(TLBPGMASK_1M>>13), (1 << 20), 1024*1024-1},
{ ~(TLBPGMASK_4M>>13), (1 << 22), 4*1024*1024-1},
{ ~(TLBPGMASK_16M>>13), (1 << 24), 16*1024*1024-1},
};
#ifndef ONLY_4K_PAGE_SIZE
#define SZ2MASK(_s) PgSz[(_s)].mask
#define SIZES_TO_CHECK TLBPGMASK_NUMSIZES
#else
#define SZ2MASK(_s) -1
#define SIZES_TO_CHECK 1
#endif
#ifndef ONLY_4K_PAGE_SIZE
static unsigned char ComputeTlbEntrySize(uint pgMsk)
{
unsigned char s;
uint match = ~(pgMsk >> 13);
ASSERT(SIZES_TO_CHECK < (1 << (sizeof(unsigned char)*8)));
for (s = 0; s < SIZES_TO_CHECK; s++) {
if ((uint)SZ2MASK(s) == match) {
return s;
}
}
CPUError("Bad PgMsk 0x%x in ComputeTlbEntrySize\n", pgMsk);
return (unsigned char) 0;
}
#endif
/*****************************************************************
* Given a vpn and asid, this function returns the index+1 of
* the corresponding TLB. It returns 0 if the index is not found.
* First probe the hash table under the given asid then probe under
* asid 0 (to catch global entries )
******************************************************************/
unsigned
TLBLookup(CPUState *P, uint region, VPN vAddrPFN2, ASID realASID)
{
int hashNum;
List_Links* indexPtr;
register unsigned idx;
register int s;
for (s = 0; s < SIZES_TO_CHECK; s++) {
VPN vpn;
VPN vpnLookup = vAddrPFN2 & SZ2MASK(s);
/* Check for pages under this process's true asid */
hashNum = TLBHash(vpnLookup, region, realASID);
LIST_FORALL( &(P->tlbIndexHeaders[hashNum]), indexPtr) {
idx = ((IndexListLink*)indexPtr)->index;
vpn = vAddrPFN2 & SZ2MASK(P->tlbEntrySize[idx]);
/* Don't check global bit because if the global bit is set, the
* entry is stored under ASID 0 */
if ((vpn == GET_VPN2(P->tlbEntry[idx].Hi))
&& (realASID == GET_ASID(P->tlbEntry[idx].Hi))
&& REGION_COMPARE(region, GET_REGION(P->tlbEntry[idx].Hi))) {
return idx+1;
}
}
/* Now check for global pages, all of which are stored under asid 0 */
hashNum = TLBHash(vpnLookup, region, 0);
LIST_FORALL( &(P->tlbIndexHeaders[hashNum]), indexPtr) {
idx = ((IndexListLink*)indexPtr)->index;
vpn = vAddrPFN2 & SZ2MASK(P->tlbEntrySize[idx]);
if ((vpn == GET_VPN2(P->tlbEntry[idx].Hi))
&& (IS_GLOBAL_HI(P->tlbEntry[idx].Hi))
&& REGION_COMPARE(region,GET_REGION(P->tlbEntry[idx].Hi))) {
return idx+1;
}
}
}
return 0;
}
/*****************************************************************
* Address translation on R4000.
*
* input: virtual address
* pointer to phys addr
* Fully associative search (using hash table)
* 1.) User Mode or Supervisor Mode
* if MSB == 1 in user or MSB = 0 | 110
* 2.) VPN2 match?
* a.) if no VPN2 match and 32 bit-mode, -> TLB Refill.
* b.) VPN2 match, Not Global, No ASID match, -> TLB Refill.
* c.) VPN2 match, not Global and ASID match, OR Global, then if not valid
* -> TLB Invalid.
* d.) valid, not dirty, but writing -> TLB Mod.
* e.) valid, dirty, or not dirty and not writing, Non_Cacheable == T
* then -> Access Main Mem, else Access Cache. Phys addr output.
*
* Returns FAILURE if an exception occurred telling the CPU to try
* this instruction again. tlbFlavor will be set to TLB_BDOOR if this
* is a backdoor reference and to TLB_UNCACHED if it is to be uncached.
*
* tlbFlavor is also used as input to this procedure in an attempt to
* keep the argument list down. Coming in it will signal whether or not
* this address is an ifetch and if this is a write or a read.
*
* RPB: The TLB_PREFETCH flavor is used to indicate that the translation
* is being performed for a prefetch. When a prefetch translation fails,
ii * no exception is taken -- we simply return failure and the prefetch is
* dropped.
*
*****************************************************************/
Result
TranslateVirtual(CPUState *P, VA vAddr, PA *pAddr, uint *tlbFlavor, void **bdoorAddr)
{
uint tlbIndex;
ContextReg contextReg;
XContextReg xcontextReg;
int myASID;
bool isIfetch, isPrefetch, writing;
uint region;
Reg lo_reg;
Reg tlbhi;
Reg32 sr_reg;
Reg VPN2;
/* Gather tlbFlavor information */
isIfetch = (bool) TLB_IS_IFETCH(*tlbFlavor);
isPrefetch = (bool) TLB_IS_PREFETCH(*tlbFlavor);
writing = (bool) TLB_IS_WRITE(*tlbFlavor);
/* Setting this to 0 means that by this is not a backdoor reference */
*tlbFlavor = 0;
myASID = GET_ASID(P->CP0[C0_TLBHI]);
region = GET_REGION(vAddr);
sr_reg = (Reg32)(P->CP0[C0_SR]);
/*
* Handle the case of unmapped addresses and address errors. Although
* we assume most address will hit in the TLB we still need to do
* illegal address detection because the TLB lookup doesn't catch them
* call (i.e. bit 50 being set in user mode).
* We do the check by region starting with the user region.
*/
if (region == 0) {
/* Make sure the address is with acceptable range. For the
* 32 bit mode this means 32 bits, for 64bit mode this means
* impelementation defined bits.
*/
if (IN_32BIT_MODE(P)) {
if (ANY_HIGH32_BITS(vAddr)) goto addrErr;
} else {
if (HAS_BAD_VADDR_BITS(vAddr)) goto addrErr;
if (IS_R10000(P)
&& !(sr_reg & SR_UX) && ANY_HIGH32_BITS(vAddr))
goto addrErr;
}
/* KUSEG becomes an uncached space when the ERL bit is set. This is
* needed for cache error handling. */
if (sr_reg & SR_ERL) {
/* need to add k1base because registry works on kseg1 addresses */
vAddr += K1BASE;
goto bdoor;
}
/* Fall thru to TLB lookup */
} else if (region == 3) {
/* Kernel region, no user and limited supervisor */
if (vAddr >= CKSEG0_START_ADDR) {
if (!IS_KERNEL_MODE(P)) {
/* No user and supervisor limited to single range */
if (sr_reg & SR_KSU_USR) goto addrErr;
if ((sr_reg & SR_KSU_SUP) && !IS_SUPERV_SEG(vAddr)) goto addrErr;
}
if (IS_KSEG0(vAddr)) {
if (!IS_KERNEL_MODE(P)) goto addrErr; /* Kernel only */
#if 1
/*XXXblythe hook to be able to run uncached */
if ((P->CP0[C0_CONFIG]&0x7) == CBIT_UNCACHED) {
/* switch to uncached space */
vAddr |= K1BASE;
goto bdoor;
}
#endif
*pAddr = K0_TO_PHYS(vAddr);
/* XXX fix this */
return SUCCESS;
}
if (IS_KSEG1(vAddr)) goto bdoor;
/* Fall thru to TLB lookup */
} else {
/* If we got here we better not be in 32bit mode and
* there is nothing that the user or supvisor can access.
*/
if (IN_32BIT_MODE(P) || !IS_KERNEL_MODE(P)) goto addrErr;
if (vAddr > XKSEG_END_ADDR) goto addrErr;
}
/* Fall thru to TLB lookup */
#if defined(SIM_MIPS64)
} else if (region == 2) {
uint cache_algorithm = XKPHYS_CACHE_ALGORITHM(vAddr);
/* xkphys - only available in kernel 64bit mode */
if (IN_32BIT_MODE(P) || !IS_KERNEL_MODE(P)) goto addrErr;
switch (cache_algorithm) {
case CBIT_UPDATE:
if (IS_R10000(P)) {
break; /* fall thru to error, doesn't work on R10000 */
}
case CBIT_NONCOHERENT:
case CBIT_EXCLUSIVE:
case CBIT_EXCLUSIVE_WRITE:
{
Reg64 offset = XKPHYS_ONE_PAGE_OFFSET(vAddr);
if (XKPHYS_INVALID_OFFSET(offset)) goto addrErr;
*pAddr = offset;
/* XXX - NEED TO ACCESS FLAVOR */
return SUCCESS;
}
case CBIT_UNCACHED:
case CBIT_UNCACHED_ACCEL:
{
uint flavor = XKPHYS_UNCACHED_FLAVOR(vAddr);
Reg64 offset = XKPHYS_FOUR_PAGE_OFFSET(vAddr);
if (XKPHYS_INVALID_OFFSET(offset)) goto addrErr;
if (!IS_R10000(P) && (flavor != 0)) goto addrErr;
*pAddr = offset;
*tlbFlavor = TLB_UNCACHED;
if (cache_algorithm == CBIT_UNCACHED_ACCEL) {
*tlbFlavor |= TLB_ACCELERATED;
}
return SUCCESS;
}
default:
/* invalid cache alogrithm fall thru to error */
break;
}
goto addrErr;
} else if (region == 1) {
/* Supervisor region - only available in 64bit mode */
if (IN_32BIT_MODE(P) || ((sr_reg & SR_KSU_USR) && !IS_KERNEL_MODE(P)) ||
HAS_BAD_VADDR_BITS(vAddr)) goto addrErr;
if (IS_R10000(P) && !(sr_reg & SR_SX)) goto addrErr;
/* Fall thru to TLB lookup */
#endif
}
/* Check TLB */
VPN2 = GET_VPN2(vAddr);
tlbIndex = TLBLookup(P, region, VPN2, myASID);
if (tlbIndex) {
int szEntry;
/* We have a matching VPN and ASID - see if it is valid */
tlbIndex--;
szEntry = P->tlbEntrySize[tlbIndex];
/* Which lo register? */
if (vAddr & PgSz[szEntry].loBit)
lo_reg = P->tlbEntry[tlbIndex].Lo1;
else
lo_reg = P->tlbEntry[tlbIndex].Lo0;
if (IS_VALID(lo_reg)) {
/* Check if the page is dirty or we are reading */
if ( IS_DIRTY(lo_reg) || !(writing)) {
/* Everything is cool - form the address */
#ifdef notdef /* For performance, disable this check by default */
int cache_algorithm = GET_CACHE_ALGOR(lo_reg);
if (!((cache_algorithm == CBIT_EXCLUSIVE) ||
(cache_algorithm == CBIT_EXCLUSIVE_WRITE))) {
CPUWarning("Unsupported TLB cache algorithm (%d) for address 0x%llx by cpu %d at PC 0x%llx\n",
cache_algorithm, (uint64)vAddr, P->myNum, (uint64)P->PC);
}
#endif
/*
* XXX TO_DO non-cacheable support eventualy support table
* which has 8 modes.
* if (!IS_CACHEABLE(lo_reg){
* *tlbFlavor = TLB_UNCACHED;
* }
*/
if (!IS_CACHEABLE(lo_reg)) {
*tlbFlavor = TLB_UNCACHED;
#if 0
fprintf(stderr, "uncached\r\n");
#endif
}
*pAddr = (((GET_PFN(lo_reg)&SZ2MASK(szEntry))*4*1024) |
(vAddr & PgSz[szEntry].offset_mask));
return SUCCESS;
} else {
/* TLB MODIFICATION */
/* Page is not dirty and we want to write */
/* Set up the CTxt register !!! */
/* EPC set up in EXCEPTION, badVaddr and context */
/* stored in macro */
if (isPrefetch) return FAILURE;
contextReg.tc_data = P->CP0[C0_CTXT];
contextReg.s32.tc_badvpn = VPN2;
xcontextReg.tc_data = P->CP0[C0_XCTXT];
xcontextReg.s64.tc_region = region;
#ifndef BIG_BIT_FIELD_BROKEN
xcontextReg.s64.tc_badvpn = VPN2;
#else
xcontextReg.s64.tc_badvpn_hi3 = VPN2>>28;
xcontextReg.s64.tc_badvpn_lo28 = VPN2;
#endif
tlbhi = (((Reg)region << TLBHI_REGIONSHIFT) |
(VPN2 << TLBHI_VPN2SHIFT) |
((Reg)myASID << TLBHI_PIDSHIFT)) ;
RECORD_EXCEPTION(P, EXC_MOD, E_VEC, vAddr,
tlbhi,contextReg.tc_data,
xcontextReg.tc_data);
return FAILURE;
}
} else {
/* TLB INVALID */
if (isPrefetch) return FAILURE;
contextReg.tc_data = P->CP0[C0_CTXT];
contextReg.s32.tc_badvpn = VPN2;
xcontextReg.tc_data = P->CP0[C0_XCTXT];
xcontextReg.s64.tc_region = region;
#ifndef BIG_BIT_FIELD_BROKEN
xcontextReg.s64.tc_badvpn = VPN2;
#else
xcontextReg.s64.tc_badvpn_hi3 = VPN2>>28;
xcontextReg.s64.tc_badvpn_lo28 = VPN2;
#endif
tlbhi = (((Reg)region << TLBHI_REGIONSHIFT) |
(VPN2 << TLBHI_VPN2SHIFT) |
((Reg)myASID << TLBHI_PIDSHIFT)) ;
RECORD_EXCEPTION(P, (writing ? EXC_WMISS : EXC_RMISS),E_VEC,
vAddr,tlbhi,contextReg.tc_data,
xcontextReg.tc_data);
return FAILURE;
}
}
/* TLB REFILL
* Since there were no matching VPN2s, there is a TLB refill exception.
* First put the VPN2 and ASID of the non-matching address in Hi.
* The BadVAddr and Context registers also need to be set.
* 1.) set TLBL or TLBS(store only) code in cause register
* use EPC and BD bit in cause reg, inst or load, or store.
* 2.) BadVAddr, Context, XContect and EntryHi hold the vAddr
* that failed. Entry HI also has ASID. EPC pts to last instruction
* take care of branches.
*/
if (isPrefetch) return FAILURE;
contextReg.tc_data = P->CP0[C0_CTXT];
contextReg.s32.tc_badvpn = VPN2;
xcontextReg.tc_data = P->CP0[C0_XCTXT];
xcontextReg.s64.tc_region = region;
#ifndef BIG_BIT_FIELD_BROKEN
xcontextReg.s64.tc_badvpn = VPN2;
#else
xcontextReg.s64.tc_badvpn_hi3 = VPN2>>28;
xcontextReg.s64.tc_badvpn_lo28 = VPN2;
#endif
tlbhi = (((Reg)region << TLBHI_REGIONSHIFT) |
(VPN2 << TLBHI_VPN2SHIFT) |
((Reg)myASID << TLBHI_PIDSHIFT)) ;
if (isIfetch) {
ITLB_MISS_EVENT(MipsyReadTime(P->myNum), P->myNum, vAddr);
} else {
DTLB_MISS_EVENT(MipsyReadTime(P->myNum), P->myNum, P->PC, vAddr);
}
if (sr_reg & SR_EXL) {
RECORD_EXCEPTION(P, (writing ? EXC_WMISS : EXC_RMISS),E_VEC,vAddr,
tlbhi,contextReg.tc_data,
xcontextReg.tc_data);
} else {
if (((region == 0) && (sr_reg & SR_UX)) ||
((region == 3) && (sr_reg & SR_KX)) ||
((region == 1) && (sr_reg & SR_SX))) {
/* Should pass XUT_VEC to RECORD below, but this isn't
currently used. */
}
RECORD_UTLBEXCEPTION(P, writing ? EXC_WMISS : EXC_RMISS,
UT_VEC, vAddr, tlbhi, contextReg.tc_data,
xcontextReg.tc_data);
}
return FAILURE;
addrErr:
if (isPrefetch) return FAILURE;
/* Illegal address - generate an address error */
RECORD_EXCEPTION(P, (writing ? EXC_WADE : EXC_RADE), E_VEC,
vAddr,P->CP0[C0_TLBHI], P->CP0[C0_CTXT], P->CP0[C0_XCTXT]);
return FAILURE;
bdoor:
{
SimMagic_accesstype a;
if (!IS_KERNEL_MODE(P)) {
CPUWarning("Accessing bdoor while not in kernel mode (PC %#x RA %#x)\n",
P->PC, P->R[REG_RA]);
}
a = SimMagic_kseg1_accesstype(vAddr);
if (a == SIMMAGIC_UNCACHED) {
*tlbFlavor = TLB_UNCACHED;
*pAddr = vAddr;
} else if (a == SIMMAGIC_UNCACHED_ACCELERATED) {
*tlbFlavor = TLB_UNCACHED|TLB_ACCELERATED;
*pAddr = vAddr;
} else {
uint flag;
/* a == SIMMAGIC_DIRECT */
if (!RegistryIsInRange(vAddr, bdoorAddr, &flag)) {
/* Raise an address error on a bad backdoor address. */
if (!isPrefetch) {
CPUWarning("MIPSY: Bad bdoor reference to 0x%x from %#x RA %#x\n",
vAddr, P->PC, P->R[31]);
/* ASSERT(0); */
RECORD_EXCEPTION(P, (writing ? EXC_WADE : EXC_RADE), E_VEC,
vAddr, P->CP0[C0_TLBHI], P->CP0[C0_CTXT],
P->CP0[C0_CTXT]);
}
return FAILURE;
}
if (flag & REG_DATA) {
*tlbFlavor = TLB_BDOOR_DATA;
} else {
ASSERT(flag & REG_FUNC);
*tlbFlavor = TLB_BDOOR_FUNC;
}
SIM_DEBUG(('b', "MIPSY: CPU %d Translated %#x to %#x (%s) at pc %#x\n",
P->myNum, vAddr, pAddr, (flag & REG_DATA)?"data":"func", P->PC));
}
}
return SUCCESS;
}
/* a version of TranslateVirtual intended to be called from the debugger.
*/
Result
TranslateVirtualNoSideeffect(CPUState *P, VA vAddr, PA *pAddr)
{
unsigned tlbIndex;
int myASID;
Reg64 lo_reg;
int region = GET_REGION(vAddr);
if (region==2) {
*pAddr = XKPHYS_FOUR_PAGE_OFFSET(vAddr);
return SUCCESS;
}
if (region==3 && vAddr >= CKSEG0_START_ADDR) {
if (IS_KSEG0(vAddr)) {
*pAddr = K0_TO_PHYS(vAddr);
return SUCCESS;
}
}
/* fall through and cover 32-bit cases. */
if (!IS_KUSEG(vAddr)) {
if (IS_KSEG1(vAddr)) {
#ifdef __alpha
return FAILURE;
#else
void *dat;
uint flag;
*pAddr = (PA)RegistryGetSimFunction(vAddr);
if (*pAddr) {
SIM_DEBUG(('b', "BDOOR: CPU %d found func %#x at 0x%x (PC %#x RA %#x\n",
P->myNum, *pAddr, vAddr, P->PC, P->R[REG_RA]));
return SUCCESS;
}
/* backdoor access */
#if 0
if (!RegistryIsInRange(vAddr,&dat, &flag) ||
!(flag & REG_DATA)) {
/* Raise an address error on a bad backdoor address. */
return FAILURE;
}
*pAddr = (PA) dat;
#else
if (!RegistryIsInRange(vAddr,&dat, &flag)) {
return FAILURE;
}
/* if a function, return the vAddr and resolve later */
if (!(flag & REG_DATA)) {
*pAddr = (PA) vAddr;
} else {
*pAddr = (PA) dat;
}
#endif
return SUCCESS;
#endif /* __alpha */
} else if (IS_KSEG0(vAddr)) {
*pAddr = K0_TO_PHYS(vAddr);
return SUCCESS;
}
/* KSEG2 references will fall through and be translated normally */
}
/* Check TLB */
myASID = GET_ASID(P->CP0[C0_TLBHI]);
tlbIndex = TLBLookup(P, region, GET_VPN2(vAddr) , myASID);
if (tlbIndex) {
int sz;
/* We have a matching VPN and ASID - see if it is valid */
tlbIndex--;
sz = P->tlbEntrySize[tlbIndex];
/* Which lo register? */
if (vAddr & PgSz[sz].loBit)
lo_reg = P->tlbEntry[tlbIndex].Lo1;
else
lo_reg = P->tlbEntry[tlbIndex].Lo0;
if (IS_VALID(lo_reg)) {
*pAddr = (((GET_PFN(lo_reg)&SZ2MASK(sz))*4*1024) |
(vAddr & PgSz[sz].offset_mask));
return SUCCESS;
}
/* fall through to failure case if not valid */
}
/* OK, let's resort to calling tcl for help */
*pAddr = TclTranslateVirtual(P->myNum, vAddr);
if (*pAddr) {
return SUCCESS;
}
return FAILURE;
}
/*****************************************************************
* ProbeTLB -
* Probe TLB for a matching entry. The Index register is loaded
* with the address of the TLB entry whose contents match the
* contents of the Hi register. If no TLB entry matches, the
* high order bit of the Index register is set.
*
* What to do when there are multiple matches was not specified,
* so I'm leaving after the first match.
* R4000 CHANGED >> No changes.
*****************************************************************/
static void
ProbeTLB(CPUState *P)
{
int idx;
idx = TLBLookup(P, GET_REGION(P->CP0[C0_TLBHI]),
GET_VPN2(P->CP0[C0_TLBHI]),
GET_ASID(P->CP0[C0_TLBHI]));
if (idx) {
/* We matched */
P->CP0[C0_INX] = (idx - 1) << TLBINX_INXSHIFT;
return;
}
/* Probe Miss */
P->CP0[C0_INX] = 0x80000000;
return;
}
/*****************************************************************
* ReadTLBEntry -
* The Hi, Lo0, and Lo1 registers are loaded with the contents
* of the TLB entry pointed at by the contents of the TLB Index
* register. The results are unspecified if the contents or Index
* are greater than the number of TLB entries.
* R4000 CHANGED >> G(global) bit from TLB is written into both the lo0 and lo1
* registers. Entry HI and EntryLo registers are loaded with contents
* of the TLB entry pointedt at by the index register. As is the
* PgMsk register. if index > numtlbentries, undefined behavior.
*****************************************************************/
static void
ReadTLBEntry(CPUState *P)
{
IndexReg index;
/* I'm going to assume that the index register is in the
correct range. */
index = P->CP0[C0_INX];
P->CP0[C0_PGMASK] = P->tlbEntry[GET_IDX(index)].PgMsk;
P->CP0[C0_TLBHI] = P->tlbEntry[GET_IDX(index)].Hi &
~P->tlbEntry[GET_IDX(index)].PgMsk & ~TLBHI_G;
P->CP0[C0_TLBLO_0] = P->tlbEntry[GET_IDX(index)].Lo0;
P->CP0[C0_TLBLO_1] = P->tlbEntry[GET_IDX(index)].Lo1;
if (IS_GLOBAL_HI(P->tlbEntry[GET_IDX(index)].Hi)){
P->CP0[C0_TLBLO_0] |= TLBLO_G;
P->CP0[C0_TLBLO_1] |= TLBLO_G;
} else {
P->CP0[C0_TLBLO_0] &= ~TLBLO_G;
P->CP0[C0_TLBLO_1] &= ~TLBLO_G;
}
/* Reading into TLBHI could change the ASID */
P->pcVPNcache = 0;
TraceCheckASID(P);
return;
}
/*****************************************************************
* Do_TLB_Write
* Write the indexed TLB entry. The TLB entry pointed at by the
* contents of the TLB index register is loaded with the contents
* of the Hi, Lo0, Lo1, and PgMsk registers. Since both Lo0 and Lo1
* are written, the C0_TLBLO_1 and _0 must be in a consistent
* state before this instruction is called.
*
* R4000 CHANGES >> G bit of tlbhi written as AND of G bits
* in EntryLo0 and EntryLo1.
*****************************************************************/
static Result
DoTLBWrite(CPUState *P, int idx)
{
int hashNum;
Reg frameMask;
/* remove old entry from hash table */
if( P->indexList[idx].onList ) {
List_Remove( &(P->indexList[idx].links));
P->indexList[idx].onList = 0;
}
/* if we are doing an indexed write into a segment which should not
* be using the TLB we do NOTHING, and issue a mipsyswarning
* that this has been called.
*/
if (IS_R10000(P)) {
frameMask = (P->CP0[C0_FRAMEMASK] << TLBFRAMESHIFT);
} else {
frameMask = 0;
}
P->tlbEntry[idx].PgMsk = P->CP0[C0_PGMASK];
P->tlbEntry[idx].Hi = P->CP0[C0_TLBHI] & ~P->CP0[C0_PGMASK];
P->tlbEntry[idx].Lo0 = (P->CP0[C0_TLBLO_0] & ~TLBLO_G) & ~frameMask;
P->tlbEntry[idx].Lo1 = (P->CP0[C0_TLBLO_1] & ~TLBLO_G) & ~frameMask;
P->tlbEntrySize[idx] = ComputeTlbEntrySize(P->tlbEntry[idx].PgMsk);
if (IS_GLOBAL_LO(P->CP0[C0_TLBLO_0])
&& IS_GLOBAL_LO(P->CP0[C0_TLBLO_1])) {
P->tlbEntry[idx].Hi |= TLBHI_G;
}
/* To check which segment it is, I retrieve the VPN2 and shift up
* by 1 to get the original vpn. Since all VPN2's are floored, and
* segs are on even boundaries, this should work. Then this number up
* to account for the page offset so that the MIPSY_IS_KSEG0 test will
* work. This will change when PageMask register is used.
*/
if (!IS_UNMAPPED_TLBHI(P->tlbEntry[idx].Hi)) {
/* update hash table Insert all global entries under ASID 0 */
if (IS_GLOBAL_HI( P->tlbEntry[idx].Hi)) {
hashNum = TLBHash(GET_VPN2(P->tlbEntry[idx].Hi),
GET_REGION(P->tlbEntry[idx].Hi), 0);
} else {
hashNum = TLBHash(GET_VPN2(P->tlbEntry[idx].Hi),
GET_REGION(P->tlbEntry[idx].Hi),
GET_ASID(P->tlbEntry[idx].Hi));
if(GET_ASID(P->tlbEntry[idx].Hi) == 0) {
if (!((P->tlbEntry[idx].Hi == 0) &&
!(TLBLO_V & P->tlbEntry[idx].Lo0) &&
!(TLBLO_V & P->tlbEntry[idx].Lo1))) {
/* IRIX 6.2 seems to like to slam all zeros into
* the TLB. Don't print a message if this happens.
*/
#ifndef TORNADO
/* common operation in Tornado; should be nothing wrong with it */
CPUWarning("Non-global ASID 0 entry written to TLB @%#llx RA %#llx\n",
P->PC, P->R[31]);
#else
#endif /* TORNADO */
}
}
}
List_Insert(&(P->indexList[idx].links),
LIST_ATFRONT(&(P->tlbIndexHeaders[hashNum])));
P->indexList[idx].onList = 1;
if (!IS_CACHEABLE(P->tlbEntry[idx].Lo0) ||
!IS_CACHEABLE(P->tlbEntry[idx].Lo1)) {
CPUWarning("Entering uncached TLB Entry at PC %#x\n", P->PC);
}
} /* END IF KSEG0 || KSEG1 */
P->pcVPNcache = 0;
TraceCheckASID(P);
return SUCCESS;
}
/*****************************************************************
* WriteTLBEntry -
* Write the indexed TLB entry. The TLB entry pointed at by the
* contents of the TLB index register is loaded with the contents
* of the Hi and Lo registers.
*****************************************************************/
static Result
WriteTLBEntry(CPUState *P)
{
IndexReg index;
/* I'm going to assume that the index register is in the
correct range. */
index = P->CP0[C0_INX];
return DoTLBWrite(P, GET_IDX(index));
}
/*****************************************************************
* WriteRandomTLBEntry -
* Write random TLB entry. The TLB entry pointed at by the contents
* of the TLB Random register is loaded with the contents of Hi
* and Lo.
*
* Technically, the value of the Random register is decremented on
* each machine clock cycle and ranges between NWIREDENTRIES
* and NTLBENTRIES. To save time, I'll just read the clock.
* TO_DO NUMWIREDENTRIES should be based on the register. it
* is, I keep the randomReg unimplemented and hueristically done as before.
*
* R4000 CHANGES >> No changes.
*****************************************************************/
#ifdef DETERMINISTIC_TLB
int currentRandom = 0;
#endif
static Result
WriteRandomTLBEntry(CPUState *P)
{
unsigned randomReg;
unsigned numRandEntries = P->numTlbEntries - P->CP0[C0_TLBWIRED];
#ifdef DETERMINISTIC_TLB
randomReg = (currentRandom++ % numRandEntries);
#else
randomReg = (MipsyReadTime(P->myNum) % numRandEntries);
#endif
return DoTLBWrite(P, randomReg + P->CP0[C0_TLBWIRED]);
}
/*****************************************************************
* EXCEPTION -
* This is sort of a major routine. When an exception is raised,
* execution is suspended and the processor enters kernel mode.
* The CPU should abort the instruction that caused the exception
* along with any others in the pipeline.
*
* The CPU loads the Exception Program Counter (EPC) with a
* restart location - either the instruction, or it's predecessor
* if it's in the branch delay slot. I check if it's in a branch
* delay slot by seeing if the difference between PC and nPC is
* greater than one instruction.
*
* R4000 STATUS REGISTER UPDATE
* 1.) The handler needs to know the mode(user or supervisor)
* so only do not change mode.
* 2.) disable interrupts
* 3.) Are we inside another Exception, if EXL == 1 we are,
* and do not set PC or nPC.
* 4.) on start cpu loads EPC with restart location...
* 5.) check BEV bit and goto vector.
*
* The current kernel/user mode and interrupt enable status is NOT saved.
* Currently does not set ce bit in status register.
****************************************************************/
static bool isREFILLException = FALSE;
void
EXCEPTION(CPUState *P, int code)
{
StatusReg statusReg;
CauseReg causeReg;
uint prettyCode = code >> CAUSE_EXCSHIFT;
VA exceptionBase;
TraceException(P, code);
SIM_DEBUG_DETAIL(('i', "INTR", P->myNum,
"EXC code: 0x%x)\tintrbits: 0x%x\tPC: 0x%llx, RA: 0x%llx bad=0x%llx\n",
code, P->intrBitsPtr[0], (uint64)P->PC,
(uint64) P->R[31],(uint64)P->CP0[C0_BADVADDR]));
statusReg.ts_data = P->CP0[C0_SR];
/* no exceptions when ERL is asserted */
if (statusReg.s32.ts_erl)
return;
/* Clear any cached instruction in case this exception is terminating
* a miss stall
*/
P->stalledInst = 0;
/* Set the BD bit, CE, IP, and ExcCode fields of the Cause
* register. Along with the BD bit, set the Exception Program
* Counter (either to current PC or PC - 4 if BD slot).
*/
causeReg.tc_data = P->CP0[C0_CAUSE];
causeReg.s32.tc_exccode = code >> CAUSE_EXCSHIFT;
/* The code comes in already shifted to the left 2 bits */
if ((code == EXC_RMISS) || (code == EXC_WMISS)) {
STATS_INC(P->myNum, numFaults, 1);
}
if (code == EXC_INT) {
STATS_INC(P->myNum, numInterrupts, 1);
}
STATS_INC(P->myNum, causeCount[prettyCode], 1);
/* EPC must point to the preceeding branch or delay instruction */
if (P->branchStatus == BranchStatus_bd) {
/* The inst causing the exception is in a BD slot */
causeReg.s32.tc_bd = TRUE;
if (statusReg.s32.ts_exl == 0){
P->CP0[C0_EPC] = P->PC-INST_SIZE;
statusReg.s32.ts_exl = 1;
}
} else {
causeReg.s32.tc_bd = FALSE;
if (statusReg.s32.ts_exl == 0){
P->CP0[C0_EPC] = P->PC;
statusReg.s32.ts_exl = 1;
}
}
P->CP0[C0_SR] = statusReg.ts_data;
P->CP0[C0_CAUSE] = causeReg.tc_data;
UpdateCPUMode(P);
EXC_STALL_EVENT(P->myNum, P->PC, 1);
exceptionBase = (statusReg.s32.ts_bev == 0) ? EXC_VEC_BASE_0 :
EXC_VEC_BASE_1;
if (isREFILLException){
#if defined(SIM_MIPS64)
Reg32 sr_reg = statusReg.ts_data;
int region;
XContextReg xctxt;
xctxt.tc_data = P->CP0[C0_XCTXT];
region = xctxt.s64.tc_region;
if (((region == 0) && (sr_reg & SR_UX)) ||
((region == 3) && (sr_reg & SR_KX)) ||
((region == 1) && (sr_reg & SR_SX))) {
P->PC = exceptionBase + XUT_VEC_OFFSET;
P->nPC = exceptionBase + XUT_VEC_OFFSET + 4;
} else {
#else
{
#endif
P->PC = exceptionBase;
P->nPC = exceptionBase+4;
}
} else {
P->PC = exceptionBase + E_VEC_OFFSET;
P->nPC = exceptionBase + E_VEC_OFFSET + 4;
}
if (isREFILLException) {
UTLB_EVENT();
} else {
EXC_EVENT(prettyCode);
}
}
/*****************************************************************
* UTLB_EXCEPTION
*
* R4000 MIPS uses 1 special vector for any
* TLB refill exception.
* note:: this used to be called utlb_exception.
****************************************************************/
static void
UTLB_EXCEPTION(CPUState *P, int code)
{
/* This will be counted here and in the EXC_WMISS and */
/* EXC_RMISS. Subtract out if needed. */
STATS_INC(P->myNum, utlbCount[code >> CAUSE_EXCSHIFT], 1);
isREFILLException = TRUE;
EXCEPTION(P, code);
isREFILLException = FALSE;
}
/* UNTOUCHED MXS */
#ifdef MIPSY_MXS
/*
* PrintException - Print the specified exception - used for debugging.
*/
void
PrintException(struct s_cpu_state *st, int exnum)
{
CPUState *P = (CPUState *) (st->mipsyPtr);
if (exnum >= 0)
CPUPrint("MXS: CPU%d: EXC @ 0x%x cause 0x%x badvaddr 0x%x time %lld\n",
P->myNum,
P->CP0[C0_EPC],
P->exception[exnum].cause,
P->exception[exnum].badaddr, (uint64)MipsyReadTime(P->myNum));
}
/*
* HandleException - Modify the register state of the machine
* to reflect an exception happening.
*/
void
HandleException(struct s_cpu_state *st, int exnum, int in_delay)
{
CPUState *P = (CPUState *) (st->mipsyPtr);
StatusReg statusReg;
statusReg.ts_data = P->CP0[C0_SR];
CopyFromMXS (P);
if (in_delay) {
P->branchStatus = BranchStatus_bd;
} else {
P->branchStatus = BranchStatus_none;
}
if (exnum < 0) {
if (exnum == -1) {
/* Coherency exception - Restart from point of exception */
if (in_delay) {
P->PC -= 4;
P->nPC = P->PC+4;
}
CopyToMXS (P); /* Resets the MXS instruction window */
CPUPrint("MXS: Coherency exception at 0x%x time %lld\n", P->PC,
(uint64) MipsyReadTime(P->myNum));
} else if (exnum == -2) {
/* Switch back to mipsy */
P->inMXS = 0;
P->switchToMIPSY = 0;
CopyToMXS(P); /* This will cause MXS to be reset */
CPUPrint("MXS: Switching to MIPSY on CPU%d at 0x%x time %lld\n",
P->myNum, P->PC, (uint64)MipsyReadTime(P->myNum));
} else if (exnum == -3) {
CPUPrint("MXS: About to ProcEXIT cpu %d at 0x%x time %lld\n",
P->myNum, P->PC, (uint64)MipsyReadTime(P->myNum));
/* MakeProcessExit(P->myNum); */
CPUError("MakeProcessExit doesn't work\n");
CopyToMXS(P); /* This will cause MXS to be reset */
} else if (exnum == -4) {
CPUPrint("MXS: About to EXIT cpu %d at 0x%x time %lld\n",
P->myNum, P->PC, (uint64)MipsyReadTime(P->myNum));
CopyToMXS(P); /* This will cause MXS to be reset */
MipsyExit(BASE);
}
return;
}
P->CP0[C0_TLBHI] = P->exception[exnum].hireg;
if (P->exception[exnum].cause == EXC_CPU) {
CauseReg causeReg;
causeReg.tc_data = P->CP0[C0_CAUSE];
causeReg.s32.tc_ce = P->exception[exnum].badaddr;
P->CP0[C0_CAUSE] = causeReg.tc_data;
} else {
/*
* MIPS r4k manual is WRONG on this one.
* Always latch badvaddr
*/
P->CP0[C0_BADVADDR] = P->exception[exnum].badaddr;
}
P->CP0[C0_CTXT] = P->exception[exnum].ctxtreg;
if (P->exception[exnum].vec == UT_VEC) {
UTLB_EXCEPTION(P, P->exception[exnum].cause);
} else {
EXCEPTION(P, P->exception[exnum].cause);
}
P->PC = P->exception[exnum].vec;
P->nPC = P->exception[exnum].vec+4;
if (P->exception[exnum].cause == EXC_SYSCALL) {
#define SYSVoffset 1000
int syscallNum = P->R[REG_V0] - SYSVoffset;
ASSERT((syscallNum < MAX_SYSCALL) && (syscallNum >= 0));
STATS_INC(P->myNum, numSyscalls, 1);
STATS_INC(P->myNum, syscallCount[syscallNum], 1);
}
CopyToMXS (P); /* Resets the MXS instruction window */
return;
}
int
FPusable(struct s_cpu_state *st)
{
CPUState *P = (CPUState *) (st->mipsyPtr);
StatusReg statusReg;
statusReg.ts_data = P->CP0[C0_SR];
if (!(statusReg.s32.ts_cu1)) {
/* CE bits of the cause register are set in badvaddr */
RECORD_EXCEPTION(P, EXC_CPU, E_VEC, 1,
P->CP0[C0_TLBHI], P->CP0[C0_CTXT],P->CP0[C0_XCTXT]);
return 0;
}
return 1;
}
#endif /* MIPSY_MXS */
/* END UNTOUCHED MXS */
/*****************************************************************
* ExceptionReturn
* instruction for returning from an interrupt, exception, or
* error trap. if error trap load pc from the ErrorEPC and clear
* ERL bit of the status register. else load pc from EPC and clear
* EXL bit of the status register.
* PC gets set in R4, not in R3.
* Handler must save pc, op mode, status or interrupts enable,
* and restore.
*****************************************************************/
void
ExceptionReturn(CPUState *P)
{
StatusReg statusReg;
statusReg.ts_data = P->CP0[C0_SR];
RFE_EVENT();
if (statusReg.s32.ts_erl){
P->PC = P->CP0[C0_ERROR_EPC];
statusReg.s32.ts_erl = 0;
} else {
P->PC = P->CP0[C0_EPC];
statusReg.s32.ts_exl = 0;
}
P->nPC = P->PC + INST_SIZE;
P->CP0[C0_SR] = statusReg.ts_data;
UpdateCPUMode(P);
MipsyCheckForInterrupts(P);
}
/*****************************************************************
* MipsyCheckForInterrupts
* The cause register needs to have its interrupt pending (IP) bits
* before we determine if we have to take an interrupts.
* MipsyCheckForInterrupts is called every time the cpu simulator
* sets an interrupt, on every mtc_op to CO_SR and periodically to
* catch TTY and net interrupts.
* For an interrupt exception to take place, a few things have to be true:
* (1) an interrupt bit has to be set in the cause register
* (2) that interrupt must be enabled in the SR's IM field
* (3) the SR must have the current interrupt enabled field set
* (4) Can't be running at exception level.
****************************************************************/
void MipsyCheckForInterrupts(CPUState *P)
{
P->CP0[C0_CAUSE] = (P->CP0[C0_CAUSE] & ~CAUSE_EXTINTBITS) |
((P->intrBitsPtr[0] << CAUSE_IPSHIFT) & CAUSE_EXTINTBITS);
if (((P->CP0[C0_CAUSE] & P->CP0[C0_SR]) & SR_IMASK)
&& (P->CP0[C0_SR] & SR_IEC) &&
!(P->CP0[C0_SR] & (SR_EXL|SR_ERL))) {
STATS_SET(P->myNum, syncStallStart, 0);
P->takeInterrupt = TRUE;
}
}
int
MipsyNmi()
{
int cpuNum=0; /* AJP: hard code this for now */
StatusReg statusReg;
CPUState *P = &PE[cpuNum];
statusReg.ts_data = P->CP0[C0_SR];
statusReg.s32.ts_erl = 1;
statusReg.s32.ts_bev = 1;
statusReg.s32.ts_ts = 0;
statusReg.s32.ts_sr = 1;
P->CP0[C0_SR] = statusReg.ts_data;
P->cpuMode = KERNEL_MODE;
/* for uncached stalled cpus, wait for the stalled instruction
* to complete first */
if (P->cpuStatus == cpu_stalled_uncached) {
P->CP0[C0_ERROR_EPC] = P->nPC;
P->nPC = R_VEC;
} else {
/* if cpu is running, take cache error right now */
/* Save the current pc as C0_ERROR_EPC, DONT set Branch delay bit */
if (P->nPC != (P->PC + INST_SIZE)) {
/* The inst that was preempted is in a BD slot */
P->CP0[C0_ERROR_EPC] = P->PC - INST_SIZE;
} else {
P->CP0[C0_ERROR_EPC] = P->PC;
}
P->PC = R_VEC;
P->nPC = R_VEC + 4;
}
P->stalledInst = FALSE; /* Force inst refetch from exc vect */
return 0;
}
/*****************************************************************
* MipsyCacheError
*
* Flashlite calls this for Cache Errors
*
* 1) Set ERL
* 2) Save the current PC as ERROR_EPC
* 3) Set the PC to CACHE_ERROR_VEC (addr_layout.h)
*
* CAVEAT user:
* This doesn't yet implement the full R10K functionality. In the
* R10K, a second cache error may be posted, but will not be taken
* while the ERL status bit is set. To be done.
*
*****************************************************************/
void
MipsyCacheError(int cpuNum, bool isAsync)
{
StatusReg statusReg;
CPUState *P = &PE[cpuNum];
/*
* Shift current mode and interrupt status to previous,
* previous to old, and old can be discarded. This lets the CPU
* respond to three levels of exceptions before software must
* save the contents of the Status register.
*/
statusReg.ts_data = P->CP0[C0_SR];
statusReg.s32.ts_erl = 1;
P->CP0[C0_SR] = statusReg.ts_data;
P->cpuMode = KERNEL_MODE;
/* This is kind of messy. The R100000 manual says one thing and the
R4000 manual (and sbd.h) says another, so using the R4000 settings
for now... */
if (isAsync) {
/* from sysAD: setting ED and EE */
P->CP0[C0_CACHE_ERR] = 0x24000000;
} else {
/* a real cache error: setting ED */
P->CP0[C0_CACHE_ERR] = 0x20000000;
}
/* for uncached stalled cpus, wait for the stalled instruction to complete first */
if (P->cpuStatus == cpu_stalled_uncached) {
P->CP0[C0_ERROR_EPC] = P->nPC;
if (statusReg.s32.ts_bev == 0) {
P->nPC = CACHE_ERR_VEC_BEV0;
} else {
P->nPC = CACHE_ERR_VEC_BEV1;
}
} else {
/* if cpu is running, take cache error right now */
/* Save the current pc as C0_ERROR_EPC, DONT set Branch delay bit */
if (P->nPC != (P->PC + INST_SIZE)) {
/* The inst that was preempted is in a BD slot */
P->CP0[C0_ERROR_EPC] = P->PC - INST_SIZE;
} else {
P->CP0[C0_ERROR_EPC] = P->PC;
}
if (statusReg.s32.ts_bev == 0) {
P->PC = CACHE_ERR_VEC_BEV0;
P->nPC = CACHE_ERR_VEC_BEV0 + 4;
} else {
P->PC = CACHE_ERR_VEC_BEV1;
P->nPC = CACHE_ERR_VEC_BEV1 + 4;
}
}
P->stalledInst = FALSE; /* Force inst refetch from exc vect */
}
/*****************************************************************
* UpdateCPUMode
*
* This function is shared between mipsy and embra
* Update with care. Do not remove the embra specific
* stuff.
*****************************************************************/
static void
UpdateCPUMode(CPUState *P)
{
StatusReg statusReg;
statusReg.ts_data = P->CP0[C0_SR];
P->cpuMode = KERNEL_MODE;
if (!statusReg.s32.ts_erl && !statusReg.s32.ts_exl) {
ASSERT(statusReg.s32.ts_ksu != 3);
if (statusReg.s32.ts_ksu == 2) {
P->cpuMode = USER_MODE;
} else if (statusReg.s32.ts_ksu == 1) {
P->cpuMode = SUPERVISOR_MODE;
}
}
P->notFRbit = (statusReg.s32.ts_fr == 0);
switch (P->cpuMode) {
case KERNEL_MODE:
P->is32bitMode = (statusReg.s32.ts_kx == 0);
break;
case SUPERVISOR_MODE:
P->is32bitMode = (statusReg.s32.ts_sx == 0);
#if defined(SIM_MIPS32)
ASSERT(IS_SUPERV_SEG(P->PC));
#endif
break;
case USER_MODE:
P->is32bitMode = (statusReg.s32.ts_ux == 0);
#if defined(SIM_MIPS32)
ASSERT( IS_KUSEG(P->PC));
#endif
break;
default:
ASSERT(0);
}
SIM_DEBUG_DETAIL(('i', "CPUMode" , P->myNum,
" going to %d PC=0x%llx SR=%x erl=%d exl=%d ksu=%d 32bit=%d\n",
P->cpuMode, (uint64)P->PC, P->CP0[C0_SR],
statusReg.s32.ts_erl,statusReg.s32.ts_exl,
statusReg.s32.ts_ksu,P->is32bitMode));
}
extern int numLLactive;
extern PA LLAddrs[MIPSY_MAX_CPUS];
/*****************************************************************
* All cop0 instructions are handled here.
*****************************************************************/
int
ExecuteC0Instruction(CPUState *P, Inst instr)
{
uint rs = RS(instr);
uint rt = RT(instr);
uint rd = RD(instr);
/* Handle the rs instructions */
if (!IS_KERNEL_MODE(P)) {
/* CP0 is unusable only in kernel and or when the cu0 bit is set. */
CauseReg causeReg;
StatusReg statusReg;
statusReg.ts_data = P->CP0[C0_SR];
if (!statusReg.s32.ts_cu0) {
causeReg.tc_data = P->CP0[C0_CAUSE];
causeReg.s32.tc_ce = 0;
P->CP0[C0_CAUSE] = causeReg.tc_data;
EXCEPTION(P, EXC_CPU);
return C0_CONTINUE;
}
}
switch(rs) {
case bc_op:
CPUError("BCC0 is not valid\n");
return C0_ILLEGAL_INST;
case cfc_op:
CPUError("CFC0 is not valid\n");
return C0_ILLEGAL_INST;
case ctc_op:
CPUError("CTC0 is not valid\n");
return C0_ILLEGAL_INST;
case dmfc_op:
if (P->is32bitMode) {
return C0_ILLEGAL_INST;
}
/* Fall thru */
case mfc_op:
/* update the count on a read */
if (rd == C0_COUNT){
/* If someone writes to count we need to watch the timer. */
P->CP0[C0_COUNT] += (MipsyReadTime(P->myNum) - P->timerCycleCount)/
COUNTER_FREQUENCY_DIVIDER;
P->CP0[C0_COUNT] &= 0xffffffff;
P->timerCycleCount = MipsyReadTime(P->myNum);
} else if (rd == C0_RAND) {
unsigned numRandEntries = P->numTlbEntries - P->CP0[C0_TLBWIRED];
P->CP0[C0_RAND] = P->CP0[C0_TLBWIRED] +
((uint32)MipsyReadTime(P->myNum)) % numRandEntries;
}
if (rs == mfc_op) {
#if defined(SIM_MIPS64)
if (P->CP0[rd] == 0x0000000080000000LL) {
/* WARNING! This is a hack to fix a compiler bug in 7.2.
It assigns 0x0000000080000000 rather than
0xffffffff80000000 */
P->R[rt] = 0xffffffff80000000LL;
} else {
P->R[rt] = (Reg)(Reg32_s)P->CP0[rd];
}
#else
P->R[rt] = (Reg)(Reg32_s)P->CP0[rd];
#endif
} else {
P->R[rt] = P->CP0[rd];
}
break;
case dmtc_op:
if (P->is32bitMode) {
return C0_ILLEGAL_INST;
}
/* Fall thru */
case mtc_op:
if (rs == dmtc_op) {
WriteC0Register(P, rd, P->R[rt], 1);
} else {
WriteC0Register(P, rd, (Reg32_s)(P->R[rt]), 0);
}
break;
default:
/* It wasn't any of these, so it's a CO function */
switch(FUNC(instr)) {
case rfe_op:
/* Treat rfe as an eret for NachOS */
case eret_op:
if (UNCACHED_LL_SC) {
if (P->LLbit) {
numLLactive--;
LLAddrs[P->myNum] = (PA) -1;
}
}
/* Note that this is now check for >= instead of
just >. This is so we can capture the
instruction that causes the transistion in the
sample */
if (STATS_VALUE(P->myNum, numInstructions)
>= STATS_VALUE(P->myNum, nextInstrSample)) {
INST_SAMPLE_EVENT(MipsyReadTime(P->myNum), P->myNum, P->PC);
STATS_INC(P->myNum, nextInstrSample, MS_SAMPLE_INSTR_INTERVAL);
}
P->LLbit = 0;
/* This is bad... this is the one case where flow control
gets messed up. */
TraceInstruction(P, instr);
ExceptionReturn(P);
return C0_CONTINUE;
case tlbp_op:
ProbeTLB(P);
break;
case tlbr_op:
ReadTLBEntry(P);
break;
case tlbwi_op:
if (WriteTLBEntry(P) != SUCCESS) {
CPUWarning("WriteTLB failed at %#x on %d\n",
P->PC, P->myNum);
} else
break;
case tlbwr_op:
if (WriteRandomTLBEntry(P) != SUCCESS) {
CPUWarning("WriteRandomTLB failed at %#x on %d\n",
P->PC, P->myNum);
} else
break;
default:
ASSERT(0);
return C0_ILLEGAL_INST;
}
}
return C0_SUCCESS;
}
/*****************************************************************
* WriteC0Register
*
* All writes to coprocessor come here for handling. This allows
* us to do whatever we want with read-only bits, etc.
*****************************************************************/
static void
WriteC0Register(CPUState *P, int c0RegNum, Reg value, int is64bit)
{
if (cp0RegCtl[c0RegNum].read_only) {
return;
}
if (cp0RegCtl[c0RegNum].size == -1) {
CPUWarning("WriteC0Reg write to invalid reg %d\n",
c0RegNum);
}
if ((cp0RegCtl[c0RegNum].zero_mask & value) != 0) {
/* Trying to write must be zero bits, force them to zero. */
value &= ~cp0RegCtl[c0RegNum].zero_mask;
/* Print a warning message for the programmer. Special
* case 32bit signed-extention bits that set high zero bits
* of 64 bit registers (IRIX 6.2 does this).
*/
if (is64bit || (cp0RegCtl[c0RegNum].size != 1) ||
((cp0RegCtl[c0RegNum].zero_mask & value & 0xffffffff) != 0)) {
#if defined(TORNADO) || defined(IRIX6_4)
/* for now, tornado sometimes writes funny values for tlb stuff */
/* So does IRIX 6.4 that that matter */
int warning = (c0RegNum != C0_TLBLO_0) && (c0RegNum != C0_TLBLO_1);
#else
int warning = 1;
#endif
if (warning) {
CPUWarning("WriteC0Reg zero bits set during write to %d @%#llx RA %#llx, clearing\n",
c0RegNum, P->PC, P->R[31]);
}
}
}
if (is64bit && (cp0RegCtl[c0RegNum].size == 0)) {
#ifdef IRIX6_4
if (c0RegNum != C0_SR)
#endif
CPUWarning("WriteC0Reg 64bit write to 32bit reg %d\n",
c0RegNum);
}
if (c0RegNum == C0_CAUSE){
P->CP0[C0_CAUSE] &= ~(CAUSE_SW2|CAUSE_SW1);
P->CP0[C0_CAUSE] |= (value & (CAUSE_SW2|CAUSE_SW1));
} else if (c0RegNum == C0_CONFIG) {
P->CP0[C0_CONFIG] &= ~0x3f;
P->CP0[C0_CONFIG] |= value & 0x3f;
} else {
P->CP0[c0RegNum] = value;
}
if (c0RegNum == C0_COMPARE) {
CompareWritten(P);
}
if (c0RegNum == C0_COUNT) {
CountWritten(P);
}
if (c0RegNum == C0_TLBHI) {
/* Clear the fill bits */
P->CP0[c0RegNum] &= TLBHI_FILLMASK;
/* Might be changing the ASID */
P->pcVPNcache = 0;
TraceCheckASID(P);
}
if (c0RegNum == C0_SR){
StatusReg statusReg;
statusReg.ts_data = P->CP0[C0_SR];
#if defined(SIM_MIPS32)
if ((statusReg.s32.ts_ux) || (statusReg.s32.ts_sx) ||
(statusReg.s32.ts_kx)) {
static int warned_64 = 0;
if (!warned_64) {
CPUWarning("MIPSY: 64-bit mode not implemented, ignoring SR write\n");
warned_64 = 1;
}
statusReg.s32.ts_ux = 0;
statusReg.s32.ts_sx = 0;
statusReg.s32.ts_kx = 0;
P->CP0[C0_SR] = statusReg.ts_data;
}
#endif
/* Don't allow reverse endian either. */
if (statusReg.s32.ts_re) {
static int warned_re = 0;
if (!warned_re) {
CPUWarning("MIPSY: reverse-endian mode not implemented, ignore SR write\n");
warned_re = 1;
}
statusReg.s32.ts_re = 0;
}
UpdateCPUMode(P);
MipsyCheckForInterrupts(P);
}
if (c0RegNum == C0_CAUSE){
MipsyCheckForInterrupts(P);
}
}
/*****************************************************************
* R4000 Timer support
*****************************************************************/
static EventCallbackHdr timerCallbackHdr[MIPSY_MAX_CPUS];
static void MipsySetTimerCallback(int cpuNum);
/*****************************************************************
* Things that need doing when the compare register is written.
* Right now just timer related actions.
*****************************************************************/
static void
CompareWritten(CPUState *P)
{
int cpuNum = P->myNum;
/* make sure upper bits are zero */
P->CP0[C0_COMPARE] &= 0xffffffff;
PE[cpuNum].CP0[C0_CAUSE] &= ~CAUSE_IP8;
if (EventCallbackActive(&(timerCallbackHdr[cpuNum]))) {
EventCallbackRemove(&(timerCallbackHdr[cpuNum]));
}
MipsySetTimerCallback(cpuNum);
}
/*****************************************************************
* Things that need doing when the count register is written.
* Right now just timer related actions.
*****************************************************************/
static void
CountWritten(CPUState *P)
{
int cpuNum = P->myNum;
/* make sure upper bits are zero */
P->CP0[C0_COUNT] &= 0xffffffff;
P->timerCycleCount = MipsyReadTime(P->myNum);
if (EventCallbackActive(&(timerCallbackHdr[cpuNum]))) {
EventCallbackRemove(&(timerCallbackHdr[cpuNum]));
}
MipsySetTimerCallback(cpuNum);
}
/****************************************************************
* TMipsyimerCallback
*
* This is the routine called back on the event that
* the C0_COMPARE == C0_COUNT, it is set when the
* COMPARE register is written. Raise IP(7) in the
* C0_CAUSE register to signal a timer interrupt is
* pending. Note: IP(7) is cleared when when the
* C0_COMPARE register is written. use DEV_IEC_MAGICERR
* as it corresponds to hw interrupt bit #5 which raises
* ip7 in the cause register.
****************************************************************/
static void
MipsyTimerCallback(int cpuNum, EventCallbackHdr *ECBhdr, void *empty)
{
if (simosCPUType != MIPSY) {
return;
}
PE[cpuNum].CP0[C0_CAUSE] |= CAUSE_IP8;
MipsyCheckForInterrupts(&PE[cpuNum]);
}
/*****************************************************************
* MipsySetTimerCallback
*
* Each processor has its own r4kTimerInfo and r4k_timerHdr
* associated with it. When the Compare register is written to
* we check current cycle count, and, projecting into the future the
* diff btwn the new Compare reg value and the current cycle count, a
* callback is set to fire in that calculate amt of time. It is tricky
* only when they decide to write to the count reg, which is permited on
* system initialization or to synchronize processors. Since we do not
* update the Count register continually, our cycle count and the Count
* register value could then be out-of-synch. The r4kTimerInfo variable
* is used to track this discrepency.
****************************************************************/
static void
MipsySetTimerCallback(int cpuNum)
{
CPUState *P = &PE[cpuNum];
SimTime timeInFuture;
P->CP0[C0_COUNT] += (MipsyReadTime(cpuNum) - P->timerCycleCount)/
COUNTER_FREQUENCY_DIVIDER;
P->timerCycleCount = MipsyReadTime(cpuNum);
P->CP0[C0_COUNT] &= 0xffffffff;
if (P->CP0[C0_COMPARE] >= P->CP0[C0_COUNT]) {
timeInFuture = (P->CP0[C0_COMPARE] - P->CP0[C0_COUNT]);
timeInFuture *= COUNTER_FREQUENCY_DIVIDER;
} else {
timeInFuture = 0x100000000LL - (P->CP0[C0_COUNT] - P->CP0[C0_COMPARE]);
timeInFuture *= COUNTER_FREQUENCY_DIVIDER;
}
EventDoCallback(cpuNum, MipsyTimerCallback,
&(timerCallbackHdr[cpuNum]), NULL, timeInFuture);
}
/*****************************************************************
* CHECKING OF INTERRUPTS
*****************************************************************/
/*****************************************************************
* CheckForInterrupts callback
* This callback is in charge of polling for interrupts and checking
* if mipsy should be exited. You can exit by running the set number
* of cycles or by attaching with a debugger and setting "mipsyExit"
* to true.
*****************************************************************/
static struct CheckForInterruptsCallbackHdr {
EventCallbackHdr hdr;
SimTime interval;
} checkForInterruptsEvent[SIM_MAXCPUS];
extern bool exitMipsy;
static void
CheckForInterruptsCallback(int cpuNum, EventCallbackHdr *hdr, void *empty)
{
int cpu;
if (simosCPUType != MIPSY) {
return;
}
for (cpu = 0; cpu < TOTAL_CPUS; cpu++) {
MipsyCheckForInterrupts(&PE[cpu]);
}
EventDoCallback(cpuNum, CheckForInterruptsCallback, hdr, 0,
checkForInterruptsEvent[cpuNum].interval);
/* Another way of leaving mipsy is to attach to it with the */
/* debugger and set the exitMipsy flag to TRUE */
if (exitMipsy) {
CPUPrint("exitMipsy set to true (by debugger)\n");
MipsyExit(BASE);
}
}
void EnableInterruptCheck(CPUState *P, int interval)
{
checkForInterruptsEvent[P->myNum].interval = interval;
EventDoCallback(P->myNum, CheckForInterruptsCallback,
&checkForInterruptsEvent[P->myNum].hdr,
0, interval);
}
#ifdef MIPSY_MXS
/*****************************************************************
* DoPrivInst - Perform a priviledged instruction for MXS.
* MXS passes us the instr and any source register
* values that come from the GP register set. We return
* to MXS any destination registers.
*****************************************************************/
bool
DoPrivInst(struct s_cpu_state *st, uint instr, uint srcreg, uint *dstreg,
bool *hack)
{
CPUState *P = (CPUState *) (st->mipsyPtr);
uint rs = RS(instr);
uint rd = RD(instr);
uint op = MAJOR_OP(instr);
(*hack) = FALSE;
if (!IS_KERNEL_MODE(P)) {
/* CP0 is unusable */
CPUWarning("Using CP0 inst in user mode!\n");
RECORD_EXCEPTION(P, EXC_CPU, E_VEC, 0, P->CP0[C0_TLBHI],
P->CP0[C0_CTXT],P->CP0[C0_XCTXT]);
return TRUE;
}
if (op == cop0_op) {
/* First handle the rs instructions */
switch(rs) {
case bc_op:
CPUError("BCC0 is not valid\n");
break;
case mfc_op:
(*dstreg) = P->CP0[rd];
break;
case mtc_op:
/*BAN: BEGIN*/
if (rs == dmtc_op) {
WriteC0Register(P, rd, srcreg, 1);
} else {
WriteC0Register(P, rd, (Reg32_s)srcreg, 0);
}
/*BAN: END*/
break;
default:
/* It wasn't any of these, so it's a CO function */
CopyFromMXS(P);
switch(FUNC(instr)) {
case eret_op:
P->LLbit = 0;
#ifdef BANREMOVE
if (P->numInstructions >= P->nextInstrSample) {
INST_SAMPLE_EVENT(MipsyReadTime(P->myNum), P->myNum, P->PC);
P->nextInstrSample += MS_SAMPLE_INSTR_INTERVAL;
}
#endif
/*BAN: BEGIN*/
ExceptionReturn(P);
/*BAN: END*/
(*hack) = TRUE;
break;
case rfe_op:
CPUError("MIPSY: Hit an RFE on an R4000\n");
break;
case tlbp_op:
ProbeTLB(P);
break;
case tlbr_op:
ReadTLBEntry(P);
break;
case tlbwi_op:
WriteTLBEntry(P);
break;
case tlbwr_op:
WriteRandomTLBEntry(P);
break;
default:
CPUWarning("COP0 instruction not found at %#x\n", P->PC);
break;
} /* cp0 functions */
} /* rs values */
} else if (op == cache_op) {
/* Be careful with this one. Mipsy's caches are
physically indexed. */
uint targetCache;
targetCache = TARGET_CACHE(instr);
switch(targetCache) {
case CACH_PI:
case CACH_PD:
case CACH_SI:
CPUWarning("Bad op for cache instruction\n");
break;
case CACH_SD:
CPUWarning("Bad op for cache instruction\n");
break;
default:
CPUWarning("BAD TARGET CACHE at %#x\n", P->PC);
break;
}
} else {
CPUError("Unknown CP0 opcode in DoPrivInst\n");
}
return FALSE;
}
#endif